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As an emerging cash crop, industrial hemp (Cannabis sativa L.) grown for cannabidiol
(CBD) has spurred a surge of interest in the United States. Cultivar selection and
harvest timing are important to produce CBD hemp profitably and avoid economic
loss resulting from the tetrahydrocannabinol (THC) concentration in the crop exceeding
regulatory limits. Hence there is a need for differentiating CBD hemp cultivars and growth
stages to aid in cultivar and genotype selection and optimization of harvest timing.
Current methods that rely on visual assessment of plant phenotypes and chemical
procedures are limited because of its subjective and destructive nature. In this study,
hyperspectral imaging was proposed as a novel, objective, and non-destructive method
for differentiating hemp cultivars, growth stages as well as plant organs (leaves and
flowers). Five cultivars of CBD hemp were grown greenhouse conditions and leaves and
flowers were sampled at five growth stages 2–10 weeks in 2-week intervals after flower
initiation and scanned by a benchtop hyperspectral imaging system in the spectral
range of 400–1000 nm. The acquired images were subjected to image processing
procedures to extract the spectra of hemp samples. The spectral profiles and scatter
plots of principal component analysis of the spectral data revealed a certain degree of
separation between hemp cultivars, growth stages, and plant organs. Machine learning
based on regularized linear discriminant analysis achieved the accuracy of up to 99.6%
in differentiating the five hemp cultivars. Plant organ and growth stage need to be
factored into model development for hemp cultivar classification. The classification
models achieved 100% accuracy in differentiating the five growth stages and two
plant organs. This study demonstrates the effectiveness of hyperspectral imaging for
differentiating cultivars, growth stages and plant organs of CBD hemp, which is a
potentially useful tool for growers and breeders of CBD hemp.
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INTRODUCTION

Industrial hemp, or briefly known as hemp, is a crop cultivated
for producing a wide range of industrial and consumer products
(Renée, 2018). Hemp belongs to the same plant species (Cannabis
sativa L.) as marijuana that is mainly used recreationally for
its intoxicating properties. In the United States, hemp is legally
defined as Cannabis sativa L. that contains no more than
0.3% total tetrahydrocannabinol (THC), the compound that is
responsible for getting a person high and more abundant in
marijuana. Because of its association with marijuana, commercial
production of hemp in the United States has been long restricted
until the passage of the 2018 Farm Bill (Schluttenhofer and
Yuan, 2019). As of 2021, all the states in the United States have
legalized hemp production for commercial or research purposes.
There are three main types of hemp that are grown for different
markets, i.e., fiber, oilseed, and cannabidiol (CBD) (Cherney and
Small, 2016; Adesina et al., 2020), among which CBD demand
is currently the driving force for hemp growth (Carpenter and
Peroutek, 2019). While the medicinal uses of CBD are still being
researched, market opportunities for CBD hemp are expected to
be significant, with CBD sales in the United States projected to
reach $23.7 billion by 2023 (Brightfield Group, 2019).

Due to the potential of CBD hemp as an economically viable
crop, many farmers are turning to hemp as an alternative
crop to fit into their current production system and utilize
established farm infrastructure. In a recent survey conducted
among North Carolina organic farmers, 85% of the growers
expressed interest in growing hemp on their farms and the vast
majority intended to grow hemp primarily for CBD (Dingha
et al., 2019). As an emerging cash crop, many uncertainties
surround producing hemp profitably (Adesina et al., 2020),
such as cultivar selection, transplanting dates, planting densities,
fertilization, pest management, and harvest dates. Confounding
these uncertainties is the federal regulatory limit of THC.
Production of hemp with THC levels above 0.3% in the
United States can mean the destruction of hundreds of acres and
loss of thousands of dollars (USDA-AMS, 2021), which could
have been avoided through proper cultivar/variety selection and
improved production practices. Hence there is a practical need
to identify and discriminate hemp phenotypes and cultivars to
facilitate crop management as well as serving forensic purposes.
The growth stage of hemp at harvest time, in addition to
genetics and environmental factors of seed stocks (Campbell
et al., 2019; Glivar et al., 2020), is also an important factor
influencing chemical profiles (e.g., THC and CBD) of the plant
(De Backer et al., 2012; Stack et al., 2021). It is thus also
important to determine growth stages and establish harvest
timing recommendations to maximize CBD contents in hemp.

Hemp cultivars and growth stages can be determined
by agronomic experts who visually inspect morphological
characteristics (e.g., shape, color, and texture) of the plant
organs (e.g., leaves and flowers). Visual inspection is affected by
inconsistency and variability associated with the perception of
inspectors, which is further complicated by significant biological
variations within and among hemp cultivars. Some hemp
cultivars may not be visually distinct and readily differentiated

from each other. Thus, analytical methods, such as gas/liquid
chromatography and mass spectrometry (Capriotti et al., 2021),
have been proposed for differentiating hemp cultivars based on
the chemical fingerprints of the plants (Jin et al., 2017; Wang
et al., 2018; Dong et al., 2019). Although accurate and reliable,
these methods are slow, costly, require sample preparation and
destructive wet-chemistry procedures, and thus are not suitable
for rapid, on-site testing applications. Therefore, it would be
beneficial if a rapid, non-destructive, and objective method
is developed for the differentiation of hemp cultivars as well
as growth stages.

Optical sensing technology, which interrogates biological
materials non-destructively, is considered an attractive means
for addressing the shortcomings of human inspection and
analytical testing. Numerous studies have been conducted on
using spectroscopic techniques for cultivar/variety differentiation
of plants and agricultural products (Cozzolino et al., 2003; Luo
et al., 2011; Lu et al., 2014). Recently, Sanchez et al. (2020)
used Raman spectroscopy for differentiating hemp, cannabis,
and CBD-rich hemp with 100% accuracy. Raman measurements,
however, require direct contact of samples with the spectrometer
to obtain high-quality signals (Sanchez et al., 2020). Duchateau
et al. (2020) used near-infrared spectroscopy for discriminating
legal and illegal hemp, defined by a cut-off concentration of
0.2% THC in European Union countries, obtaining classification
accuracies of 91–95%. Crushing dried hemp plants was required
prior to the spectroscopic measurements (Duchateau et al., 2020).
Cirrincione et al. (2021) reported on using attenuated total
reflectance infrared spectroscopy for the discrimination between
fiber-type and drug-type cannabis samples. Spectroscopic
sensing, however, only measures small portions of plant tissues
and often requires sample treatments (e.g., drying and grinding)
(Duchateau et al., 2020) and direct contact between samples and
the detector (Sanchez et al., 2020).

Hyperspectral imaging is a power modality for measuring
spectral and spatial information of samples simultaneously
(Lu et al., 2020). Compared to spectroscopic techniques that
are used for point measurements, hyperspectral imaging is
advantageous in delivering reliable and comprehensive analysis
of characteristics or properties of plant materials with minimal
sample preparation, requiring no sample contact, and thus is
potentially more suitable for high-throughput, on-site testing.
Pereira et al. (2020) investigated hyperspectral imaging for
identifying hemp leaves under natural conditions, achieving
sensitivity, and specificity values of 89.45% and 97.60%,
respectively. A similar study was conducted by Holmes et al.
(2020) on classifying flowers, stems and leaves of hemp using
hyperspectral imaging. So far, to the best of our knowledge, no
research has been carried out on using hyperspectral imaging for
classifying for cultivars and growth stages of CBD hemp.

Given the limitations of existing methods using visual
assessment and chemical analysis for phenotyping and
characterization of hemp plant materials, the objective of this
research is therefore to present a proof-of-concept validation of a
novel hyperspectral imaging-based approach for non-destructive,
fast, and objective differentiation of cultivars, growth stages and
plant organs (i.e., leaves and flowers) of CBD hemp. Specifically,
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in this research we acquired hyperspectral images from freshly
harvested leaf and flower materials of five cultivars of CBD hemp
at five growth stages using a benchtop hyperspectral reflectance
imaging system, developed an image processing pipeline for
segmenting the plant parts from background and extracting
spectra from sample segments, performed exploratory analysis of
spectral features of hemp samples, and built classification models
to differentiate the cultivars, growth stages, and plant parts.
This study demonstrates the efficacy of hyperspectral imaging
technology as a tool to differentiate cultivars, growth stages and
plant parts of CBD hemp, which will be beneficial for hemp
cultivation and breeding programs.

MATERIALS AND METHODS

Hemp Samples
Five CBD hemp cultivars were used in this study, including
Cherry Wine (CW), BaOx (BX), First Light 58 (FL58), First
Light 70 (FL70), and TJ’s (TJ). These cultivars were chosen as
they were used in a complimentary field trial to determine the
optimum harvest date, and particularly BX and CW represent the
majority of CBD hemp cultivars planted in North Carolina. The
hemp plants were grown in a greenhouse, as shown in Figure 1
(left), at the NC State University Horticulture Field Laboratory
(Raleigh, NC, United States). The trial was arranged in a complete
randomized design containing four replicates. A total of 20 plants
(5 harvest dates × 4 replicates) per cultivar were randomly placed
on greenhouse benches (total 100 plants for five cultivars).

Hemp harvests took place during September to November
of 2020, at 2, 4, 6, 8, and 10 weeks after flower initiation,
corresponding to five plant growth stages. At the time of harvest
or growth stage, four plants were randomly chosen per cultivar
row, corresponding to four replications, and both leaves and
flowers, as shown in Figure 1 (right), were sampled for the
differentiation of hemp cultivars and growing stages. For each
plant, 4 leaves were sampled from its main apical meristem, and
4–6 flowers were sampled depending on the size and number
of flowers on the plant. The details of sample numbers are
summarized in Table 1. The freshly harvested samples were
immediately scanned by a hyperspectral imaging system as
described below.

Hyperspectral Image Acquisition
A portable, benchtop hyperspectral reflectance imaging system
(Figure 2) under controlled lighting was assembled for acquiring
images from hemp samples. The system mainly consisted
of a line-scan hyperspectral camera (Pika XC2, Resonon
Inc., Bozeman, MT, United States), attached with a focusing
lens (Xenoplan 1.4/17, Schneider Kreuznach, Bad Kreuznach,
Germany), a four-fixture, 140-W halogen lamp assembly
(symmetrically oriented with respect to the camera) for providing
illumination over samples, a motorized stage (Resonon Inc.,
Bozeman, MT, United States) and a Spectralon reference target
(SRT-20-020, Labsphere, Inc., North Sutton, NH, United States)
with nominal reflectance of 20%. Synchronized with the camera,
the stage moved a flat sample-holding tray (at a speed of 1 cm/s)

for hyperspectral line scanning. The reference, which was placed
on the tray and scanned along with samples, as shown in Figure 2
(right), was used for standardizing the spectral responses of
the camera. The imaging system was operated in an enclosed
chamber to prevent interference from ambient light.

Image acquisitions were conducted on five harvest occasions
as indicated above. The hemp leaves and flowers were imaged
separately for individual plants. The software SpectrononPro
(Resonon Inc., Bozeman, MT, United States) was used for
controlling the camera and motorized stage during imaging. The
acquired hyperspectral datacube consisted of 462 wavelengths
over a wavelength range of 400–1000 nm (at a spectra resolution
of 1.3 nm), and spatially each scanning line consisted of 1,600
pixels (at a spatial resolution about 0.5 mm2 per pixel for
hemp samples), and the number of scanning lines per datacube
depended on the actual scanning duration.

Image Processing
The acquired hyperspectral images were processed to segment the
reference and hemp samples from the background. Thresholding
is a simple and effective technique for image segmentation,
provided that the image histogram has well-defined modes
corresponding to regions of interests. While a flat, uniformly
colored tray (Figure 3) was used as the background for hemp
imaging, there was still noticeable illumination unevenness in
acquired images (Figure 3), restricting using a global threshold
for object segmentation. To facilitate the segmentation, a robust
algorithm was developed by obtaining a contrast-optimized,
normalized band difference (NBD) image, followed by applying
an INTERMODE thresholding technique (Glasbey, 1993; Lu
and Lu, 2017). NBD is calculated as vegetation indices in
hyperspectral sensing to improve feature discrimination; it
can be defined as in a general form (Ferwerda et al., 2005).
I = (R@λ1 − R@λ2)

/
(R@λ1 + R@λ2), where, R@λ1 and R@λ 1

denote the reflectance images at wavelengths λ1 and λ2
(λ1 > λ2), respectively.

In this study, the best wavelength pair was determined,
as illustrated in Figure 3, by calculating NBD images for all
waveband pairs and choosing the one at which the maximum
image contrast is obtained (Lu et al., 2021). The image contrast
was defined as the ratio of among-class (plant pixels vs. non-
plant pixels) variance to the total variance of an image, following
the principle of the Otsu’s thresholding (Otsu, 1979). As such
two wavelengths 898 nm and 474 nm, in near-infrared and blue
regions, respectively, were identified for calculating NBD images.
It is noted that the algorithm was applied to a single hyperspectral
image and the identified wavelength pair was then generalized to
all other images. As shown in Figure 3, the NDB image is highly
contrasted between hemp samples and the background.

The contrast-optimized NBD images enable the segmentation
of hemp samples and reference by global thresholding. The
histogram of the NBD image, as showed in Figure 4 (left), has
two distinct peaks, and the one at the lower end of the histogram
corresponds to the background and the other corresponds to
hemp samples and the edge of the reference. The INTERMODE
thresholding technique finds the optimal threshold by taking the
average of the two peaks of a bimodal histogram (Glasbey, 1993;
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FIGURE 1 | Hemp plants grown in a greenhouse (left), and flower and leaf for sampling (right).

TABLE 1 | Sample numbers for five hemp cultivars at different growth stages (sampling dates).

Sampling date Cherry Wine BaOx First light 58 First light 70 TJ’s

Leaf Flower Leaf Flower Leaf Flower Leaf Flower Leaf Flower

09/24/2020 16 24 16 22 16 16 16 16 16 16

10/08/2020 16 24 16 21 16 17 16 16 16 16

10/22/2020 16 24 16 21 16 16 16 16 16 16

11/05/2020 16 24 16 22 16 16 16 16 16 16

11/19/2020 16 24 16 21 16 16 16 16 16 16

FIGURE 2 | Schematic (left) and photograph (right) of a hyperspectral imaging system for acquiring images from hemp samples.

Lu and Lu, 2017). Since the raw histogram might not be ideally
bimodal, it was subjected to average smoothing iteratively using
a three-point window, before determining the optimal threshold,
until the smoothed histogram became bimodal. The thresholding
was then followed by routine morphological operations to refine
the initial segmentation. Figure 4 (right) shows an example of the
segmented hemp leaves and reference.

Furthermore, given a hyperspectral datacube for each scan,
mean spectra were extracted for the reference and individual
hemp leaves/flower samples, respectively, by averaging the
spectra of all the pixels in the corresponding region of interest.
Thereafter, ratio spectra were obtained by dividing the spectra of
hemp samples by the spectrum of the reference in the same scan,

to standardize the spectral responses of the camera, and used
for building discriminative models as described below. While
morphological or texture features can also be extracted and fused
with the mean spectra for modeling tasks, only the latter were
used for the modeling tasks and found adequate for yielding high
classification accuracies.

Model Development
Machine learning models were developed to differentiate five
hemp cultivars, five growth stages (corresponding to five
sampling dates) and two plant organs (i.e., leaves and flowers),
respectively. For cultivar differentiation, the models were built
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FIGURE 3 | (Top) Algorithmic procedures of finding a contrast-optimized, normalized band difference image from a hyperspectral datacube. (Bottom) The images
at 898 nm and 474 nm and the corresponding normalized band difference image that exhibits the optimal contrast.

FIGURE 4 | (Left) Raw histogram and bimodal histogram of a contrast-optimized normalized band difference image (Figure 3). The blue downward arrow indicates
the optimal threshold that corresponds to the mean position of the two peaks of the bimodal histogram that is obtained by iteratively smoothing the raw histogram
until it is bimodal. (Right) Segmentation of hemp leaves and a reference using the optimal threshold.

using the spectra of hemp leaves and flowers, respectively, as
well as using the ensemble of hemp leaf and flower samples, at
each growth stage. Furthermore, the ensemble of the samples
from different stages is also examined for model development.
For growth stage differentiation, similarly, classification models
were built using hemp leaves and flowers, respectively, for each
cultivar. Moreover, models were built for discriminating hemp
leaves and flowers for each cultivar at each growth stage. In each
modeling scenario, the spectral dataset was randomly partitioned
into training and test sets according to a ratio of 3 to 1 (Figure 5),
for model training and testing, respectively, and wavelength-wise
data normalization was performed so that the reflectance values
at each wavelength had a zero mean and a unit variance.

Regularized linear discriminant (rLDA) proposed by Guo
et al. (2007) is an extension to the classic LDA specifically for
solving classification problems with high-dimensional data. By
regularizing the covariance matrix and thresholding (shrinking)
the linear coefficients, rLDA is sufficiently robust for modeling
high-dimensional data and also very competitive to other
far more computation-expensive classifiers such as support
vector machine (Guo et al., 2007). Hence, rLDA was chosen
for the modeling tasks in this study. There are two tunable
hyperparameters in rLDA, i.e., the regularization parameter γ

(0 < γ < 1) and threshold (or shrinkage) parameter δ (δ > 0).
When there are more predictors (variables) than samples, which
typically holds true for high-dimensional data, the optimal
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FIGURE 5 | Discriminative modeling of hyperspectral data using regularized
linear discriminant analysis (rLDA) for classifying hemp cultivars, growth
stages, and plant organs (leaves vs. flowers). For rLDA, two hyperparameters
γ and δ are optimized through Bayesian optimization based on 10-fold cross
validations during model training.

value of γ is shifted toward 0 (Guo et al., 2007); a higher
value of δ implies fewer variables incorporated into the model,
which has the effect of variable selection for modeling. Here
the two hyperparameters were determined through Bayesian
optimization (Snoek et al., 2012) in the context of 10-fold cross
validations on the training data, over a range of [0, 0.01] and
[1e-3, 1e3] for γ and δ, respectively. The search ranges were
chosen based on preliminary testing. Because of the randomness
of the spectral data partition, it would be desirable to repeat
the modeling procedures multiple times with random dataset
partition for obtaining a reliable estimate of model performance.
In this study, a repeated holdout validation strategy (also referred
to as Monte Carlo cross validation) was performed to avoid
potential pitfalls of single data partition (Raschka, 2018). Given
the efficiency of rLDA, a relative high number of 30 modeling
replications were conducted (Figure 5), and the resultant mean
value of the classification accuracies (the percentages of the
number of correctly classified samples of the total sample
number) on the test data was computed for model evaluation.
Further, statistical comparisons were conducted on the mean
classification accuracies among different models using Fisher’s
least significant procedure at the 5% significance level.

All the analyses for image preprocessing, feature extraction
and model development were performed in Matlab R2020b (The
Mathworks, Inc., Natick, MA, United States).

RESULTS AND DISCUSSION

Exploratory Analysis
Figure 6 shows the spectra of hemp samples of the five different
cultivars harvested 4 weeks after flower initiation and the spectra
of one cultivar at all the growth stages (2–10 weeks after flower
initiation). Like other green plants, the spectra of hemp leaves

and flowers are characterized by low reflectance in the visible
range due to absorption of plant pigments, and reflectance
rising rapidly at wavelengths around 700 nm and plateauing
in the NIR region, due to reduced absorption and increased
scattering of plant tissues in the region (Horler et al., 1983).
The major reflectance valley (i.e., the absorption peak) occurring
around 670 nm is attributed to the absorption of chlorophylls.
Large spectra variations are observed in the visible (450–650 nm
around the green band) and NIR regions, among the samples
harvested at different plant growth stages. These variations are
associated with the dynamics in the chemical profiles (e.g.,
pigments and water) of plant organs as the plant matures. It
seems more apparent that spectral reflectance of hemp leaves
increased with the plant age, which is probably due to leaf
senescence-induced degradation of chlorophylls (Merzlyak et al.,
1999). Water loss accompanying senescence of plant tissues also
contributes to increased reflectance in the NIR range (Hunt and
Rock, 1989), which may explain high NIR reflectance of hemp
flowers in the last scan.

The hemp samples cannot be directly distinguished for the five
cultivars from the spectral profiles, because of strong overlapping
(Figure 6 top); whereas there are more noticeable differences
in the spectral profiles among the five growth stages (Figure 6
bottom), and between hemp leaves and flowers. To visualize
the distribution of hemp samples of different cultivars, principal
component analysis (PCA) was performed on the spectral data.
Figure 7 shows an example of the scatter plots for the hemp
samples shown in Figure 6. The first two principal components
(PCs) account for 87.0% and 91.3% of the total variance of the
spectral data of leaf and flower samples, respectively. The scatter
plots allow visualizing the unsupervised separation of samples
of different classes. Clearly, the samples of five cultivars do not
form distinct, well-separated clusters in the PC space, which is
also true in the plots by the top three PCs that explain over
96% of the total variance (3D scatter plots are not presented).
Similar findings are also observed for the samples harvested
at other growth stages. In contrast, the hemp samples among
the different growth stages, and especially between plant organs
(leaves and flowers) form better-resolved separated groups in the
PC space as shown in Figure 8. Despite the qualitative analysis,
this result suggests that hemp cultivars would not be readily
discriminated though unsupervised analysis, highlighting the
need for potent supervised classification techniques to distinguish
hemp cultivars, and that high accuracies would be achieved in
classifying the growth stages and plant organs.

Classification
The machine learning models based on rLDA were first
developed for differentiating the hemp cultivars using the spectral
data of leaf and flower samples separately as well as their
combination, at each growth stage (harvest dates). In each
scenario, discriminative models were built and tested over 30
replications with random dataset partition for each replication,
and the mean overall classification accuracy on test data was
calculated and used as the metric of classification performance.

Figure 9 shows the classification accuracy, with statistical
comparisons made between the accuracies at each growth stage.
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FIGURE 6 | (Top) Mean spectra of five cultivars (i.e., BX, TJ, CW, FL58, and FL70) of hemp flowers and leaves harvested 4 weeks after flower initiation and
(Bottom) mean spectra of the cultivar Cherry Wine harvested at all the five growth stages. The reflectance (a.u.) is a relative quantity obtained by diving a sample
spectrum by that of the standard reference (section “Hyperspectral Image Acquisition”) with nominal reflectance of 20%.

FIGURE 7 | Scatter plots in the space spanned by the first two principal components (PCs) for five cultivars of hemp flowers and leaves 4 weeks after flower initiation
(Figure 6). The percentage value in parentheses indicates the variance portion explained by the corresponding PC.

FIGURE 8 | (Left) Scatter plots in the space spanned by the first two principal components (PCs) for hemp sample at five growth stages (2–10 weeks after flower
initiation). (Right) Scatter plots of the first two PCs for hemp flowers and leaves harvested week 4 after flower initiation. The percentage value in parentheses
indicates the variance portion explained by the corresponding PC.

Although the PCA of leaf and flower spectra could not reveal
a good separation among different hemp cultivars, the rLDA
models based on the leaf or flower samples achieved high

classification accuracies ranging 96.8% to 99.6%, with standard
errors of less than 1%. The classification accuracies vary with
plant organ and growth stage. The leaf samples yielded a
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FIGURE 9 | Classification accuracies in differentiating hemp cultivars based on the samples at each growth stage. The classification accuracy is obtained by
averaging the accuracies in 30 modeling replicates, and the error bar indicates the corresponding to the (positive/negative) standard error. At each growth stage, the
two accuracies with different letters are statistically different at the 5% significance level.

FIGURE 10 | Confusion matrices (rows and columns correspond to true and predicted labels, respectively) for hemp cultivar classification based on the
hyperspectral data of flower samples. Each confusion matrix is obtained by pooling and row-wise normalizing classification results over 30 modeling replications.

significantly (+2.6%) better accuracy than that obtained by the
flowers at the first growth stage, but a significantly (−2.7%) lower
accuracy at the last stage. At the three intermediate stages, the
accuracies by the leaves and flowers were similar. It is interesting
to note that the accuracy obtained by the leaf samples exhibited a
decreasing trend with growth stage, as opposed to an increasing
trend for the accuracy by the flowers. The reason underlying
this phenomenon has not been fully understood. At week 2,
the earliest harvest stage (2 weeks after flower initiation), the
flower buds were tiny (3–5 mm) and sticky, which could cause
sampling errors. The chemical components (e.g., cannabinoids
and cellulose) that are found to be indicative of hemp cultivars
(Sanchez et al., 2020) may have low concentrations at this stage,
which remains to be validated by a further study on chemical

analysis of hemp samples. At later growth stages (8–10 weeks
after flower initiation), a few hemp plants had minor spider mite
(Tetranychus urticae) infestation on the leaves, which could also
confound the discrimination of hemp cultivars.

Figure 10 shows confusion matrices for cultivar classification
based on the hyperspectral data of flower samples. Each of the
matrices is obtained by pooling and row-wise normalizing the
classification results on test data for 30 modeling replications.
The overall classification accuracies are similar among hemp
cultivars, and there is no consistent pattern of the most or least
correctly classified cultivars over the five growth stages. Similar
findings were also observed for models based on the data of hemp
leaves and the ensemble of flower and leaf samples (confusion
matrices not presented). Compared to the results attained using
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FIGURE 11 | Classification accuracies in differentiating hemp cultivars by
pooling samples at all the growth stages. The classification accuracy is
obtained by averaging the accuracies in 30 modeling replicates, and the error
bar indicates the corresponding to the (positive/negative) standard error. The
two accuracies with different letters are statistically different at the 5%
significance level.

the leaf and flower samples separately, the combined data of
yielded statistically diminished or similar accuracy with the
lowest and highest values of 95.8% and 99.3% at week 2 and 8,
respectively (Figure 9).

In addition to modeling the samples at individual growth
stages, the samples collected from different growth stages were
also pooled together to build models for cultivar classification.
Here, three types of models were built by pooling all the leaf
samples, the flower samples and their combination at the five
growth stages, resulting in the accuracies of 91.9%, 91.8%, and
82.8%, respectively, as shown in Figure 11. The combination of
leaf and flower samples led to a significantly lower accuracy than
modeling them separately. Compared to the results of models
for individual growth stages (Figure 9), the accuracies obtained
from pooling the samples across growth stages resulted in a
marked accuracy reduction of 5.03% to 16.4%. This is likely
because of the added variations or complexities (e.g., in flower
morphology and chemical constituents, and pest infections in
leaves) that could not be well modeled by the rLDA classifier
using existing datasets. Upon examination of the corresponding
confusion matrices (Figure 12), the misclassification between the
cultivars BaOx (BX) and Cherry Wine (CW) contributed the
most to the overall accuracy deterioration, while comparable,
noticeably higher accuracies were obtained for the other three
cultivars. Although modeling the leaf or flower samples alone at
similar growth stages led to better accuracy in classifying hemp
cultivars, it would be desirable to have models that are robust to
variations associated with plant organs and growth stages. Hence
it is worthy of further investigations to exploit more advanced
pattern classification algorithms, on a larger, more diverse set of
hemp samples, to improve the accuracy of cultivar classification
regardless of growth stages or plant organs.

Overall, these classification results demonstrate that
hyperspectral imaging coupled with supervised modeling is
a viable means for differentiating hemp cultivars with high
accuracy, and that the growth stage and plant organ need to be
factored in developing cultivar classification models.

Furthermore, rLDA models were built for discriminating the
five growth stages and plant organs (leaf and flower) for each

of the five hemp cultivars. The classification accuracies of 100%
with zero standard error in 30 modeling replications (Figure 13)
were obtained in all the scenarios. The superior results are not
unexpected given the clear separation of different categories
observed in the PCA space (Figure 8). The results are also in
good agreement with the findings in literature. Borille et al. (2017)
achieved 100% accuracy in discriminating three growth stages
of Cannabis sativa using NIRS combined with support vector
machine. Holmes et al. (2020) applied hyperspectral imaging
in 900–1700 nm for discriminating flowers, stems and leaves
of Cannabis sativa and achieved near 100% precision based on
decision tree modeling. All these findings conceivably verify the
prowess of hyperspectral imaging for accurately discriminating
plant growth stages and organs (leaf and flower). Moreover, the
perfect classification of growth stages can be potentially beneficial
for improving the classification of hemp cultivars at varying
growth stages by deploying cascade classifiers for classifying both
hemp growth stages and cultivars.

Discussion
It is important to point out potential areas for further
improvements. Although the standard reference (2” × 2” in size)
was scanned along with hemp samples for spectral correction,
it was not still sufficient for accounting for the spatial non-
uniformity of illumination over the scanning line. It is more
desirable to use a larger reference for imaging so that the spectral
correction of samples can be performed at a pixel level along the
scanning line. An alternative solution is to improve the lighting
design to provide uniform illumination over samples. Using two
line-light illuminators positioned symmetrically to the camera
axis (Ariana and Lu, 2010), instead of the four-lamp setup in this
study (Figure 2), may improve the illumination uniformity. This
research and other previous studies on hyperspectral imaging
for cannabis plants or hemp (Duchateau et al., 2020; Holmes
et al., 2020; Pereira et al., 2020) did not consider spatial or
textural features for modeling. Arguably these features are also
useful for plant classification tasks such as cultivar differentiation,
since different cultivars of hemp leaves and flowers are likely
to have different morphological features, regardless of growth
stages, based on which experienced agronomic experts tell apart
different crop cultivars. Further research is hence warranted
to extract textural features and exploit strategies of fusing
them with spectral features for improving the differentiation of
hemp cultivars. Meanwhile, wavelength selection or dimension
reduction (e.g., PCA) can be conducted to facilitate texture
feature extraction.

The present study only conducted hyperspectral scanning for
sampled plant organs (e.g., leaves and flowers) in controlled-light
settings. For high-throughput testing and a further validation of
the hyperspectral imaging approach, further studies are needed
to perform in-situ scanning of hemp plants under natural light
conditions, requiring no sampling of plant parts. Harvesting
hemp for maximum CBD yield while avoiding THC exceeding
legal thresholds requires quantification of these chemical
compounds in plant organs (especially flowers). Investigations
are underway to determine the feasibility of using hyperspectral
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FIGURE 12 | Confusion matrices for hemp cultivar classification using the samples from all the growth stages. Each confusion matrix is obtained by pooling and
row-wise normalizing classification results over 30 modeling replications.

FIGURE 13 | Classification accuracies in differentiating plant growth stages (left) for each hemp cultivar (i.e., BX, TJ, CW, FL58, and FL70) and plant organs (right)
at each growth stage. 100% accuracy is obtained in all the modeling scenarios with zero standard deviation for 30 replications.

imaging for screening hemp genotypes based on CBD and THC
concentrations in plant tissues at different growth stages.

CONCLUSION

In this study we propose a new methodology of using
hyperspectral imaging for differentiating cultivars, growth stages,
and plant organs (leaves and flowers) of CBD hemp. Fresh leaves
and flowers of five hemp cultivars, harvested at five growth stages
2–10 weeks after flower initiation, were scanned by a benchtop
hyperspectral reflectance imaging system in the wavelength
range of 400–1000 nm. An image processing algorithm was
developed for segmenting samples from background. The
spectral profiles and PC score scatter plots of hemp samples,
to a varying degree, revealed the separation among the hemp
cultivars, growth stages and plant organs. The rLDA models,
using leaf or flower samples at individual growth stages,
achieved the classification accuracies of 96.8%-99.6% in the
differentiation of hemp cultivars. Pooling leaf and flower
samples at all growth stages resulted in deteriorated accuracies
compared to modeling samples at individual growth stages.
Both growth stages and plant organs need to be factored in
model development for hemp cultivar classification. In contrast,
in the differentiation of growth stages and plant organs, the
rLDA models achieved 100% accuracies consistently. This study

shows that hyperspectral imaging can be used for non-destructive
and accurate differentiation between hemp cultivars, growth
stages and plant organs, and it is a potentially valuable tool
for phenotyping, cultivar selection and optimization of harvest
timing in CBD hemp production. Extensive research is still
needed to develop and deploy hyperspectral imaging technology
for field-scale, in-situ applications.
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