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Plant carnivory is often manifested as dramatic changes in the structure and morphology
of the leaf. These changes appear to begin early in leaf development. For example,
the development of the Sarracenia purpurea leaf primordium is associated with the
formation of an adaxial ridge, whose growth along with that of the leaf margin resulted
in a hollow structure that later developed into a pitcher. In Nepenthes khasiana, pitcher
formation occurs during the initial stages of leaf development, although this has not
been shown at the primordial stage. The formation of the Utricularia gibba trap resulted
from the growth of the dome-shaped primordium in both the longitudinal and transverse
directions. Recent research has begun to unfold the genetic basis of the development
of the carnivorous leaf. We review these findings and discuss them in relation to the
flat-shaped leaves of the model plant Arabidopsis.
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INTRODUCTION

Carnivorous plants develop a set of morphological features termed “carnivorous syndrome”, which
facilitate the capture and digestion of attracted prey (Pavlovič et al., 2007). This syndrome is
manifested mostly on the leaves – as innovative morphological structures (Figure 1) – and has
been the focus of research ever since the publication of Charles Darwin’s book Insectivorous
plants (Darwin, 1875; Ellison and Gotelli, 2009). Studies have now shed light on why plant
carnivory evolved, leading to a deeper understanding of the underlying mechanisms governing prey
entrapment and digestion. It took a 140 years later, through an excellent study involving the purple
pitcher plant S. purpurea (Fukushima et al., 2015), that the developmental basis of these highly
specialized leaves became known. A few years later, the developing leaf transcriptome ofN. khasiana
was reported, hinting at the possible link between leaf polarity genes and pitcher formation
(Dkhar and Pareek, 2019). Another outstanding study from the Coen lab provided insights on the
formation of the U. gibba trap (Whitewoods et al., 2020). These studies have now begun to reveal
the molecular mechanisms underpinning the development of the carnivorous leaf, shaped either as
a cup (in U. gibba) or a pitcher (in S. purpurea). These innovative leaf morphologies appear to have
evolved independently through changes in the existing genetic mechanisms governing flat-shaped
leaf development (e.g., Arabidopsis, Figure 2A) (Lee et al., 2019).
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LEAF ORGANOGENESIS AT THE SHOOT
APICAL MERISTEM OF CARNIVOROUS
PLANTS

Leaves arise from the peripheral zone of the SAM (Bowman and
Floyd, 2008). In Arabidopsis and other model plant organisms,
the process begins with the recruitment of leaf founder cells
(Dkhar and Pareek, 2014). In carnivorous plants, initiation of the
leaf primordium might also involve founder cells recruitment.
This recruitment is critical to determine the region at the
flanks of SAM where primordia will initiate. Initiation is then
followed by the establishment of the adaxial/abaxial polarity
along with the bulging of the leaf primordia (Tsukaya, 2013).
The developmental processes leading to the protrusion of the
incipient leaf primordia appear to be common among land plants.
As development progresses, structural changes begin to appear
on the leaf primordia of carnivorous plants. In S. purpurea, the
adaxial side of the developing leaf primordium becomes elevated,
forming a ridge (Fukushima et al., 2015). Further growth and
development of the adaxial ridge resulted in the formation of
a hollow structure at the distal part of the primordium, which
eventually develops into a pitcher (Fukushima et al., 2015). In
Arabidopsis, the developing leaf primordium remains flat until
maturity (Matsumoto and Okada, 2001) (Figure 2A). In U. gibba,
trap develops laterally on a leaf. But not all U. gibba leaf bears
a trap; rather, filiform-shaped leaflets develop. What specifies a
U. gibba leaf to develop a trap instead of a leaflet is inherently
genetic (discussed below). Interestingly, both leaflet and trap
primordia look alike during the initial stages of development
(Whitewoods et al., 2020). Changes appear at later stages: leaflet
primordia turn into cylinders with tapered ends whereas trap
primordia become spherical in shape, due to growth in both the
longitudinal and transverse directions (Whitewoods et al., 2020).
In Nepenthes, pitchers are attached to a flattened leaf base lamina
via a tendril. It was previously thought that pitcher initiation
occurs at the tip of a tendril (Owen and Lennon, 1999). However,
recent evidence suggests that pitcher formation in N. khasiana
occurs early in leaf development and shares anatomical features
with the young in-rolled leaf base lamina (Dkhar and Pareek,
2019). It remains to be seen though, how pitcher initiation occurs
on the leaf primordium of Nepenthes.

TRAP MORPHOGENESIS IN Utricularia
gibba IS A RESULT OF RESTRICTED
GENE EXPRESSION

How does a U. gibba plant direct its leaf to develop a trap,
instead of a leaflet? The answer lies in the expression pattern
of the PHAVOLUTA (PHV) gene, a member of the class III
HD-ZIP gene family known to specify the adaxial identity of
lateral organs (McConnell et al., 2001). The Arabidopsis genome
contains five HD-ZIPIII genes namely PHABOLUSA (PHB),
REVOLUTA (REV), ATHB8, ATHB15, and PHV (Emery et al.,
2003). In U. gibba, PHV showed extended as well as restricted
expression patterns on the adaxial side of the developing leaf

primordia (Whitewoods et al., 2020). This differential gene
expression pattern carries biological significance: primordia
showing restricted PHV expression developed into traps. When
this restricted expression pattern is perturbed, through heat-
shock-induced ectopic expression of PHV that is altered to
prevent recognition by miRNA (preferably miR165), allowing
PHV expression throughout the leaf tissue, trap development
is significantly reduced (Whitewoods et al., 2020). Thus, trap
initiation in U. gibba is a result of restricted PHV expression. In
S. purpurea, however, no distinct PHB or FIL (FILAMENTOUS
FLOWER, a gene specifying abaxial identity) expression patterns
were seen between the hollow and the ridge regions, indicating
that neither of the two genes play a role in pitcher initiation.
Instead, changes in the orientation of cell division in the
developing leaf primordium led to the development of the
pitcher-shaped leaf in S. purpurea (Fukushima et al., 2015).

Arabidopsis REVOLUTA MUTANTS
DISPLAY Nepenthes LEAF PHENOTYPE

Arabidopsis mutants of the HD-ZIPIII genes viz. PHB, PHV and
REV display leaf phenotypes similar to those seen in pitcher
plants, particularly Nepenthes. These gain-of-function mutations
transform the flat-shaped leaves of Arabidopsis into trumpet-
shaped (McConnell and Barton, 1998; McConnell et al., 2001;
Emery et al., 2003; Zhong and Ye, 2004). In severe cases, these
trumpet-shaped leaves grew out from the abaxial midvein of the
slightly narrower leaf lamina (Figure 2B), resembling the pitcher-
shaped leaves of Nepenthes. Unlike phb and phv gain-of-function
mutants, the inside surface of the trumpet-shaped leaf of gain-
of-function rev mutants is adaxial, as is the case with Nepenthes
pitchers. The rev phenotype is due to a single nucleotide change in
the putative lipid/sterol-binding START domain of the REV gene,
which prevented recognition and thereby negative regulation by
miR165 resulting in the expanded expression of REV (Emery
et al., 2003). In N. khasiana, REV showed increased expression
in the tip of the young N. khasiana leaf that later developed
into a pitcher (Dkhar and Pareek, 2019). We now know that
increased and restricted expression pattern of PHV resulted in
trap formation in U. gibba. It is likely then that the increased and
expanded expression of REV probably led to the development of
the Nepenthes pitcher.

AUXIN AND ITS ROLE IN PITCHER
DEVELOPMENT

Trumpet-shaped leaves were also seen in Arabidopsis plants
with defective PIN1 and REV genes, but not on single pin1
or rev Arabidopsis mutants (Qi et al., 2014). PIN1 encodes
for an auxin efflux carrier protein that mediates local auxin
accumulation during leaf initiation (Reinhardt et al., 2003).
Based on their observations, Qi et al. (2014) suggested that
auxin and REV act independently to promote leaf polarity.
Fukushima et al. (2015) evaluated the effects of auxin on
pitcher development in S. purpurea. Neither the addition of
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FIGURE 1 | Innovative leaf morphologies of selected carnivorous plants. (A) Stolon of a U. gibba plant showing leaves with or without traps. (B) Close-up view of a
U. gibba trap. (C) Pitcher-shaped leaves of S. purpurea. (D) A N. khasiana plant in the wild bearing pitcher-shaped leaves (inset shows close-up view of the
N. khasiana pitcher). (A,B) Bar = 1 mm; (C,D) bar = 10 mm.

1-Naphthaleneacetic acid (NAA) nor 1-N-Naphthylphthalamic
acid (NPA), an auxin transport inhibitor, prevented the formation
of the ridge and the hollow regions in the leaf primordia of
S. purpurea. In N. khasiana, addition of NPA at 5, 10, 20,
and 40 µM concentrations to the growing 1/4 strength MS
medium increases shoot branching, as a result of axillary bud
growth (Figures 3A,B). At higher NPA concentration, pitchers of
N. khasiana failed to develop, although a tiny structure at the tip

FIGURE 2 | Leaf phenotypes of wild-type and mutant Arabidopsis plants.
(A) Flat-shaped leaves of wild-type Arabidopsis plant. (B) Trumpet-shaped
leaves of rev gain-of-function mutant Arabidopsis plant. Note the resemblance
of the mutant leaf with those of Nepenthes (inset in Figure 1D). Images on the
left and right of (A,B) correspond to the adaxial and abaxial sides,
respectively. (B) Is reproduced from Zhong and Ye (2004) with permission
from Oxford University Press, United Kingdom.

of the leaf can still be seen (Figure 3A). Altogether, these results
suggest that auxin might have an indirect role in the formation
(or the expansion) of the N. khasiana pitcher.

TEMPERATURE AND NUTRIENT
AVAILABILITY AFFECT PITCHER
FORMATION

Leaf shape can vary to change in environmental conditions such
as temperature and light (Dkhar and Pareek, 2014). Interestingly,
carnivorous plants also respond to change in temperature
and nutrient availability. When the Australian pitcher plant
Cephalotus follicularis was grown at 15◦C under continuous light
conditions, more flat leaves developed than pitcher-shaped leaves
(Fukushima et al., 2017). At 25◦C, however, the reverse was
observed. Could this be a result of the plant’s response to higher
temperatures? We know that Nepenthes, including N. khasiana,
grow in nutrient-deficient soil. So, upon adding sufficient
nutrients to the substratum, prey-deprived N. talangensis plants
respond to this change in condition by developing leaves that
lack pitchers (Pavlovič et al., 2010). We replicated this experiment
in vitro by growing dissected shoot apices of 3-months old
N. khasiana seedlings in MS medium of varying strengths (Dkhar
et al., unpublished data). Most shoot apices of N. khasiana grown
in 2 MS (twice the strength of full MS i.e., 1 MS) failed to
grow, but if they survive, the plantlets develop narrower leaves
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FIGURE 3 | Effects of auxin transport inhibition and nutrient availability on pitcher formation in N. khasiana. (A) Morphological phenotypes of N. khasiana plantlets
after 1 month of treatment with varying concentrations of NPA (arrow points to tiny structures at the tip of the leaf). (B) A scanning electron micrograph of an axillary
bud of N. khasiana, arising as a result of NPA treatment. (C) N. khasiana plantlets grown in 2 MS (twice the strength of full MS i.e., 1 MS). Note the dramatic changes
in leaf morphology. (A,C) Bar = 10 mm; (B) bar = 0.5 mm.

completely devoid of pitchers (Figure 3C). By modifying nutrient
content in the growing medium, we are now presented with
N. khasiana plants lacking pitchers. It would be interesting to
know how nutrient availability signals the plant to develop or not
to develop pitchers.

CONCLUSION

Carnivorous plants evolved pitcher- or cup-shaped leaves
independently in four angiosperm lineages viz. Cephalotaceae
(Cephalotus), Lentibulariaceae (Utricularia), Nepenthaceae
(Nepenthes) and Sarraceniaceae (Sarracenia) (Whitewoods
and Coen, 2017). Although these leaves may look complex
in shape and form, research suggests that their formation
may be a result of simple modification – through changes in
gene expression patterns and growth modulation – of existing
leaf developmental programs at work in simpler leaf forms.
Studies on the model plant Arabidopsis have led to a deeper
understanding of the underlying mechanisms controlling leaf
development, which now form the basis of ongoing research in
the study of the evolution and development of innovative leaf
morphologies seen across angiosperms, including carnivorous
plants. The tremendous progress seen in Arabidopsis is, in part,
attributed to the ease at which this plant can be genetically
transformed, allowing various genes for leaf development to be
functionally validated. Recent progress in this direction, such as

the establishment of Agrobacterium-mediated transformation
protocols in N. mirabilis (Miguel et al., 2020) and U. gibba
(Oropeza-Aburto et al., 2020), offers much-needed hope for a
complete genetic dissection of these complex leaf shapes.
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