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Smart agriculture is inseparable from data gathering, analysis, and utilization. A

high-quality data improves the efficiency of intelligent algorithms and helps reduce the

costs of data collection and transmission. However, the current image quality assessment

research focuses on visual quality, while ignoring the crucial information aspect. In

this work, taking the crop pest recognition task as an example, we proposed an

effective indicator of distance-entropy to distinguish the good and bad data from the

perspective of information. Many comparative experiments, considering the mapping

feature dimensions and base data sizes, were conducted to testify the validity and

robustness of this indicator. Both the numerical and the visual results demonstrate the

effectiveness and stability of the proposed distance-entropy method. In general, this

study is a relatively cutting-edge work in smart agriculture, which calls for attention

to the quality assessment of the data information and provides some inspiration for

the subsequent research on data mining, as well as for the dataset optimization for

practical applications.

Keywords: quality assessment, agriculture, pest, entropy, few-shot

INTRODUCTION

Smart agriculture is established based on the digital process, combining the data in the agricultural
field and the Information and Communications Technology (ICT) (Friha et al., 2021; Sun et al.,
2021). As for the intelligent plant protection, the related data have various sources, such as the
sensing of soil (Yin et al., 2021), light intensity (Yu et al., 2021), water stress (Mundim and
Pringle, 2018; Ihuoma and Madramootoo, 2019), mixture of water and fertilizer (Jia et al., 2019),
temperature and humidity (Mekala and Viswanathan, 2019), etc. However, more commonly used
data sources in artificial intelligence (AI)-driven applications are images or videos. For example,
based on the RGB image processing or hyperspectral image processing, there have been numerous
typical studies and applications, including agricultural yield forecasting (Khaki and Wang, 2019;
Shahhosseini et al., 2020; Jarlan et al., 2021), crop pests and diseases identification (Li and Chao,
2020; Li et al., 2020; Liu and Wang, 2020; Liang, 2021), agricultural robot and navigation (Wen
et al., 2020; Zhang et al., 2020; Emmi et al., 2021), counting of plant fruits (Lin and Guo, 2020; Fu
et al., 2021), etc.
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Deep learning is the primary implementation of intelligent
applications by combining ICT and agriculture, but the
shortcomings are also apparent. One main drawback is that deep
models are unfriendly to a small amount of data and have a severe
over-fitting problem. However, the limited amount of data is the
essential property of many real-world tasks. Even in scenarios
with big data, there is also an inevitable problem in the early
stages of data collection.

Considering the execution of AI-based algorithms, they
are mainly cloud computing and edge computing. For cloud
computing (Zuo et al., 2016; Zhu et al., 2017), the required
communication bandwidth of data transmission is very high
for real-time performance. The data quality should be treated
seriously as this is gradually becoming a research focus, thus,
helping to improve the training efficiency of models. On the other
hand, edge computing (Yang et al., 2018; Huang et al., 2021)
has relatively weak hardware resources and high training costs.
Therefore, the data quality analysis and screening are significant
for practical applications.

To explore the effect of data quality, a machine learning based
on limited data, also called few-shot learning, has made some
attempts and has emerged in many scenarios (Li and Yang, 2020,
2021; Chao and Zhang, 2021; Li and Chao, 2021; Li et al., 2021;
Nie et al., 2021). But, most of the existing related studies in the
literature are based on the randomly selected few data, without
enough consideration of data information value. The related
research works are mainly meta-learning, model fine-tuning, and
applications (Karami et al., 2020; Nuthalapati and Tunga, 2021;
Yang Y. et al., 2021; Zhou et al., 2021). Therefore, the small
amount of data must be built on the premise of high quality to
be meaningful. However, the current image quality assessment
(IQA) research works are mainly focused on visual evaluation,
including screen images (Yang et al., 2020; Yang J. et al., 2021) and
stereoscopic video (Yang et al., 2019; Zhao et al., 2021). That is to
say, there are limited research on image quality and information
assessment aiming at AI-driven visual tasks.

To fill this gap, in this paper, we proposed an innovative
and effective indicator called distance-entropy, to assess data
quality for the machine vision recognition tasks in agriculture.
In particular, the proposed distance-entropy indicator is used
to select informative samples or redundant data. The crop pest
dataset is used and analyzed under different mapping feature
dimensions and base data sizes to verify the validity of the
proposed indicator. Extensive experiments showed that the
distance-entropy indicator can be used to distinguish good and
bad data from the perspective of information. Thus, this study
can assess and screen high-quality data in an existing dataset and
guide the high informative online data gathering to establish a
high-quality dataset.

The rest of this article is arranged as follows. Section Materials
and Methods describes the used dataset, quality assessment
based on feature distribution, and the proposed distance-
entropymethod. In Section Results, many experiments and result
visualization are carried out, considering the factors of mapping
feature dimensions and the base data size. Finally, Discussion and
Conclusion are put in Section 4 and Section 5, respectively.

MATERIALS AND METHODS

Dataset
This study adopted the plant pest recognition as the target task,
an essential part of intelligent plant protection. The used plant
pest dataset has six classes. There are 1,000 image samples in
each category, with a uniform size of 224∗224∗3. Differently from
other datasets under the controlled environmental background,
the colorful RGB images in this dataset are collected in the natural
environment. The dataset will be split into training and testing
sets, and the training set will be split into base and pool data.

The details of the category name and data quantity are shown
in Table 1, while some image samples are shown in Figure 1.
Notably, the symbol N is a variable used to verify the effectiveness
and robustness of the proposed distance-entropy indicator.

Image Quality Assessment
The existing IQA focuses on the image quality evaluation
at the aspects of transmission distortion and pixels imaging.
For example, one typical pest image, its noisy image, and
the corresponding transmission distortion image are shown in
Figure 2. Furthermore, the current IQA studies aim to design
some algorithms to automatically provide a score in assessing
the visual image quality, and the main goal is to approximate the
subjective score given by human volunteers.

TABLE 1 | Details of the used pest dataset.

Pest

dataset

Name Base data

size

Pool data

size

Test data

size

Category 1 Cicadellidae N 800-N 200

Category 2 Blister beetle N 800-N 200

Category 3 Lycorma

delicatula

N 800-N 200

Category 4 Locust N 800-N 200

Category 5 Mole cricket N 800-N 200

Category 6 Miridae N 800-N 200

FIGURE 1 | Some image samples of the pest dataset.
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FIGURE 2 | Images with different visual qualities.

FIGURE 3 | Image example with high information quality.

However, in this study, we are not concerned about the visual
image quality, but rather about the image information quality.
In particular, taking the multi-classification identification task
as an example, the mapping feature space can be visualized as
Figures 3, 4.

In Figure 3, sample “A” is an example of valuable data
with high information quality, which is helpful to the
performance improvement. The high-informative data can
provide information that the currently collected data does not
include. Hence, the spatial mapping feature belongs to the
common area and cannot fall into the existing range of categories
due to the uncertain prediction.

In Figure 4, sample “B” is an example of redundant data
with low information quality, which is meaningless to the
performance improvement. The low informative data cannot
provide new information that the collected data does not include.
Hence, the spatial mapping position falls into the existing range
of categories due to the confident prediction.

Distance-Entropy Indicator
In this work, we proposed an effective indicator called distance-
entropy, where the distance is used to measure similarity, and
the entropy is used to evaluate the information. Specifically,
take Figure 3 as an example. The feature distributions stand for
the existing base data used to train the current model. First,
the prototypes of categories are computed. Then, the Euclidean

FIGURE 4 | Image example with low information quality.

distance between the new sample and the class prototype is
calculated as di. Next, the Euclidean distances will be changed to a
proportional distribution based on the softmax function, written
as Equation 1. Finally, the information entropy E is calculated
based on Equation 2, according to the proportional distribution
coming from the distances.

S(di) =
edi

∑
i
edj

(1)

E = −

∑

i

S(di) · log2S(di) (2)

In practice, the distances between new samples and prototypes
can be multiplied by−1. The smaller distance represents a more
considerable similarity and should have greater weight in the
proportional transformation based on the softmax function,
which is also more interpretable. As known, the Maximum
Entropy Theorem indicates that when all the probability values
are equal, the information entropy of this event will be
maximum. Since the event is the most chaotic, no clear bias
can be given. Comparing Figure 3 with Figure 4, the sample
in Figure 3 is high informative, whose distance-entropy will be
much larger than the one in Figure 4, which has a definite
classification bias.

RESULTS

To verify the effectiveness and robustness of the proposed
distance-entropy indicator, we conducted many groups of
experiments, considering the factors of mapping feature
dimensions and base data size. The experiments were
implemented based on a graphic processing unit (GPU) of
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TABLE 2 | Results under different mapping feature dimensions.

Accuracy (%) 2 dimensions 64 dimensions 128 dimensions

High d-e Low d-e High d-e Low d-e High d-e Low d-e

Base data 82.6 82.6 90.3 90.3 90.3 90.3

Add 10 87.5 83.6 93.1 90.6 92.6 90.8

Add 20 87.7 84.8 93.5 91.1 93.1 91.4

Add 30 87.9 85.7 94.6 91.8 94.4 92.2

Add 40 89 86.7 95.2 92.1 95 92.4

Add 50 89.7 87 95.6 92.2 95.5 92.3

FIGURE 5 | The accuracy testing under different mapping feature dimensions.

NVIDIA TITAN Xp, with a 12 GB memory. The distance-
entropy algorithm was running on the Jupyter Notebook using
Python, with libraries of TensorFlow, Keras, and Numpy.

Effect of Mapping Feature Dimensions
The different mapping feature dimensions represent different
feature spaces, and we compared three mapping dimensions of 2,
64, and 128. The base data were 50 samples per class. The selected
data, according to the high distance-entropy and low distance-
entropy, were added to the original base data and used to refine
the model. Finally, the fixed test data were used to compare the
performance of accuracy. Notably, the number of selected data in
each category is fixed as 10 for comparative analysis in each step.

The results of accuracy testing under different mapping
feature dimensions are shown in Table 2, and the symbol “d-e”
is short for distance-entropy.

Evidently, the proposed distance-entropy method is effective
under different mapping dimensions and is able to distinguish
the high informative data from the low informative data, which
are reflected in the improvement of task performance. Notably,
the “Add 30” is compared to the “Base data,” which means
adding 10 samples to the “Add 20.” The results can also be
shown in Figure 5, which are easier to present the consistency
of differences in selecting data samples.

As shown, the comparative trends in Figure 5 are consistent,
while the upper accuracies are different because the mapping
dimensions are related to the representative ability of the
model. Thus, considering the effect of mapping dimensions, the

distance-entropy can be a reliable and efficient indicator for
selecting high-information samples.

Effect of Base Data Size
The base data represented the existing data used to train the
model for recognition or for other tasks. The different base
data sizes will affect the performance of the model and the
corresponding feature distributions. To verify the validity of the
proposed distance-entropy indicator, we conducted comparative
experiments with the base data of 50 and 100 samples per
class. Since the impact analysis of mapping dimensions has been
carried out in section 3.1, only two dimensions are taken as an
example. Different samples were selected, added to the original
base data, and then used to refine the model according to high
and low distance-entropy indicators. As before, the number of
selected data per category is fixed as 10 for comparative analysis.
The results of testing accuracy under different base data sizes are
shown in Table 3, and the symbol “d-e” is short for distance-
entropy.

Similar to the trends in section Effect of Mapping Feature
Dimensions, the proposed distance-entropy indicator is effective
under the different base data sizes to distinguish high and
low informative samples, as reflected in the performance
improvement of the model.

The results are plotted in Figure 6, showing the consistency
of trends.

As seen, the accuracies at “Add 50” are different under
different conditions; the larger the base data size, the better
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the performance of the model is. Then, the addition of high
informative data will bring a big promotion, whereas the addition
of low informative data will only bring little improvement. Thus,
the accuracy in case of large base data with high distance-
entropy is the largest, i.e., 93.3%. Even so, the comparison trends
of selection results according to the distance-entropy indicator
are consistent, showing the ability to distinguish high and low
informative data.

Visualization of Different Selected Results
This section compares the selected samples according to high
and low distance-entropy, using two dimensions visualization
to intuitively display the distribution of the selected results
with different information quality. In addition, due to the
dimension requirements of visualization, the features can be
directly mapped to two dimensions or processed by t-Distributed
Stochastic Neighbor Embedding (t-SNE) dimension reduction.
The visualization of selected samples according to high and low
distance-entropy are shown in Figures 7, 8, respectively.

In Figure 7, the black points stand for the selected samples
according to high distance-entropy, while other colorful points
represent the existing base data from six categories. It is shown
that the selected data are located at the central area among all
the categories, and that there are no overlaps. The visualization

TABLE 3 | Results under different base data sizes.

Base data Base data

Accuracy (%) 50 samples per class 100 samples per class

High d-e Low d-e High d-e Low d-e

Base data 82.6 82.6 87.7 87.7

Add 10 87.5 83.6 90.5 88.4

Add 20 87.7 84.8 92.1 91.2

Add 30 87.9 85.7 92.8 91.5

Add 40 89 86.7 93 91.8

Add 50 89.7 87 93.3 92

FIGURE 7 | The visualization of high distance-entropy samples.

results show that the selected samples with high distance-entropy
can provide more information that is unavailable to the existing
base data. Thus, these samples are good data from the perspective
of the information quality assessment.

In Figure 8, the black points are the selected samples
according to low distance-entropy, which are almost overlapped
with the existing base data. Indeed, this kind of sample cannot
provide helpful information for the pattern recognition tasks.
Thus, the selected samples according to low distance-entropy
can be regarded as bad data from the perspective of information
quality assessment.

DISCUSSION

This work focused on the data information quality assessment,
carried out many comparative experiments, and analyzed
the visualization results. In this section, the motivations,
contributions, reasons, limitations, and future work of this study
are discussed.

FIGURE 6 | The testing accuracy under different base data sizes.
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FIGURE 8 | The visualization of low distance-entropy samples.

Motivations
In intelligent plant protection, smart agriculture, and other real-
world applications, the long-tailed data distribution is a basic
fact, which means the cost of obtaining rare data is high. As
for the current data-driven intelligent algorithms, data quality
assessment is critical and necessary because a large number of
redundant and low-quality data can waste the data transmission
and does not help improve the task performance.

Despite such a crucial need, the current IQA research are
primarily at the visual level, such as compression, transmission,
and consistency with subjective visual evaluation. However, from
our viewpoint, these visual IQA works are meaningful but not
sufficiently in-depth. Particularly, it is important to conduct
information quality evaluation and consider the requirements
of a data-driven intelligent algorithm. Thus, we proposed the
distance-entropy indicator to distinguish the data quality.

Contributions
The core contribution of this paper is the proposed distance-
entropy indicator. Taking the spatial distribution of the mapping
feature into account, it can be used to evaluate the information
value of new samples. Here, the new samples refer to online
data collecting. In addition, the existing dataset can also be split
into two parts: one is the base data, whereas the other can be
regarded as new samples to analyze the data quality and optimize
the dataset.

Extensive experiments prove the stability and reliability of the
proposed distance-entropy indicator, which is neither affected
by the feature dimension nor the base data size. The indicator
can be used to distinguish high and low informative samples.
Furthermore, the proposed distance-entropymethod can provide
some inspiration for new data gathering and dataset optimization
in the field of intelligent plant protection, such as remote
sensing data collection, plant status monitoring, and plant
disease identification.

Reasons
The spatial distribution of mapping feature corresponds to the
unique attributes of data. If a new sample is informative and
different, the intelligent model has weak confidence and will be
mapped to the common area among all the classes. An intuitive
explanation is that the model also does not know which category
it belongs to (refer to the cases in Figure 7).

Furthermore, supposing one new sample is redundant; In that
case, its mapping feature must be close to some original sample
because the intelligent model has already been familiar with it,
mapped to the area which is overlapped with the existing base
data (refer to the cases in Figure 8).

Finally, the proposed distance-entropy indicator can
implement the information quality assessment because the
distance-entropy value is calculated based on the relations
among the new sample and all the categories. When the distance-
entropy is large, the degree of chaos is high, i.e., the model does
not know which category the sample belongs to. But, when the
distance-entropy is small, the degree of chaos is low, i.e., the
model confidently knows which category the sample belongs to.

Limitations and Further Work
This work adopted the Euclidean distance, measuring the
similarity between a new sample and various distributions of
base data, which is an easy and fast way to perform. However,
this measure only considers the prototype calculated by average
and cannot take care of some scattered data cases. We would
further analyze other suitable metric methods in the further
work and combine them with the proposed distance-entropy
indicator. This study used multi-classes pest recognition as an
example. Hence, in succeeding work, we would consider other
vision tasks and testify the validity of the proposed distance-
entropy indicator.

CONCLUSION

To evaluate data quality at the informative level, we proposed
a novel indicator of distance-entropy to distinguish the high
and low informative data. Taking crop pest identification as
an example, many comparative experiments, considering factors
of different mapping feature dimensions and base data sizes,
were conducted to testify the validity and robustness. The
results show that the proposed distance-entropy method can
reliably and efficiently distinguish good and bad data from
the informative perspective. The comparison trends remain
consistent under different experimental conditions, showing
adaptability. In general, this study is a relatively cutting-edge
research work in the field of intelligent agriculture. It can
provide some inspiration for the data information assessment
and lay a foundation for the subsequent data assessment and
dataset optimization.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the
following licenses/restrictions: Requests to access

Frontiers in Plant Science | www.frontiersin.org 6 January 2022 | Volume 12 | Article 818895

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Li and Chao Distance-Entropy: Data Quality Assessment

these datasets should be directed to Xuewei Chao,
sherry_chao@shzu.edu.cn.

AUTHOR CONTRIBUTIONS

YL contributed to the conception and design of the study
and wrote the first draft of the manuscript. XC organized
the database and performed the statistical analysis. All authors

contributed to manuscript revision, read, and approved the
submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 32101612) and the Major Science and
Technology Projects of Xinjiang Production and Construction
Corps (No. 2021AA006).

REFERENCES

Chao, X., and Zhang, L. (2021). Few-shot imbalanced classification based on

data augmentation. Multimedia Syst. 2021, 1–9. doi: 10.1007/s00530-021-00

827-0

Emmi, L., Le Flécher, E., Cadenat, V., andDevy,M. (2021). A hybrid representation

of the environment to improve autonomous navigation of mobile robots

in agriculture. Precision Agri. 22, 524–549. doi: 10.1007/s11119-020-09

773-9

Friha, O., Ferrag, M. A., Shu, L., Maglaras, L. A., and Wang, X. (2021). Internet of

things for the future of smart agriculture: a comprehensive survey of emerging

technologies. IEEE CAA J. Autom. Sin. 8, 718–752. doi: 10.1109/JAS.2021.100

3925

Fu, L., Feng, Y., Wu, J., Liu, Z., Gao, F., Majeed, Y., et al. (2021).

Fast and accurate detection of kiwifruit in orchard using improved

YOLOv3-tiny model. Precision Agri. 22, 754–776. doi: 10.1007/s11119-020-09

754-y

Huang, X., Yu, R., Ye, D., Shu, L., and Xie, S. (2021). Efficient workload allocation

and user-centric utility maximization for task scheduling in collaborative

vehicular edge computing. IEEE Trans. Vehicul. Technol. 70, 3773–3787.

doi: 10.1109/TVT.2021.3064426

Ihuoma, S. O., and Madramootoo, C. A. (2019). Sensitivity of spectral vegetation

indices for monitoring water stress in tomato plants. Comput. Electr. Agri.

163:104860. doi: 10.1016/j.compag.2019.104860

Jarlan, L., Er-Raki, S., Balaghi, R., Amazirh, A., Richard, B., and Khabba,

S. (2021). Cereal yield forecasting with satellite drought-based

indices, weather data and regional climate indices using machine

learning in Morocco. Remote Sens. 13:3101. doi: 10.3390/rs1316

3101

Jia, X., Huang, Y., Wang, Y., and Sun, D. (2019). Research on

water and fertilizer irrigation system of tea plantation. Int. J.

Distribut. Sens. Netw. 15:50147719840182. doi: 10.1177/15501477198

40182

Karami, A., Crawford, M., and Delp, E. J. (2020). Automatic plant counting

and location based on a few-shot learning technique. IEEE J. Select. Top.

Appl. Earth Observ. Remote Sens. 13, 5872–5886. doi: 10.1109/JSTARS.2020.302

5790

Khaki, S., and Wang, L. (2019). Crop yield prediction using deep

neural networks. Front. Plant Sci. 10:621. doi: 10.3389/fpls.2019.

00621

Li, J., Zhang, L., Huang, G., Wang, H., and Jiang, Y. (2021). Experimental study on

creep properties prediction of reed bales based on SVR andMLP. PlantMethod.

17, 1–11. doi: 10.1186/s13007-021-00814-6

Li, Y., and Chao, X. (2020). ANN-based continual classification in agriculture.

Agriculture 10:178. doi: 10.3390/agriculture10050178

Li, Y., and Chao, X. (2021). Semi-supervised few-shot learning approach for plant

diseases recognition. Plant Method. 17, 1–10. doi: 10.1186/s13007-021-00770-1

Li, Y., Nie, J., and Chao, X. (2020). Do we really need deep CNN

for plant diseases identification?. Comput. Electr. Agri. 178:105803.

doi: 10.1016/j.compag.2020.105803

Li, Y., and Yang, J. (2020). Few-shot cotton pest recognition

and terminal realization. Comput. Electr. Agri. 169:105240.

doi: 10.1016/j.compag.2020.105240

Li, Y., and Yang, J. (2021). Meta-learning baselines and

database for few-shot classification in agriculture. Comput.

Electr. Agri. 182:106055. doi: 10.1016/j.compag.2021.1

06055

Liang, X. (2021). Few-shot cotton leaf spots disease classification based on metric

learning. Plant Method. 17, 1–11. doi: 10.1186/s13007-021-00813-7

Lin, Z., and Guo, W. (2020). Sorghum panicle detection and counting using

unmanned aerial system images and deep learning. Front. Plant Sci. 11:1346.

doi: 10.3389/fpls.2020.534853

Liu, J., and Wang, X. (2020). Tomato diseases and pests

detection based on improved Yolo V3 convolutional neural

network. Front. Plant Sci. 11:898. doi: 10.3389/fpls.2020.

00898

Mekala, M. S., and Viswanathan, P. (2019). CLAY-MIST: IoT-cloud enabled CMM

index for smart agriculture monitoring system. Measurement 134, 236–244.

doi: 10.1016/j.measurement.2018.10.072

Mundim, F. M., and Pringle, E. G. (2018). Whole-plant metabolic allocation

under water stress. Front. Plant Sci. 9:852. doi: 10.3389/fpls.2018.

00852

Nie, J., Wang, N., Li, J., Wang, K., and Wang, H. (2021). Meta-learning prediction

of physical and chemical properties of magnetized water and fertilizer based on

LSTM. Plant Method. 17, 1–13. doi: 10.1186/s13007-021-00818-2

Nuthalapati, S. V., and Tunga, A. (2021). “Multi-domain few-

shot learning and dataset for agricultural applications,” in

Proceedings of the IEEE/CVF International Conference on

Computer Vision, 1399–1408. doi: 10.1109/ICCVW54120.2021.

00161

Shahhosseini, M., Hu, G., and Archontoulis, S. (2020). Forecasting corn

yield with machine learning ensembles. Front. Plant Sci. 11:1120.

doi: 10.3389/fpls.2020.01120

Sun, Y., Ding, W., Shu, L., Li, K., Zhang, Y., Zhou, Z.,

et al. (2021). On enabling mobile crowd sensing for data

collection in smart agriculture: a vision. IEEE Syst. J. 2021:31

04107. doi: 10.1109/JSYST.2021.3104107

Wen, B. Q., Li, Y., Kan, Z., Li, J. B., Li, L., Ge, J., et al. (2020). Experimental research

on the bending characteristics of Glycyrrhiza glabra stems. Trans. ASABE 63,

1499–1506. doi: 10.13031/trans.13802

Yang, J., Bian, Z., Liu, J., Jiang, B., Lu, W., Gao, X., et al. (2021). No-

reference quality assessment for screen content images using visual edge model

and adaboosting neural network. IEEE Trans. Image Proces. 30, 6801–6814.

doi: 10.1109/TIP.2021.3098245

Yang, J., Wen, J., Jiang, B., Lv, Z., and Sangaiah, A. K. (2018). Marine

depth mapping algorithm based on the edge computing in Internet of

Things. J. Parallel Distribut. Comput. 114, 95–103. doi: 10.1016/j.jpdc.2017.

12.016

Yang, J., Zhao, Y., Jiang, B., Lu, W., and Gao, X. (2019). No-reference

quality evaluation of stereoscopic video based on spatio-temporal texture.

IEEE Trans. Multimedia 22, 2635–2644. doi: 10.1109/TMM.2019.296

1209

Yang, J., Zhao, Y., Liu, J., Jiang, B., Meng, Q., Lu, W., et al.

(2020). No reference quality assessment for screen content images

using stacked autoencoders in pictorial and textual regions.

IEEE Trans. Cybernet. 2020:3024627. doi: 10.1109/TCYB.2020.30

24627

Yang, Y., Zhang, Z., Mao, W., Li, Y., and Lv, C. (2021). Radar target

recognition based on few-shot learning. Multimedia Syst. 2021, 1–11.

doi: 10.1007/s00530-021-00832-3

Frontiers in Plant Science | www.frontiersin.org 7 January 2022 | Volume 12 | Article 818895

https://doi.org/10.1007/s00530-021-00827-0
https://doi.org/10.1007/s11119-020-09773-9
https://doi.org/10.1109/JAS.2021.1003925
https://doi.org/10.1007/s11119-020-09754-y
https://doi.org/10.1109/TVT.2021.3064426
https://doi.org/10.1016/j.compag.2019.104860
https://doi.org/10.3390/rs13163101
https://doi.org/10.1177/1550147719840182
https://doi.org/10.1109/JSTARS.2020.3025790
https://doi.org/10.3389/fpls.2019.00621
https://doi.org/10.1186/s13007-021-00814-6
https://doi.org/10.3390/agriculture10050178
https://doi.org/10.1186/s13007-021-00770-1
https://doi.org/10.1016/j.compag.2020.105803
https://doi.org/10.1016/j.compag.2020.105240
https://doi.org/10.1016/j.compag.2021.106055
https://doi.org/10.1186/s13007-021-00813-7
https://doi.org/10.3389/fpls.2020.534853
https://doi.org/10.3389/fpls.2020.00898
https://doi.org/10.1016/j.measurement.2018.10.072
https://doi.org/10.3389/fpls.2018.00852
https://doi.org/10.1186/s13007-021-00818-2
https://doi.org/10.1109/ICCVW54120.2021.00161
https://doi.org/10.3389/fpls.2020.01120
https://doi.org/10.1109/JSYST.2021.3104107
https://doi.org/10.13031/trans.13802
https://doi.org/10.1109/TIP.2021.3098245
https://doi.org/10.1016/j.jpdc.2017.12.016
https://doi.org/10.1109/TMM.2019.2961209
https://doi.org/10.1109/TCYB.2020.3024627
https://doi.org/10.1007/s00530-021-00832-3
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Li and Chao Distance-Entropy: Data Quality Assessment

Yin, H., Cao, Y., Marelli, B., Zeng, X., Mason, A. J., and Cao, C. (2021). Soil

sensors and plant wearables for smart and precision agriculture. Adv. Mater.

33:2007764. doi: 10.1002/adma.202007764

Yu, H., Ding, Y., Xu, H., Wu, X., and Dou, X. (2021). Influence of

light intensity distribution characteristics of light source on measurement

results of canopy reflectance spectrometers. Plant Method. 17, 1–12.

doi: 10.1186/s13007-021-00804-8

Zhang, B., Xie, Y., Zhou, J., Wang, K., and Zhang, Z. (2020).

State-of-the-art robotic grippers, grasping and control strategies,

as well as their applications in agricultural robots: a review.

Comput. Electr. Agri. 177:105694. doi: 10.1016/j.compag.2020.1

05694

Zhao, Y., Yang, J., and Shen, Y. (2021). Stereoscopic video

quality assessment in the context of Internet of Things. IEEE

Consum. Electr. Mag. 2021:3097305. doi: 10.1109/MCE.2021.30

97305

Zhou, Y., Chen, C., and Ma, S. (2021). Few-shot ship classification based on metric

learning.Multimedia Syst. 2021, 1–10. doi: 10.1007/s00530-021-00847-w

Zhu, C., Shu, L., Leung, V. C., Guo, S., Zhang, Y., and Yang, L. T. (2017).

Secure multimedia big data in trust-assisted sensor-cloud for smart city. IEEE

Commun. Mag. 55, 24–30. doi: 10.1109/MCOM.2017.1700212

Zuo, L., Dong, S., Shu, L., Zhu, C., and Han, G. (2016). A multiqueue interlacing

peak schedulingmethod based on tasks’ classification in cloud computing. IEEE

Syst. J. 12, 1518–1530. doi: 10.1109/JSYST.2016.2542251

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Li and Chao. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 8 January 2022 | Volume 12 | Article 818895

https://doi.org/10.1002/adma.202007764
https://doi.org/10.1186/s13007-021-00804-8
https://doi.org/10.1016/j.compag.2020.105694
https://doi.org/10.1109/MCE.2021.3097305
https://doi.org/10.1007/s00530-021-00847-w
https://doi.org/10.1109/MCOM.2017.1700212
https://doi.org/10.1109/JSYST.2016.2542251
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	Distance-Entropy: An Effective Indicator for Selecting Informative Data
	Introduction
	Materials and Methods
	Dataset
	Image Quality Assessment
	Distance-Entropy Indicator

	Results
	Effect of Mapping Feature Dimensions
	Effect of Base Data Size
	Visualization of Different Selected Results

	Discussion
	Motivations
	Contributions
	Reasons
	Limitations and Further Work

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


