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Alternative oxidase (AOX) is an important component of the plant respiratory pathway,
enabling a route for electrons that bypasses the energy-conserving, ROS-producing
complexes of the mitochondrial electron transport chain. Plants contain numerous
isoforms of AOX, classified as either AOX1 or AOX2. AOX1 isoforms have received
the most attention due to their importance in stress responses across a wide range
of species. However, the propensity for at least one isoform of AOX2 to accumulate
to very high levels in photosynthetic tissues of all legumes studied to date, suggests
that this isoform has specialized roles, but we know little of its properties. Previous
studies with sub-mitochondrial particles of soybean cotyledons and roots indicated
that differential expression of GmAOX1, GmAOX2A, and GmAOX2D across tissues
might confer different activation kinetics with pyruvate. We have investigated this using
recombinantly expressed isoforms of soybean AOX in a previously described bacterial
system (Selinski et al., 2016, Physiologia Plantarum 157, 264-279). Pyruvate activation
kinetics were similar between the two GmAOX2 isoforms but differed substantially from
those of GmAOX1, suggesting that selective expression of AOX1 and 2 could determine
the level of AOX activity. However, this alone cannot completely explain the differences
seen in sub-mitochondrial particles isolated from different legume tissues and possible
reasons for this are discussed.
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INTRODUCTION

It is well documented that the plant mitochondrial electron transport chain (mETC) is branched,
with phosphorylating and non-phosphorylating pathways coexisting (see Siedow and Day, 2000 for
an overview). In addition to the classical mETC linked to proton translocation and ATP synthesis,
plant mitochondria possess an alternative pathway that is non-proton translocating and consists of
external and internal NAD(P)H dehydrogenases (NDBs and NDAs, respectively) and the so-called
alternative oxidase (AOX), which accepts electrons from ubiquinol and provides an alternative
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route for electrons to reduce oxygen. It has been proposed based
on co-expression analysis that NDB2, the major external NADH
dehydrogenase, and AOX could potentially form a complete
respiratory chain (Clifton et al., 2005). A functional link has been
recently confirmed between the two proteins, which together
help the plant to cope with the oxidative stress associated
with photo inhibitory conditions (Sweetman et al., 2019b). An
important role for AOX in minimizing oxidative stress under
many different conditions has been shown by numerous studies
(Maxwell et al., 1999; Pastore et al., 2001; Umbach et al., 2005;
Smith et al., 2009; Cvetkovska and Vanlerberghe, 2013; Li et al.,
2013; Mhadhbi et al., 2013; Vishwakarma et al., 2015; Dahal
and Vanlerberghe, 2017; Demircan et al., 2020; Jayawardhane
et al., 2020). However, operation of the alternative pathway has
the potential to dramatically decrease the yield of ATP during
respiration (Ribas-Carbo et al., 2005; Soole and Sweetman, 2021)
and it is important that it is regulated carefully.

The in vivo activity, or engagement, of alternative oxidase
(AOX) in plants reflects many levels of regulation, including
transcriptional and post-transcriptional control. AOX capacity
may be limited by protein abundance (e.g., Elthon and McIntosh,
1987; Rhoads and McIntosh, 1992; Vanlerberghe and McIntosh,
1994; McCabe et al., 1998), but increasing protein abundance
does not always result in increased capacity nor activity
(Obenland et al., 1990; Guy and Vanlerberghe, 2005; Florez-
Sarasa et al., 2011). Protein abundance may or may not be related
to gene expression (Rhoads and McIntosh, 1992; Vanlerberghe
and McIntosh, 1994, 1996; Cruz-Hernandez and Gomez-Lim,
1995; Aubert et al., 1997; McCabe et al., 1998), with discrepancies
potentially due to the half-life of AOX proteins, some of
which can remain long after their transcripts subside. Activity
is dependent on dimerization of the 30–40 kDa monomers,
which must be in the reduced (i.e., non-covalently bound) form
(Umbach and Siedow, 1993), with the reduction state of AOX
in vivo probably regulated by thioredoxin (but see Florez-Sarasa
et al., 2019; Moller et al., 2020). Another layer of regulation
is the provision of substrate to the mitochondria, since the
reduction state of ubiquinol (Q) to a particular threshold (i.e.,
high QH2:Q), at least partly determines AOX activity (but see
Millenaar and Lambers, 2003), depending on the activation status
of the protein (Hoefnagel et al., 1995), which in turn is dependent
on various metabolites. In particular, activity of AOX in the
reduced dimer state is regulated by certain organic acids, most
notably pyruvate and other 2-oxo acids (Millar et al., 1993, 1996;
Selinski et al., 2017), which interact with key cysteine residues
of AOX within the mitochondrial matrix (Umbach and Siedow,
1996; Rhoads et al., 1998; Vanlerberghe et al., 1998; Djajanegara
et al., 1999), forming a thiohemiacetal group (Umbach and
Siedow, 1996). The presence of such activators decreases the
threshold of QH2:Q required for AOX engagement (Umbach
et al., 1994; Hoefnagel et al., 1995). The in vivo relevance of
these various layers of regulation have been debated in the
literature (e.g., Day and Wiskich, 1995; Del-Saz et al., 2018;
Schwarzlander and Fuchs, 2019).

Plant AOX proteins are classified into two subfamilies, AOX1
and AOX2 (Considine et al., 2002) and four phylogenetic clades:
AOX1a-c/1e, AOX1d, AOX2a-c, and AOX2d (Costa et al., 2014).

While most angiosperms possess an expanded AOX1 subfamily
alongside a single AOX2, legumes generally exhibit a single AOX1
and an expanded AOX2 subfamily (Costa et al., 2014; Sweetman
et al., 2019a). Across all plants studied to date, there is at least
one stress-inducible gene, typically an Aox1a, b and/or Aox1d
(Considine et al., 2002; Clifton et al., 2005; Polidoros et al., 2005;
Feng et al., 2013; Wanniarachchi et al., 2018), although Aox2d in
chickpea and other legumes is also responsive to cold, drought
and salinity stresses (Costa et al., 2014; Sweetman et al., 2019a,
2020). The genome of soybean (Glycine max) contains three
AOX genes GmAox1, GmAox2a, and GmAox2d and these are
preferentially expressed in different tissues. The most abundant
AOX protein of soybean photosynthetic tissues, GmAOX2a, is
absent in roots and this pattern of expression is conserved
for orthologs in other legumes (Kearns et al., 1992; Finnegan
et al., 1997; Sweetman et al., 2019a). Importantly, in contrast to
non-legumes in which AOX expression and activity are strictly
controlled by environmental (stress) conditions, the AOX2
isoforms of legumes are constitutively expressed (Sweetman et al.,
2019a) and can contribute substantially to overall respiration, at
least in soybean (Millar et al., 1998).

Recently it was shown that specific AOX1 isoforms of
Arabidopsis thaliana respond to different sets of organic acids
(Selinski et al., 2018), but it is not known whether the same
is true of AOX2 isoforms, nor whether there are major
differences in activation kinetics between AOX1 and AOX2
subfamilies. Activation kinetics of AOX are very different in
sub-mitochondrial particles from different soybean tissues, with
cotyledon and root particles exhibiting a tenfold difference in the
K1/2PYRUVATE (Finnegan et al., 1997). While soybean roots only
express AOX2D, cotyledons have high levels of both AOX2A and
2D, but it is unclear whether this explains the different activation
kinetics of AOX in two tissues. It is important that we understand
the activation kinetics of the different AOX isoforms in legumes,
to facilitate the development of more targeted biotechnological
approaches for improvement of plant growth and stress tolerance.
For example, predicting situations where plant health might
be improved via AOX engagement, e.g., during abiotic stress
(Del-Saz et al., 2016; Vanlerberghe et al., 2016; Watanabe et al.,
2016; Dahal and Vanlerberghe, 2018; Sweetman et al., 2019b),
or controlling AOX when energy conservation is necessary for
improvement of plant productivity (Amthor et al., 2019). Using
a system developed specifically for measuring enzyme kinetics
of recombinantly expressed AOX proteins (Selinski et al., 2016),
we herein describe the differences between pyruvate activation
kinetics of soybean AOX1 and AOX2 proteins.

MATERIALS AND METHODS

Generation and Growth of E. coli
Expressing GmAOX Proteins
Mitochondrial target peptide sequences of the G. max AOX
proteins, GmAOX1, GmAOX2A and GmAOX2D (Whelan
et al., 1996) were predicted using Mitoprot (Claros and Vincens,
1996). Primers were designed to amplify the full-length open
reading frames, immediately downstream of the mitochondrial
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transit peptide coding region. Primers also contained
restriction sites compatible with pET22b(+): GmAox1 (F:
5′-CATATGGAGAGCACTTTGGCTTTGTC-3′, R: 5′-GAATTC
TTGGCATCATGAGACATAAC-3′), GmAox2a (F: 5′-CATATG
ATGGTTTCGCCGGCGGA-3′, R: 5′-GTCGACTCATATCCGT
GGCAATAAAGACTA-3′), GmAox2d (F: 5′-CATATGTCCAC
TCTTCCAGAGGTAAA-3′, R: 5′-GAATTCAGCAAAGGCT
AGATATCGTT-3′). PCR products were amplified from G. max
leaf cDNA, inserted into pGEMtEasy via A-T ligation (Promega,
WI, United States) then digested and cloned into pET22b(+)
using standard restriction enzymes (NEB, MA, United States)
and T4 ligase (Promega, WI, United States). Resultant
constructs: pET22b(+)GmAox1, pET22b(+)GmAox2a and
pET22b(+)GmAox2d were confirmed via Sanger sequencing
(AGRF, SA, Australia), then transformed into E.coli strain BHH8
(Selinski et al., 2016) via heat-shock. Due to removal of the
start codon (as part of the N-terminal target peptide), a new
start codon was introduced via the NdeI restriction site within
the F primers. Consequently, the translated peptide sequences
contained a methionine that would not typically occur in the
mature GmAOX proteins.

Membrane Vesicle Preparation and
Assay Conditions
Methods for bacterial culture, protein synthesis, cell harvesting,
and membrane vesicle isolations were carried out as previously
described (Selinski et al., 2016). Protein concentrations were
determined in a 96-well plate using the PierceTM BCA Protein
Assay Kit (Thermo Fisher Scientific, MA, United States).

Assays were carried out with a Clark type oxygen electrode
(Hansatech, Norfolk, United Kingdom), essentially as described
by Selinski et al. (2016) but with some modifications. Two
electrode chambers were first calibrated and pre-equilibrated
with 1 ml NKM buffer (150 mM NaCl, 50 mM potassium
phosphate buffer (pH 7.0), 10 mM KCl and 5 mM MgCl2). Before
beginning the assay, 5 mM DTT, 1 mM KCN and a 10 µl aliquot
of inverted membrane vesicles (IMVs; approximately 100 µg)
were added, followed by 10 µl of the “effector.” Final pyruvate
concentrations ranged between 0.5 and 5,000 µM. After inserting
the lids and equilibrating for 3 min, 2.5 mM NADH was used
to initiate the reaction, which was inhibited by 1 mM SHAM
after 4 min and the residual rate was allowed to proceed for a
further 4 min. Each pyruvate concentration was measured in a
separate assay; incremental additions were not possible because
the activity of membrane vesicles subsided over time. A control
reaction containing no pyruvate was run alongside each assay
for the same reason, and results were presented as a percentage
activation relative to the control. Prior to each set of assays,
both chambers were tested with 5 mM pyruvate to ensure the
electrodes yielded equivalent rates.

SDS-PAGE and Immunoblotting
Aliquots of each BHH8 IMV sample were snap-frozen in
liquid nitrogen immediately after isolation and stored at −80◦C
until use for Western blots. Samples were thawed gently, then
suspended in loading buffer [62.5 mM Tris (pH 6.8), 30%

(v/v) glycerol, 5% (v/v) β-mercaptoethanol, 2% (w/v) SDS, and
0.002% (w/v) bromophenol blue] containing 25 mM DTT. After
boiling at 95◦C for 2 min and centrifuging briefly, a further
25 mM DTT was added to the supernatant. Samples of 2.5 µg
equivalent protein were loaded directly onto 10% SDS-PAGE gels
and resolved at 60 V for approximately 60 min, before being
transferred to a 0.45 µm nitrocellulose membrane (Trans-Blot
Transfer Medium, BioRad, CA, United States). The membrane
was incubated with “AOA” antibody raised against Sauromatum
guttatum AOX in mouse (Elthon et al., 1989) then a peroxidase-
conjugated goat anti-mouse IgG (BioRad, CA, United States) and
visualized using a chemiluminescent stain (Clarity ECL, BioRad,
CA, United States).

Statistical Analyses
Data were analyzed using SPSS version 25 (IBM). Michaelis
Menten constants were determined by non-linear regression.
Specific activities of different AOX isoforms were compared using
one-way ANOVA with post hoc Tukey test.

RESULTS

E. coli BHH8 contains a stable, highly reduced ubiquinone
pool due to the lack of cytochrome bo quinol oxidase and
cytochrome bd-1 quinol oxidase, making it ideal for the
investigation of heterologously expressed AOX protein kinetics
(Selinski et al., 2016, 2017, 2018). Inverted membrane vesicles
(IMVs) were prepared from BHH8 cells expressing one of
GmAOX1, GmAOX2A or GmAOX2D, and used to measure
activation kinetics at different concentrations of pyruvate.
Pyruvate activated all three isoforms (Figure 1), but the
K1/2PYR for GmAOX2A and GmAOX2D (99 and 40 µM,
respectively) were much higher than that for GmAOX1 (4 µM)
(Table 1). With saturating concentrations of pyruvate, GmAOX1
and GmAOX2A activity was stimulated by about 30%, while
GmAOX2D was stimulated by 50%. These maximal activation
levels were considerably lower than previous measurements
with membrane vesicles containing Arabidopsis AOX isoforms
(sixfold increase; Selinski et al., 2016), and with soybean sub-
mitochondrial particles (1.85-fold increase in cotyledon SMPs
and fourfold increase in root SMPs; Finnegan et al., 1997),
suggesting some variability based on expression system and
isoform. All of the GmAOX proteins were also activated by 5 mM
2-oxoglutarate (2-OG) (Supplementary Table 1).

To ensure that enzyme activities were not influenced by
reduction state, DTT was included in all isolation solutions and
assay mixtures. Monomeric AOX subunits were confirmed using
immunoblots from non-reducing SDS-PAGE (Supplementary
Figure 1). GmAOX1, GmAOX2A, and GmAOX2D resolved
to different apparent molecular weights: 28, 29, and 31 kDa,
respectively (Figure 2), in agreement with apparent Mr
measured in soybean mitochondria (Kearns et al., 1992;
Finnegan et al., 1997).

The immunoblots showed that GmAOX1 protein was less
abundant in membrane vesicle preparations than were the
GmAOX2 isoforms (Figure 2). Such differences have been

Frontiers in Plant Science | www.frontiersin.org 3 January 2022 | Volume 12 | Article 813691

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-813691 January 11, 2022 Time: 14:31 # 4

Sweetman et al. Legume AOX Activation

FIGURE 1 | Activation kinetics of AOX1, AOX2A, and AOX2D. Activator
saturation curves for (A) AOX1, (B) AOX2A, and (C) AOX2D. Rates presented
as Percent Activation; at each pyruvate concentration a simultaneous assay
containing no pyruvate (0PYR) was used to calculate activation levels. Each
data point represents the mean of measurements taken from three separate
IMV preparations (n = 3 ± SEM). Michaelis Menten constants were
determined by non-linear regression (IBM SPSS v25), and kinetic data
summarized in Table 1. Inset: Expanded graph for pyruvate
concentrations ≤ 0.5 mM.

observed previously for Arabidopsis AOX isoforms (Selinski,
J. unpublished results). Consequently, specific activities were
calculated for the three isoforms based on their relative band
intensities on immunoblots of IMV proteins separated by
reducing SDS-PAGE (i.e., in the presence of 50 mM DTT;
Figure 2). On this basis, it is particularly noteworthy that the
specific activity of GmAOX1 (relative level of respiration per

FIGURE 2 | Expression of AOX proteins in BHH8 inverted membrane vesicles.
Each lane was loaded with 2.5 µg protein sample, treated with 50 mM DTT.
The membrane was probed with AOA antibody, which is non-selective for
AOX isoforms (Elthon et al., 1989). Apparent molecular weights were: 28, 29,
and 31 kDa for AOX1, AOX2A, and AOX2D, respectively, each lacking the
predicted mitochondrial target peptide. Below, two prominent bands from
Coomassie stain indicate protein loading.

unit of AOX protein) was threefold higher than GmAOX2A and
fivefold higher than GmAOX2D (Figure 3).

DISCUSSION

It is always difficult to compare data obtained with a
heterologously expressed enzyme to those obtained with native
membranes. However, the K1/2PYR for GmAOX2D measured
here in bacterial membrane vesicles (40 µM) was strikingly
similar to that measured previously in sub-mitochondrial
particles from soybean root (51 µM; Finnegan et al., 1997), in
which only AOX2D is expressed. This gives us some confidence
that our results reflect AOX properties in vivo. The situation in
sub-mitochondrial particles from cotyledons, however, is more
complicated since they express multiple AOX isoforms (Finnegan
et al., 1997). Interestingly, while the K1/2PYR of GmAOX2A
(90 µM) was only moderately higher than that of AOX2D (40
µM) in our vesicle system, the K1/2PYR for AOX activation in

TABLE 1 | Summary of pyruvate activation kinetics for individual soybean AOX isoforms of inverted membrane vesicles and for combinations of AOX isoforms within
submitochondrial particles.

Present study Finnegan et al. (1997)

K1/2PYR (µM) Maximum activation (MA,%) Cotyledon SMPs Root SMPs

K1/2PYR (µM) MA (%) K1/2PYR (µM) MA (%)

GmAOX1 4 27

GmAOX2A 99 29 4.5 µM 85%

GmAOX2D 40 48 51 µM 300%

Black cells represent absence of GmAOX1 and GmAOX2A protein in root SMPs. Each preparation was repeated three times and mean data used for kinetic calculations.
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FIGURE 3 | Specific activities of AOX isoforms. Oxygen consumption rates of
AOX from inverted membrane vesicles. Rate determined as nmolO2/min/µg
membrane vesicle protein in the presence of potassium cyanide, DTT and
5 mM pyruvate and initiated with the addition of NADH. Rates were
normalized to AOX protein content (density unit reflects the intensity of protein
bands in immunoblots, see Selinski et al., 2016) (n = 3 ± SEM). Significant
differences between isoforms are indicated by different letters, based on
one-way ANOVA with post hoc Tukey tests (IBM SPSS v25).

cotyledon sub-mitochondrial particles was much less (4.5 µM;
Finnegan et al., 1997), closer to that measured for GmAOX1 in
the vesicle system (6 µM). Yet cotyledons of soybean, like young
shoots from other legumes, display AOX2A at much higher levels
than AOX2D and AOX1 (Finnegan et al., 1997; Sweetman et al.,
2019a).

Two possible explanations for this discrepancy come to mind.
Firstly, the higher specific activity of GmAOX1 (Figure 3) led it
to contribute more strongly to overall AOX activity in cotyledon
sub-mitochondrial particles, even though GmAOX2A protein
was substantially more abundant, thereby masking the activation
kinetics of the GmAOX2 isoforms. However, if this were the case,
then a double sigmoid curve of pyruvate activation kinetics would
be expected from soybean cotyledon sub-mitochondrial particles,
which was not reported by Finnegan et al. (1997). We consider
this option as unlikely.

Alternatively, the formation of AOX heterodimers in
mitochondria may affect pyruvate activation kinetics. Within
the inner mitochondrial membrane, it is generally accepted that
active AOX proteins exist as homodimers (Vanlerberghe, 2013).
However, this has never been confirmed experimentally and
there are hints of heterodimer formation in early work with
AOX antibodies (Elthon et al., 1989; Umbach and Siedow, 1993),
which have been echoed throughout the literature (Finnegan
et al., 1997; Sluse and Jarmuszkiewicz, 1998; Vanlerberghe
et al., 2020). It is possible, therefore, that the formation of
heterodimers in tissues and cells where multiple isoforms
of AOX coexist might affect activation kinetics, with, in the
case of soybean, heterodimers being much more sensitive to
pyruvate. This would explain the differences observed between
the values of K1/2PYR values in cotyledon sub-mitochondrial
particles and those obtained with AOX proteins expressed
singly in the vesicle system. Further work is required to resolve
these possibilities.

We also need to consider whether all AOX isoforms
reside within the same mitochondrion in vivo, since isolated
mitochondria originate from multiple cell types when purified
from complex tissues such as cotyledons. It is not known
whether GmAOX1, GmAOX2A and GmAOX2D co-localize
within the same cell types of soybean. However, in Arabidopsis
thaliana shoots there is indirect evidence for AOX transcript co-
localization in some cell types, based on laser microdissection
transcriptomics that suggested both AtAox1a and AtAox1b
were present in vasculature cells, while AtAox1a, AtAox1d and
AtAox2 transcripts were all found in mesophyll (Berkowitz
et al., 2021). In addition, interactions between different AOX
peptides have been suggested, based on Blue Native (BN)-
PAGE experiments with isolated A. thaliana leaf mitochondrial
proteins; specifically AtAOX1A, AtAOX1B, and AtAOX1D
could be found in a complex of approximately 140 kDa
(Senkler et al., 2017). The simultaneous expression of multiple
AOX isoforms using the experimental system described in
this paper could help to confirm, or refute, the formation
of heterodimers.

The observation that GmAOX2D was more highly activated
by pyruvate than GmAOX2A, at saturating levels of pyruvate,
has precedence in the literature. During soybean seedling
development, McCabe et al. (1998) observed a shift in
transcript and protein level, from predominantly GmAOX2A
to predominantly GmAOX2D (AOX1 transcript and protein
were low or undetectable), at which point AOX in isolated
mitochondria became more highly activated by 2 mM pyruvate.
Clearly, the spatiotemporal profiles of specific AOX isoforms
can influence regulatory properties of the enzyme in soybean
and probably in other plant species. Further research in this
area is warranted.

The fact that GmAOX1 has higher specific activity and
requires less pyruvate for its activation, compared to its more
highly expressed AOX2 counterparts in soybean, may be
significant in planta because AOX1 is the most stress-inducible
isoform in legumes (Sweetman et al., 2019a). GmAOX2D is also
stress-responsive and, compared to GmAOX2A, requires about
half the amount of pyruvate and is activated to a higher Vmax in
the presence of pyruvate. This suggests that stress-induced AOX
isoforms respond more quickly to pyruvate (and presumably
other organic acid activators) and have a higher inherent capacity
than constitutively expressed isoforms such as GmAOX2A that
may carry out more ‘house-keeping’ functions in the tissues in
which they are expressed.

While it is clear that different AOX isoforms have tissue-
specific expression (eg Finnegan et al., 1997), different kinetics
of pyruvate activation (this report), and also respond differently
to other organic acid activators (Selinski et al., 2018), we still lack
precise knowledge of the concentrations of activators in planta
and how they vary with tissue type and growth conditions.
Organic acid concentrations have been estimated in whole tissue
extracts from numerous plant species, but for AOX activation
it is the intramitochondrial concentrations that are important,
and these are very difficult to measure, especially pyruvate
given that its import and generation within mitochondria can
occur via multiple pathways (Le et al., 2021a). The advent
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of a pyruvate sensor for in vivo estimation of pyruvate levels
(Arce-Molina et al., 2020) may be of help in this context,
although very recent data suggest that even within mitochondria
distinct pools of pyruvate exist, and the fate of the different
pyruvate pools may be predetermined by source, e.g., import vs
in situ biosynthesis (Le et al., 2021b).
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