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Differences in Water Consumption of
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Morphology Characteristics and
Post-anthesis Root Senescence
Xuejiao Zheng, Zhenwen Yu, Yu Shi* and Peng Liang

National Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an, China

Selecting high-yielding wheat varieties for cultivation can effectively increase water
use efficiency (WUE) in the Huang–Huai–Hai Plain, where is threatened by increasing
water shortages. To further identify the difference in water use and its relationship with
root morphology and senescence characteristics, wheat varieties with different yield
potentials—Yannong 1212 (YN), Jimai 22 (JM), and Liangxing 99 (LX)—were studied in a
high-yielding wheat field. The water consumption percentage (CP) in YN decreased from
planting to anthesis; however, crop evapotranspiration and CP increased from anthesis
to maturity compared with JM and LX. In YN, a higher soil water consumption from
anthesis to maturity in the 0–100 cm soil layer was partly attributed to the greater root
weight density in the 20–60 cm soil layer. In topsoil (0–40 cm), root length density,
root surface area density, and root diameter at 20 days after anthesis, root superoxide
dismutase activity, and root triphenyl tetrazolium chloride reduction activity during mid
grain filling stage were higher in YN than in JM and LX. YN had the highest grain yields
of 9,840 and 11,462 kg ha−1 and increased grain yield and WUE by 12.0 and 8.4%,
respectively, as compared with JM, and by 30.3 and 21.3%, respectively, as compared
with LX. Ensuring more soil water extraction post-anthesis by increasing roots in the
20–60 cm soil profile, improving root morphology traits, and alleviating root senescence
in the topsoil during mid-grain filling stage will assist in selecting wheat varieties with
high yield and WUE.

Keywords: winter wheat, yield potential, water use, root morphology, root senescence

INTRODUCTION

The Huang–Huai–Hai Plain (3HP), as the main wheat production region in China, owns only
40% of the agricultural land in the country; however, it accounts for about 61% of the total
wheat production of the country (Sun et al., 2011; Xu et al., 2018). In this area, the precipitation
received during the full wheat growth season ranges from 100 mm to 180 mm, which can only
meet 25–40% of the total water requirement of wheat (Iqbal et al., 2014). Groundwater is used
on 64% of the irrigated area, and excessive extraction has led to a rapid decline in groundwater
table (Zhang et al., 2010). Improving water use efficiency (WUE) is a crucial approach for food
security in regions such as the 3HP, where water shortage is a major challenge for agriculture
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(Brauman et al., 2013; Rashid et al., 2019). Therefore, reasonable
irrigation strategies have been proposed (i.e., regulating
irrigation frequency and timing, applying deficit irrigation, and
supplemental irrigation) for increasing WUE and maintaining
high wheat production (Wang, 2017; Meena et al., 2019a; Zhao
et al., 2020). However, studies have shown that renewing varieties
is an effective way to increase yield and WUE (Faralli et al., 2019;
Meena et al., 2019b), and it is necessary to study the physiological
characteristics of wheat varieties with high yield and high WUE.

The variation of wheat varieties in yield and WUE has been
reported in some studies (Zeleke and Nendel, 2016; Ma’arup et al.,
2020). When wheat yield ranging from 6,475 to 7,275 kg ha−1

under the irrigation of 190 and 230 mm in two wheat varieties,
using a greater yield and WUE wheat variety Shijiazhuang 8
could increase the WUE up to 17.8 kg ha−1 mm−1 by reducing
the irrigation amount without decreasing the yield (Liu et al.,
2016). Zhang et al. (2010) reported that the WUE of wheat is
estimated to increase from 10.0 to 12.0 kg ha−1 mm−1 for the
early 1970s varieties to 14.0–15.0 kg ha−1 mm−1 for the 2000s
varieties in the 3HP, and the positive relationship between grain
yield and WUE for all the varieties indicated that using a higher-
yielding variety has the potential to improve WUE, thereby saving
water. However, limited information is available on the variation
of WUE in water consumption characteristics between varieties
with different yield levels during the entire growing season.
There is a need to develop high-yielding wheat varieties because
achieving greater yield from the same water resources contributes
to higher WUE (Zhang et al., 2017).

Increased grain yield could be achieved by breeding deeper-
rooted wheat varieties in specific farming systems as root
distribution in the soil is directly associated with soil water uptake
(Wasson et al., 2012; Severini et al., 2020). In rice, increased
root length density is required for achieving high crop yield
and WUE (Yang et al., 2012), and inadequate root length could
accelerate the senescence of above-ground plants during the
grain filling stage (Liu et al., 2018). However, Fang et al. (2021)
reported that in the semi-arid region on the Loess Plateau,
modern wheat varieties with yields between 5,814 and 6,115 kg
ha−1 had less root biomass and root length density in the 0–
40 cm soil layer, which reduced pre-anthesis water uptake but
increased soil water extraction after anthesis, contributing to the
increases in grain yield and WUE. Regulating root morphology
characteristics by irrigation technologies can influence the uptake
of soil water during the post-anthesis phase, that have major
effects on wheat yield and WUE (Ali et al., 2019). However,
the onset of wheat senescence during post-anthesis is inevitable
(Nehe et al., 2020). Guaranteeing wheat water uptake during this
phase can provide important advantages in yield formation (Li
et al., 2019). Much attention has been paid to the effects of root
morphology characteristics on crop yield and WUE; however,
little information is available about the root senescence traits
post-anthesis and its relationship with the soil water uptake and
grain yield of wheat varieties with different yield levels.

Wheat varieties have been replaced 8–9 times in the main
wheat production regions of China since the 1950s, with great
improvement in yield potential (He et al., 2018). The average
wheat yield in Shandong, Henan, and Hebei Provinces, as the

main wheat production regions in the 3HP, varied from 6,052.5
to 6,484 kg ha−1 from 2014 to 2017 (Ministry of agriculture and
rural affairs of the People’s Republic of China, 2016, 2019). Widely
planted winter wheat varieties, Jimai 22 (JM) and Liangxing
99 (LX), in the 3HP are important parental resources for the
current wheat variety improvement in China (Yang Z. Z. et al.,
2020). The well-adapted wheat variety, Yannong 1212 (YN),
has broken the yield record of winter wheat twice in China
and showed a high yield of over 12,000 kg ha−1 at eight
different locations in the 3HP since 2015 (Dazhong Daily, 2020).
The recorded grain yield of YN was 11,001 kg ha−1, which
was 19.5% and 34.4% higher than the varieties JM and LX
in a previous study (Liang et al., 2018). However, few studies
have been conducted to investigate the differences in water
consumption characteristics, root morphology, and senescence
traits, underlying yield superiority of YN to JM and LX.
Moreover, clarifying the difference in water use of wheat varieties
and its relationships with root morphology and senescence
characteristics may also contribute to the improvement of new
varieties with high yield and high WUE in future breeding
programs. The objectives of this study were to: identify the water
consumption characteristics associated with high-yielding and
high WUE wheat varieties and clarify the relationships among
root morphology and post-anthesis senescence characteristics,
water use, and wheat production.

MATERIALS AND METHODS

Experimental Site
Field experiments were carried out from 2017 to 2019 in
Shijiawangzi village, Yanzhou (116◦41′E, 35◦42′N), Shandong
Province, China. This region has a typical and representative
environment of the 3HP. The average annual groundwater depth
is 25 m, and the soil type is Haplic luvisol (FAO classification
system). Before sowing, the soil layer (0–20 m) contained 19.2 g
kg−1 organic matter, 1.2 g kg−1 total nitrogen (N), 166.3 mg
kg−1 hydrolyzable N, 56.2 mg kg−1 available phosphorus, and
204.3 mg kg−1 available potassium. The soil bulk density and
field capacity in the 0–200 cm soil layer before sowing are shown
in Supplementary Table 1. Precipitation during the wheat-
growing seasons in 2017–2018 and 2018–2019 are shown in
Supplementary Figure 1.

Experimental Design
Seeds of three winter wheat varieties with different yield
potentials—YN, JM, and LX—were used in the present study.
Among the three wheat varieties, YN was approved by
National Crop Variety Approval Committee in 2020 (Ministry
of agriculture and rural development of the People’s Republic
of China, 2020). JM and LX have been sown in a cumulative
area of 60 million ha due to the excellent performance in wheat
production. JM (since 2015) and LX (from 2010 to 2015) were
successively employed as control varieties in the performance
test of new cultivars in the 3HP (Yang Z. Z. et al., 2020).
A randomized design with three replications was implemented.
Each experimental plot was 2 m × 30 m in size with a 2.0 m
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buffer zone between plots to minimize the effects of adjacent
plots. The straw of the preceding maize crop was crushed and
returned into the cropland. A base fertilizer of 105 kg ha−1 N,
150 kg ha−1 P2O5, and 150 kg ha−1 K2O were applied before
sowing, and at the jointing stage of wheat production, 165 kg
ha−1 N was ditched. Wheat seeds were sown on October 23, 2017,
and October 10, 2018, with a population of 270 plant m−2 and
180 plant m−2, respectively, while wheat plants were harvested on
June 7, 2018, and June 11, 2019. Experimental plots were irrigated
with 60 mm of water each in the pre-winter, jointing, and anthesis
stages, totaling 180 mm of water during the growing season.

Sampling and Measurements
Soil Water Content and Crop Evapotranspiration
In all experimental plots, soil from the surface to 200 cm depth
was sampled at 20 cm intervals using a soil corer. Measurements
of soil samples were taken at pre-planting, a day before irrigation
at both the jointing and anthesis stages, and at maturity from each
treatment with three replicates. The soil water content of each
20 cm soil layer was determined by using the oven-drying method
described by Gardner (1986).

The crop water consumption or crop evapotranspiration (ET)
of winter wheat for the whole growing season or an individual
growth period was based on the equation described by Chattaraj
et al. (2013):

ET = 1SW+ I+ P− D− R

Where ET (mm) is the crop evapotranspiration, 1 SW (mm) is
the soil water consumption of 0–200 cm soil profile between two
specific growth stages, I (mm) is the irrigation amount, P (mm)
is the precipitation amount, D (mm) is downward flux below the
crop root zone, and R (mm) is surface runoff. In this experimental
site, owing to the presence of a low groundwater table (average
annual of 25 m) below the ground surface, capillary rise, drainage,
and runoff were not calculated. Drainage and runoff are negligible
in the 3HP, including in this experimental site (Lv et al., 2011).

The water consumption percentage (CP) for a given growth
period was the ratio of the water consumption amount or ET of
that period to the total crop evapotranspiration during the whole
growth periods of wheat (ETC) (Xu et al., 2018).

Root Weight Density
Roots were sampled from each treatment with three replicates
at anthesis, using an auger with a 10 cm internal diameter, at
20 cm intervals down to a 100 cm depth. At each plot, two cores
were collected within and between the wheat rows. The roots
from the core sections, with mixtures of roots and soil in each
20 cm soil layer, were collected following the method described
by Jha et al. (2017). Root samples were oven-dried at 80◦C until
a constant weight was reached. The root weight density (RWD)
was calculated according to Feng et al. (2017).

Root Morphology Characteristics and
Biochemical Assays
Root samples in the 0–40 cm soil layer were collected at 20 cm
intervals from each pot with three replicates at anthesis, 10 and

20 days after anthesis (DAA), using an auger with a 10 cm
internal diameter. Each sample included two cores that collected
within and between the wheat rows. Root samples were collected
and refrigerated at −80◦C. Half of the root samples were used
to measure root length, root surface area, and root diameter
measurements using an Epson V700 scanner (Seiko Epson Corp.,
Japan) and WinRHIZO 2013 software (Regent Instruments
Canada Inc., Canada). Root length density and root surface
area density were calculated according to He et al. (2019). The
remaining root samples were used for the measurements of root
malondialdehyde (MDA) concentration, superoxide dismutase
(SOD) activity, and root activity. Root MDA concentration and
SOD activity were assayed using the methods described by Guo
et al. (2015). Root activity was determined following the method
of Man et al. (2016) and represented by the triphenyl tetrazolium
chloride (TTC) reduction activity.

Grain Yield
At maturity, grain yield was determined by the plants harvested
from a 5 m2 area in each plot and sun-dried to 12.5% moisture
content before being recorded.

Water Use Efficiency
The WUE was calculated as follows (Ma et al., 2019):

WUE = Y/ETc

Where WUE (kg ha−1 mm−1) represents the crop water use
efficiency, Y (kg ha−1) is the grain yield, and ETC (mm) is
the total crop evapotranspiration during the whole growing
periods of wheat.

Statistical Analysis
Statistical analysis was performed using standard ANOVA in
SPSS 22.0 (IBM, New York, NY, United States). The normality
of data and the homogeneity of variances were checked by using
the Shapiro–Wilk test and Levene’s test, respectively. ANOVA was
conducted to compare the effects of different treatments on the
measured variables. The means were compared using Duncan’s
test at α = 0.05 to identify significant effects.

RESULTS

Crop Evapotranspiration in Different
Growth Periods
As shown in Table 1, the ETC of YN was significantly higher
than that of JM and LX in both years. There was no significant
difference in ET from planting to jointing stages in all wheat
varieties in 2017–2018. Compared with JM and LX, the CP from
planting to jointing of YN was 4.9 and 7.8% lower in 2017–
2018, and 5.6 and 8.1% lower in 2018–2019, respectively. ET
from jointing to anthesis did not differ significantly among YN,
JM, and LX, despite that YN had the lowest CP from jointing to
anthesis. ET and CP from anthesis to maturity, both ranked in
the decrease order of YN > JM > LX, in both years.
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TABLE 1 | Total crop evapotranspiration during the whole growing periods of wheat (ETC), crop evapotranspiration, and water consumption percentage in different
growth periods in the 2017–2018 and 2018–2019 growing seasons.

Year Treatments ETC Planting-Jointing Jointing-Anthesis Anthesis-Maturity

(mm) ET (mm) CP (%) ET (mm) CP (%) ET (mm) CP (%)

2017–2018 YN 546.2a 193.1a 35.35c 140.2a 25.67b 212.9a 38.98a

JM 522.8b 194.4a 37.18b 142.4a 27.24a 186.0b 35.58b

LX 499.6c 191.4a 38.32a 139.9a 28.00a 168.3c 33.68c

2018–2019 YN 658.4a 168.6b 25.61b 171.6a 26.07b 318.1a 48.32a

JM 644.8b 175.0a 27.14a 174.3a 27.04a 295.4b 45.82b

LX 623.8c 173.8ab 27.87a 172.0a 27.57a 278.0c 44.56c

YN, Yannong 1212; JM, Jimai 22; LX, Liangxing 99; ET, crop evapotranspiration; CP, water consumption percentage. Values followed by a different letter are significantly
different (Duncan’s test, p < 0.05) within the treatments in each year.

Soil Water Consumption in Different
Growth Periods
The soil water consumption from planting to jointing of YN
was lower than that of JM in 2018–2019 (Figure 1). The soil
water consumption from jointing to anthesis among the three
varieties did not differ significantly in both years. The soil
water consumption values from anthesis to maturity in YN
were 79.1 mm and 61.6 mm in 2017–2018 and 2018–2019,
respectively, which were significantly higher than that of JM and
LX in both years.

Soil Water Consumption in the 0–200 cm
Soil Layer From Anthesis to Maturity
The highest soil water consumption in the 0–100 cm soil layer
from anthesis to maturity was observed in YN, followed by JM,
and finally, LX (Figure 2). Soil water consumption from the 100
to 120 cm soil layer in JM and LX did not differ with that of YN in
2017–2018 but were both lower than that of YN in 2018–2019. No
significant differences were found in the soil water consumption
of the 120–200 cm soil layer from anthesis to maturity among YN,
JM, and LX in both years.

Root Weight Density in the 0–100 cm Soil
Layer
The RWD in the 0–40 cm soil layer accounted for 78.8–83.9% of
the total RWD (i.e., in the entire 0–100 cm soil layer) in both years
(Figure 3). In both years, the RWD of all three wheat varieties
significantly decreased with an increase in soil depth at anthesis.
The RWD from the 0 to 20 cm soil layer in YN did not differ
with that of JM in both years but was higher than that of LX in
2018–2019. Compared to JM and LX, YN had greater RWD in the
20–60 cm soil layer in both years. The RWD in the 60–100 cm soil
layer did not differ between YN and JM, which were both higher
than that of LX.

Root Morphology Characteristics
In the 0–20 cm soil layer, there were no significant differences in
root length density and root diameter at 0 DAA among wheat
varieties in both years (Table 2). YN and JM had greater root
length density, root surface area density, and root diameter at 10
DAA than those of LX. Maximum values for root length density,

root surface area density, and root diameter at 20 DAA were
observed in YN, followed by JM with the lowest in LX.

In the 20–40 cm soil layer, YN and JM had higher root
length density, root surface area density, and root diameter at
0 DAA than LX in both years (Table 2). The root surface area
density at 10 DAA of YN showed 6.5% and 27.6%, and 8.1%
and 34.7% higher than that of JM and LX, in 2017–2018 and
2018–2019, respectively. The root diameter at 10 DAA of YN
was 4.2% and 8.3% greater than that of JM, and 13.6% and
18.2% higher than that of LX in 2017–2018 and 2018–2019,
respectively. Root length density, root surface area density, and
root diameter at 20 DAA were manifested in the following order:
YN > JM > LX in both years.

Root Senescence Characteristics
In the 0–20 cm soil layer, there was no significant difference in
MDA concentration at 0 DAA among wheat varieties in both
years (Figures 4A,B); however, compared with LX, YN, and JM
had lower MDA concentration of root at 10 DAA. The MDA
concentration of root at 20 DAA was manifested in the following
order: LX > JM > YN. The MDA concentration trend in the
20–40 cm soil layer was similar to that at 0–20 cm. In the 0–
20 cm soil layer, SOD activity at 0 DAA in YN did not differ
to that of JM in both years but was higher than that of LX in
2017–2018 (Figures 4C,D). The SOD activity at 10 and 20 DAA
were ranked in the order: YN > JM > LX. In the 20–40 cm soil
layer, the differences of roots among wheat varieties were non-
significant for SOD activity at 0 DAA in 2017–2018. The highest
SOD activity of root at 10 and 20 DAA was obtained in YN,
whereas the lowest was obtained in LX in both years.

Root Triphenyl Tetrazolium Chloride
Reduction Activity
In the 0–20 cm soil layer, root triphenyl tetrazolium chloride
reduction activity (RTTC) at 0 DAA in YN did not differ with that
of JM in both years but was higher than that of LX in 2018–2019
(Table 3). Compared with JM and LX, YN showed higher RTTC
at 10 and 20 DAA. In the 20–40 cm soil layer, the differences of
RTTC at 0 DAA among wheat varieties were non-significant in
both years. Compared with JM and LX, YN had higher RTTC
at 10 DAA by 14.7% and 34.9% in 2017–2018 and by 12.2%
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FIGURE 1 | Soil water consumption in different growth periods of wheat varieties in the 2017–2018 (A) and 2018–2019 (B) growing seasons. YN, Yannong 1212;
JM, Jimai 22; LX, Liangxing 99; PJ, planting to jointing; JA, jointing to anthesis; AM, anthesis to maturity. The different letters in the figure indicate significant
differences (Duncan’s test, p < 0.05). Vertical bars represent the standard deviation of the means.

FIGURE 2 | Soil water consumption in the 0–200 cm soil layer from anthesis to maturity of wheat varieties in the 2017–2018 (A) and 2018–2019 (B) growing
seasons. YN, Yannong 1212; JM, Jimai 22; LX, Liangxing 99. Vertical bars represent the SD of the means.

and 27.5% in 2018–2019, respectively. RTTC at 20 DAA was
manifested in the following order: YN > JM > LX.

Grain Yield and Water Use Efficiency
Over the 2-year experimental period, the grain yields in YN were
10.8% and 13.1% higher than in JM, respectively, and 28.3% and
32.3% higher than in LX, respectively (Figure 5). In both years,
the WUE was manifested in the following order: YN > JM > LX.

DISCUSSION

The wheat crop is more sensitive to a water deficit during
the reproductive stage than the vegetative growth stage
(Ma et al., 2019). Harmsen et al. (2009) indicated that
crop evapotranspiration was significantly correlated with crop
production. Water consumption in winter wheat reaches peaks
during the heading and filling stages to maintain normal growth
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FIGURE 3 | Root weight density in the 0–100 cm soil layer at anthesis of wheat varieties in the 2017–2018 (A) and 2018–2019 (B) growing seasons. YN, Yannong
1212; JM, Jimai 22; LX, Liangxing 99. The different letters in the figure indicate significant differences (Duncan’s test, p < 0.05). Vertical bars represent the SD of the
means.

TABLE 2 | Root morphology characteristics of winter wheat in the 0–40 cm soil layer after anthesis of wheat varieties in the 2017–2018 and 2018–2019
growing seasons.

Year Root traits Treatments 0–20 cm soil layer 20–40 cm soil layer

0 DAA 10 DAA 20 DAA 0 DAA 10 DAA 20 DAA

2017–2018 Root length density (cm cm−3) YN 1.39a 1.26a 1.09a 0.79a 0.70a 0.62a

JM 1.40a 1.26a 1.03b 0.80a 0.68a 0.59b

LX 1.39a 1.18b 0.88c 0.76b 0.62b 0.53c

Root surface area density (mm2 cm−3) YN 12.82ab 10.30a 8.21a 6.43a 5.37a 4.21a

JM 12.99a 10.19a 7.24b 6.53a 5.04b 3.49b

LX 12.72b 8.60b 5.52c 5.83b 4.21c 2.81c

Root diameter (mm) YN 0.29a 0.26a 0.24a 0.26a 0.25a 0.22a

JM 0.30a 0.26a 0.22b 0.26a 0.24b 0.19b

LX 0.29a 0.23b 0.20c 0.24b 0.22c 0.17c

2018–2019 Root length density (cm cm−3) YN 1.47a 1.39a 1.17a 0.89a 0.81a 0.69a

JM 1.47a 1.39a 1.08b 0.90a 0.79a 0.65b

LX 1.46a 1.26b 0.94c 0.85b 0.70b 0.57c

Root surface area density (mm2 cm−3) YN 14.44a 12.52a 9.74a 7.71a 6.52a 5.13a

JM 14.39a 12.47a 8.35b 7.81a 6.03b 4.52b

LX 13.98a 10.33b 6.46c 6.69b 4.84c 3.63c

Root diameter (mm) YN 0.31a 0.29a 0.27a 0.28a 0.26a 0.24a

JM 0.31a 0.29a 0.25b 0.28a 0.24b 0.22b

LX 0.30a 0.26b 0.22c 0.25b 0.22c 0.20c

YN, Yannong 1212; JM, Jimai 22; LX, Liangxing 99; DAA, days after anthesis. Values followed by a different letter are significantly different (Duncan’s test, p < 0.05) within
the treatments in each year.

and grain production (Jin et al., 2017). In this study, on average,
ET accounted for 26.9–37.0%, 26.9–27.0%, and 36.1–46.2% of
ETC from planting to jointing, jointing to anthesis, and anthesis
to maturity stages, respectively (Table 1). Compared to YN, JM,
and LX with lower yields both had higher CP from planting
to jointing and from jointing to anthesis but a lower CP from

anthesis to maturity stages (Figure 5 and Table 1). The significant
increases in CP from anthesis to maturity stages of JM and LX
in the following year may be due to the monthly precipitation
fluctuations (Supplementary Figure 1) because the water
requirement of winter wheat can be influenced by interannual
precipitation variability (Zhao et al., 2020). A previous study
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FIGURE 4 | Malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity of root in 0–20 and 20–40 cm soil layers after anthesis in 2017–2018
(A,C) and 2018–2019 (B,D) growing seasons. YN, Yannong 1212; JM, Jimai 22; LX, Liangxing 99. The different letters in the figure indicate significant differences
(Duncan’s test, p < 0.05). Vertical bars represent the SD of the means.

showed that wheat yield and WUE in the water shortage area
could increase by increasing post-anthesis water use amount and
ratio via a reasonable irrigation strategy (Xu et al., 2018). In this
study, compared with JM and LX, YN showed lower CP from
planting to anthesis but had higher ET and CP from anthesis to
maturity under the same irrigation measures (Table 1), indicating
that the post-anthesis ET and CP should be considered when
selecting varieties for cultivation in the 3HP. Further, high-
yielding YN can coordinate pre- and post-anthesis water use and
improve the water consumption ratio after anthesis, which is
beneficial to the formation of grain yield.

As precipitation cannot meet wheat water demand in 3HP,
available soil water is required as an additional sources of water
supply (Yang M. D. et al., 2020; Shirazi et al., 2022). The
differences in the root system of wheat influenced the soil water

extraction during the whole growth season of wheat (Středa et al.,
2012). Over 85% consumption of the available soil water stored
in the 0–50 cm layer at planting occurs due to high root density
and evaporation (Shunqing et al., 2003). Wheat varieties with a
higher probability of extracting water from deeper soil profiles at
the vegetative phase could provide an early indication of plant
productivity and lead to higher yield (Corneo et al., 2018). Thapa
et al. (2020) showed that under limited irrigation conditions,
water used from deeper soil layers significantly contributed to
wheat yield compared to water only drawn from the shallower
profile, especially in the late growing season. In this study, the
differences of soil water extraction from anthesis to maturity
among wheat varieties were focused in the upper 100 cm soil
profile in both seasons (Figure 2). The higher ET and CP during
anthesis to maturity shown by YN was attributed to the additional
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TABLE 3 | Root triphenyl tetrazolium chloride (TTC) reduction activity of winter
wheat in the 0–40 cm soil layer after anthesis of wheat varieties in the 2017–2018
and 2018–2019 growing seasons.

Year Treatments Root TTC reduction activity (µg g−1 h−1)

0–20 cm soil layer 20–40 cm soil layer

0 DAA 10 DAA 20 DAA 0 DAA 10 DAA 20 DAA

2017–2018 YN 73.7a 60.2a 45.2a 59.3a 52.2a 32.6a

JM 72.4a 51.7b 37.2b 56.1a 45.5b 25.9b

LX 70.8a 43.6c 32.0c 55.7a 38.7c 20.7c

2018–2019 YN 80.6a 61.7a 53.7a 61.7a 53.3a 39.1a

JM 75.8ab 52.5b 48.0b 60.2a 47.5b 35.5b

LX 71.4b 46.8c 42.2c 58.8a 41.8c 31.8c

YN, Yannong 1212; JM, Jimai 22; LX, Liangxing 99; DAA, days after anthesis.
Values followed by a different letter are significantly different (Duncan’s test,
p < 0.05) within the treatments in each year.

soil water consumption in the 0–100 cm soil layer (Table 1 and
Figure 2). This could be partly credited to the greater RWD of
YN in the 20–60 cm soil layer at anthesis (Figure 3), because root
distribution can greatly affect water extraction by crops, and root
dry weight in deep soil layer had positive relationships with grain
yield and WUE (Kang et al., 2014; Fang et al., 2017). In this study
the vertical distribution of RWD in YN was not only conducive to
the use of water in the 20–60 cm soil layer but was also beneficial
to promoting the use of water from the deeper soil layers (60–
100 cm), contributing to the improved water use pattern of YN.
Measurements for the 0–20 cm soil layer have not been included
in this relation in this study, which, due to the extractable water,
may include the evaporative loss from the soil surface.

Most of the root distribution was in the top 0–40 cm layer of
the soil profile (Fang et al., 2021). Our results supported the result
that 78.8–83.9% of the total RWD (i.e., in the entire 0–100 cm

soil layer) was distributed in the 0–40 cm soil layer (Figure 3).
The enhancement of shallow root growth for high-yielding wheat
production has been proposed for its role in the absorption of
soil nutrients concentrated in the upper layers and the capture of
precipitation (Hermanska et al., 2015; Becker et al., 2016). Fang
et al. (2021) reported that wheat varieties with large root biomass
and root length density in the 0–40 cm soil layer had negative
effects on post-anthesis soil water use under rainfed conditions
in the semi-arid area on the Loess Plateau. However, Qin et al.
(2019) indicated that modern wheat varieties are better adapted
on irrigated land than older varieties, due to the increased root
biomass at shallow depth assisting water uptake to support
greater shoot biomass and grain yield. While root biomass is
not directly equivalent to root surface area, it could be assumed
that a more extensive root systems could have greater biomass as
well as an increased surface area (McGrail and McNear, 2021).
In this study compared to JM and LX, high-yielding YN had
more water consumption after anthesis and showed better root
morphology characteristics in the topsoil (0–40 cm) during mid
grain filling stage (root length density, root surface area density,
and root diameter at 20 DAA) (Table 2), indicating that wheat
varieties with better root morphology characteristics during mid
grain filling stage could contribute to the increases in soil water
absorption and wheat yield. This result is consistent with the
findings of Feng et al. (2017), who showed that better root
morphology characteristics were beneficial for high yield.

Hu et al. (2018) reported that under water stress conditions,
the drought-tolerant wheat genotype, JM-262, showed higher
antioxidase activity and a greater root system to uptake more
water at the seedling stage. In sunflower (Helianthus annuus L.),
root senescence during the grain filling stage precedes the canopy
senescence that is closely links with yield formation (Lisanti et al.,
2013). Our results showed that compared with JM and LX, YN
had higher SOD and RTTC at 10 and 20 DAA both in 0–20
and 20–40 cm soil layers (Figure 4 and Table 3), indicating

FIGURE 5 | Grain yield and water use efficiency of wheat varieties in the 2017–2018 (A) and 2018–2019 (B) growing seasons. YN, Yannong 1212; JM, Jimai 22; LX,
Liangxing 99. The different letters in the figure indicate significant differences (Duncan’s test, p < 0.05). Vertical bars represent the SD of the means.
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that selecting high-yielding YN with alleviated root senescence
in the upper soil layers during mid grain filling period could
also contribute to the increases in soil water absorption post-
anthesis and wheat yield. Because Man et al. (2016) reported that
root TTC reduction activity and root SOD activity post-anthesis
were strongly positively correlated with soil water consumption
after anthesis, grain yield and WUE. And studies performed
in rice (Liu et al., 2021) and maize (Wang et al., 2019) have
been clearly demonstrated that delayed root senescence can
contribute to the yield enhancement by optimizing resource
acquisition from the soil.

Ensuring water use after anthesis largely improved dry matter
production, which accelerated grain formation, and hence, grain
yield (Xu et al., 2018). Thapa et al. (2020) showed that wheat
with a grain yield of 4,807 kg ha−1 extracted 165 mm of
stored soil water, while only 70 mm of stored soil water was
extracted in wheat with a grain yield of 2,933 kg ha−1. Additional
consumption of 10.5 mm soil water after anthesis has been
shown to increase grain yield by 620 kg ha−1 under moderate
post-anthesis stress (Kirkegaard et al., 2007). Our study showed
that compared to JM and LX, additional consumption of 22.7–
44.6 mm soil water after anthesis in YN increased grain yield
by 960–2797 kg ha−1 (Figures 1, 5). The WUE in YN were
6.0% and 10.8% higher than in JM, respectively, and 17.3% and
25.3% higher than in LX, respectively, in 2017–2018 and 2018–
2019. Besides producing the same grain yield from less water
resources, an increased WUE in crop production can also be
achieved through increased grain yield by cultivar replacement
(Zhang et al., 2017; Yan et al., 2021). In this study, the increase in
WUE of YN was attributed to the increased grain yield, because
YN increased SWCAM and obtained the highest ETC (Figure 1
and Table 1).

CONCLUSION

The high-yielding wheat variety YN with high WUE showed
higher the ET and CP after anthesis and extracted more soil water
in the 0–100 cm soil layer post-anthesis. Moreover, compared

with JM and LX, YN obtained larger RWD in the 20–60 cm soil
layer at anthesis, better root morphology characteristics, greater
root antioxidant enzyme activity and higher RTTC in the 0–
40 cm soil layer during mid grain filling stage. Thus, improving
root development [shown as larger root distribution in 20–60 cm
soil profile, improved root morphology traits and alleviated root
senescence in the topsoil (0–40 cm) during the mid grain filling
phase] helps to increase soil water extraction post-anthesis and
should be considered as a critical strategy for breeding wheat
varieties with high yield and high WUE.
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