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Citrus Huanglongbing (HLB), also named citrus greening disease, occurs worldwide
and is known as a citrus cancer without an effective treatment. The symptoms of
HLB are similar to those of nutritional deficiency or other disease. The methods
based on single-source information, such as RGB images or hyperspectral data, are
not able to achieve great detection performance. In this study, a multi-modal feature
fusion network, combining a RGB image network and hyperspectral band extraction
network, was proposed to recognize HLB from four categories (HLB, suspected
HLB, Zn-deficient, and healthy). Three contributions including a dimension-reduction
scheme for hyperspectral data based on a soft attention mechanism, a feature fusion
proposal based on a bilinear fusion method, and auxiliary classifiers to extract more
useful information are introduced in this manuscript. The multi-modal feature fusion
network can effectively classify the above four types of citrus leaves and is better than
single-modal classifiers. In experiments, the highest accuracy of multi-modal network
recognition was 97.89% when the amount of data was not very abundant (1,325 images
of the four aforementioned types and 1,325 pieces of hyperspectral data), while the
single-modal network with RGB images only achieved 87.98% recognition and the
single-modal network using hyperspectral information only 89%. Results show that the
proposed multi-modal network implementing the concept of multi-source information
fusion provides a better way to detect citrus HLB and citrus deficiency.

Keywords: convolutional neural network, citrus greening disease, machine learning, multi-modal feature fusion,
hyperspectral images

INTRODUCTION

Citrus Huanglongbing (HLB), also called citrus greening, is commonly believed to be citrus cancer
without effective treatment. The symptoms of HLB are mainly yellow shoots, yellow leaves, and
red nose fruits, among others. The infected plants easily wither and die. HLB is found all over the
World, and it also occurs in China, especially in the Guangdong Sihui and Guangdong Huizhou.
HLB is infectious and can be spread through insect vectors or grafting. The three most effective

Abbreviations: HLB, Citrus Huanglongbing; PCA, principal component analysis; PCR, polymerase chain reaction; UVA,
unmanned aerial drone.
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methods to prevent HLB are planting non-toxic seedlings,
preventing and controlling citrus psyllids, and removing diseased
plants (Han et al., 2021). In traditional agriculture, the prevention
and control of HLB relies on the observation of experts or
experienced farmers to remove diseased plants as early as
possible. For plants with mild symptoms, PCR (Polymerase
Chain Reaction), and other biotechnological techniques can
be used to accurately identify plants. This method has high
accuracy and disease can be detected and eradicated in the
early stages of plant infection. However, this approach relies on
experts first identifying diseased plants, and then bringing the
diseased plants back to the laboratory to have disease confirmed
by genetic methods. This process is lengthy and dependent
on those experts. If a machine is trained as an expert and
replaces the expert for identification, the detection process will
be significantly accelerated.

With the development of deep learning since 2015, many
useful networks for special object extraction have emerged, such
as CNNs,ResNet50 (He et al., 2016), VGG16 (Simonyan and
Zisserman, 2014), GoogleNet (Szegedy et al., 2015), SeNet50 (Hu
et al., 2020), ResNeXt101 (Szegedy et al., 2015), VGG (Simonyan
and Zisserman, 2014), and Senet50 (Hu et al., 2020). They have
been very successful in modeling complicated systems, owing to
their ability of distinguishing patterns and extracting regularities
from data. The above-mentioned networks have been effectively
incorporated in plant phenotyping projects. For example, variety
identification in seeds (Taheri-Garavand et al., 2021b; Plants 10,
1406) and in intact plants by using leaves (Nasiri et al., 2021;
Plants 10, 1628), weed and crop classification and recognition
is the frontier and trend of agricultural artificial intelligence
(Deng et al., 2020; Jiang et al., 2020), detecting crop nutritional
deficiencies (Baresel et al., 2017; Tao et al., 2020), and plant
disease classification (Kaya et al., 2019; Karlekar and Seal, 2020).
Mostly, studies learn single-source information, and classify or
identify subsequent information. These kinds of networks mostly
use visual image and have rather good accuracy in specific
cases. However, agriculture is a complicated system in which
the shooting conditions of visual images randomly change and
the crops keep growing, which leads the networks reliant on
visual imaging to lack universality. Several researchers have
made some efforts to improve the accuracy by continuously
supplementing datasets (Picon et al., 2019), yet data collecting
is a very tough work in agriculture as it is restricted by the
environment and the growth cycle of plants. Therefore, how
to improve the precision rate under unabundant dataset is
becoming increasingly more significant.

In recent years, with the rapid development of spectroscopy,
some studies adopted multispectral and hyperspectral
information to detect deeper information of objects, such
as using infrared to evaluate the quality of strawberry by
hyperspectral images (Su et al., 2021), using hyperspectral
satellite remote sensing to estimate grassland yield (Ali et al.,
2014), or using UVA-based hyperspectral imagery (Feng
et al., 2020) for yield prediction. Compared with RGB images,
hyperspectral images combined with neural network technology
can more effectively identify plant diseases, even in the early
stage of disease.

The internal information extracted from hyperspectral images
can be used to compensate for the shortcomings of RGB
images with only surface information. Hence, multi-source
feature fusion can improve the predictive ability of the model.
The purpose of the fusion model is to combine the strengths
of different sub-models to compensate for any shortcomings
(Zadeh et al., 2017). Deep multi-modal learning can reduce the
design requirements for feature engineering and deep-learning
architectures, and can achieve the required accuracy more simply
and quickly (Atrey et al., 2010; Ramachandram and Taylor, 2017;
Baltrusaitis et al., 2019). Yan et al. (2021) proposed a fusion
scheme combining a multi-dimensional convolutional neural
network with a visualization method for detection of aphis
gossypii glover infection in cotton leaves using hyperspectral
imaging, which achieved good development prospects in plant
disease identification.

Numerous researchers have conducted laboratory
investigations into the identification of HLB using different
methods under different observation heights, such as using
visual images in the laboratory with traditional machine-learning
methods (Deng et al., 2016) and using UAV hyperspectral and
multispectral images using deep-learning networks (Deng et al.,
2019; Lan et al., 2020).

To increase the reliability and precision of HLB detection,
in this study, a method is proposed that fuses two sources of
information, namely, spectral and RGB images, by building a
multi-modal deep-learning network to identify HLB leaves from
four categories.

MATERIALS AND METHODS

Data Acquisition and Processing
The data used in this study were collected in the citrus test
fruit field of South China Agricultural University, Tianhe,
Guangdong Province (longitude 113.35875, latitude 23.15747).
In early March, citrus trees are in the spring growth period and
are grown in subtropical climate regions, shown in Figure 1.
The variety of citrus is Shatangju (Citrus reticulata Banco). The
selected tree samples were specially cultivated and PCR-tested,
and Zinc deficiency was visually assessed by a field expert, and
was confirmed by conducting mineral analysis. The data samples
of this study include the leaves of HLB plants, of Zn-deficient
plants, of healthy plants, and those with suspected HLB (in which
case the surface of the leaf is uniformly yellow, which is different
from the obvious symptoms of HLB). The four categories leaves
are shown in Figure 2.

The collection environment is shown in Figure 3. The RGB
images were taken with Sony cameras and under natural light,
ensuring that the required foliage was clear, independent of
the shooting location, and free of background interference. The
distance between camera and leaves was controlled with 20–
50 cm. The hyperspectral data of leaves were collected by a
hyperspectral imager (Hypersis-VNIR-PFH, Zhuoli Hanguang,
Beijing, China). The spectral range was 300 nm to 1070 nm and
the exposure time for each collection was 30 ms. The running
speed of the mobile platform was 5.0375 mm/s, the scanning
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FIGURE 1 | Dataset collection location.

FIGURE 2 | Four categories leaves.

distance 120 mm, and the hyperspectral image size 100 × 200
pixels. Spectral data analysis and processing were implemented in
ENVI 5.3 software (Harris Geospatial Solutions, Inc., Broomfield,
CO, United States).

Figure 4 shows the method of feature area selection during
the data processing step. In the process of hyperspectral image
analysis, the upper, middle, and lower regions of interest
of the leaf blade were chosen as the feature region, the
average reflectance in the region of interest calculated, and
the average reflectance used to represent the area. Finally,

the hyperspectral image was converted into a hyperspectral
band, and the average reflectance used to reflect the area.
The frequency band of each area ranged from 300 nm
to 1070 nm, removing the incomplete information about
the start and the tail, leaving 768 bands in the middle.
Owing to the similarity of adjacent bands of hyperspectral
images, to reduce similar repetitive features, every three
adjacent bands in the 300–1070-nm range were extracted
and combined into a new band. After final extraction, 256
composite bands remained.
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FIGURE 3 | Data collection equipment. (A) RGB image capture equipment. (B) Hyperspectral image capture equipment.

Table 1 shows the one-to-one correspondence dataset between
images and spectral data. Each RGB image corresponds to
a spectral sample and each piece of spectral data contains
the spectral information of the upper, middle, and lower
regions of the leaf.

Multi-Modal Network Architecture
The multi-modal network proposed in this study consists
of two backbone networks. The architecture was divided
into four parts. The first is an image feature extraction
network that extracts surface features of RGB images. The
second is a hyperspectral band feature extraction network
that extracts the HLB feature bands. The third is a feature
fusion part that fuses the two features extracted from two
different networks and performs classification with an auxiliary
classifier. The fourth part is classification using auxiliary
classifiers. The multi-modal network structure is shown in
Figure 5.

RGB Image Extraction Network
In the first part of RGB image feature extraction, ResNet50,
VGG16, and ResNeXt101 were selected as the candidates
for the backbone network. After experimental comparison,
ResNet50 was adopted because it works well and in wide
use. In terms of the network structure, ResNet50 has fewer
parameters, but the effect achieved is similar to that of
ResNeXt101. The image in this experiment is high definition,
and the amount of calculation required for the extraction
of the hyperspectral band is also large. To reduce the
amount of calculation and not lose too much accuracy,
ResNet50 was chosen. The results of the experiment are
detailed further below at Table 2. To enrich the diversity
of samples, a data enhancement module was added to
the network. During the training process, there was a
10% probability that the RGB image would be randomly
rotated forward or counterclockwise by 45◦. The feature

dimensionality extracted from the backbone network was
2048. To reduce the dimensionality obtained by feature
fusion and reduce the amount of network calculation, the
fully connected layer was used for feature dimensionality
reduction, and the final image feature dimensionality obtained
was 256.

Feature Extraction Network for
Hyperspectral Band
The second part of the multi-modal network is to extract
feature band information of hyperspectral data. There are
many common spectral feature band extraction methods, such
as support vector machines and PCA (Principal Component
Analysis), among others (Velasco-Forero and Angulo, 2013;
Deng et al., 2014; Medjahed et al., 2015; Pérez et al., 2016).
In this study, a simple neural network for feature extraction
among the 300–1070-nm hyperspectral data is proposed,
and an attention module was added in this hyperspectral
feature band exaction network to increase the ability of
extracting bands. After combining the three adjacent bands
into one channel, the number of bands decreased from 758
to 256, which reduced the overall amount of calculation and
number of parameters of the hyperspectral feature extraction
network. Hyperspectral band information is one-dimensional
(1D) information. Commonly used image neural networks are
not suitable for 1D information extraction, and we only needed
to extract the bands with large differences. Therefore, the
designed neural network must be capable of 1D information
extraction. Moreover, it must be able to find the bands with
large differences and retain the characteristic of this large
difference. As shown in Figure 4, the upper, middle, and
lower parts of each hyperspectral image were selected, and
the hyperspectral band of each hyperspectral image calculated
by averaging each part of the sample. Thus, there were three
pieces of hyperspectral 1D data for each channel of the
hyperspectral image. Therefore, the input of the hyperspectral
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FIGURE 4 | Feature area selection during processing in Envi software.

band feature extraction network was 256 × 3. Even so,
a significant amount of redundant information remains. To
reduce the influence of this redundant information on the final
classification results, a soft attention mechanism was adopted

in the module to further extract the hyperspectral information
of input data. Finally, the output size of the network was
1 × 256. The structure of the attention algorithm is shown
in Figure 6.
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Multi-Modal Feature Fusion
Typical fusion methods mainly comprise early and late fusion.
As the name suggests, early fusion is used to fuse features
at feature levels, using operations such as concatenation and
addition of different features (Chaib et al., 2017), and then
inputting the fused features into a model for training. Late
fusion refers to fusion on the score level. Methods such as
a feature pyramid network (Pan et al., 2019) train multiple
models, and each model will have a prediction score. The
results of all models are fused to obtain the final prediction
results. In this study, the 1D hyperspectral band information
and 3D RGB picture information were fused before detection.
ResNet50 and a hyperspectral band feature extraction network
(spectrum) were used in the present work as the fusion network
to carry out three different feature fusions, all of which are
examples of early fusion. These three methods are feature
addition, feature multiplication, and feature bilinear fusion.
From Figure 7 shows that the accuracy of addition is 94.58%,
that of multiplication is 93.85%, and that of bilinear fusion
is 95.1%. It can also be seen from Figure 7 that the fitting
speed of bilinear fusion was also faster than that of the
other two methods.

The bilinear fusion method (Yu et al., 2018) was adopted to
fuse the features between different networks. The original bilinear

TABLE 1 | Four different types of data and amounts of each.

Species Number of
images

Number of
spectral
images

Healthy
HLB

300
375

300
375

Zn-deficient
HLB suspected

350
300

350
300

HLB, Citrus Huanglongbing.

fusion is shown in Eqs. (1) and (2). The two input modes are X
and Y, and the bilinear fusion can thus be expressed as:

Zi = XTWiY, (1)

where, W is the projection matrix and Z the output of the bilinear
model. W is decomposed into two low-rank U and V matrices,
with ◦ indicating a matrix dot product:

Zi = XTU iVT
i Y = UT

i X
◦VT

I Y. (2)

The specific fusion formula is shown in Equation (3),
where Z (FeaturesMix) represents the fusion features, I
(FeaturesImage) the features extracted by the image network,
and B (FeaturesSpectrum) the features extracted by the spectral
network. A is an N × N matrix and Bias an N × 1 matrix; in the
experiments detailed herein, N = 256.

Z (Featuresmix) = I (FeaturesImage) A B (Featuresband) +Bias
(3)

Auxiliary Classifier
After feature fusion, the samples were modeled using auxiliary
classifier based on the fused feature values. The final classification
effect of the network is affected by the two backbone feature
extraction networks. To improve the feature extraction effects
of the RGB image feature extraction network and hyperspectral
band feature extraction network, the auxiliary classifiers were
modified as shown in Figure 8, where the loss of the overall
network consists of the loss of the fusion feature classifier and one
of each backbone network classifier. The specific loss calculation
formula is as in Equation (2), where Total Loss represents the
overall loss value of the network, Lossmix the loss value of the
fusion feature classifier, Aux Loss1 the loss value of the image
auxiliary classifier, and Aux Loss2 the spectral auxiliary classifier
The loss values of µ1 and µ2 are the auxiliary classifier loss

FIGURE 5 | Multi-modal network structure.
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TABLE 2 | Single-network classification and multi-modal network
classification accuracy.

Sample Model Accuracy (%)

RGB image
hyperspectral data

ResNet50
VGG16
ResNeXt101
Hyperspectral feature extraction network

85
84.51
87.98

89

RGB image +
hyperspectral data

Multi-modal network M1
Multi-modal network M2
Multi-modal network M3

96
95.1

97.89

*M1, ResNet50+hyperspectral feature extraction network; M2,
VGG16+hyperspectral feature extraction network; M3, ResNeXt101+hyperspectral
feature extraction network.

weight coefficients (0 ≤ µ1 <1,0 ≤ µ2 <1). By testing different
groups of weight coefficient values, it was found that the best
classification effect is obtained when the coefficient µ1 = 0.25 and
the coefficient µ 2 = 0.20.

Total Loss = Lossmix + µ1 × Aux Loss1 + µ2 × Aux Loss2
(4)

RESULTS

The experimental hardware environment of this study is listed
in Table 3. The software environment was set as the following:
python, Ubuntu 16.04, CUDA, CUDNN, and OpenCV. In this
study, F1 score and accuracy were used to evaluate the trained
model. The formulas are given in Equations (3)–(6), where P is
the precision rate,R the recall rate,TP the number of true positive
samples, FP the number of false positive samples, FN the number
of false negative samples, true_num the number of samples that
are classified correctly, and total_num the total number of tests
and total number of samples.

P = P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

F1 =
2P ∗ R
P + R

(7)

Accuracy =
true_num
total_num

(8)

Experimental Results
The experimental comparison results between single-network
and multi-modal network classification are shown in Table 2.
The recognition accuracies of the single network using RGB
images were 85, 84.51, and 87.98% based on ResNet50,
VGG16, and ResNeXt101, respectively. The recognition
accuracy of the hyperspectral data dimensionality reduction
network based on the soft attention mechanism was 89%,
while that of the multi-modal networks designated M1

FIGURE 6 | Hyperspectral band feature extraction network.

(ResNet50+hyperspectral feature extraction network), that
designated M2 (VGG16+hyperspectral feature extraction
network), and that designated M3 (ResNext101 +hyperspectral
feature extraction network) reached 96, 95.1, and 98%
respectively, all significantly higher than that of a single
network. Compared with the F1 score of 85% using
only the image network and that of 89% using only the
spectral network, increases of 13 and 9%, respectively,
were found. It can be clearly seen that feature fusion
based on the bilinear fusion method and the multi-
modal network of the auxiliary classifier can extract more
useful information, and can better classify items with
similar features.

To verify the performance of the multi-modal networks,
ResNet50 with medium recognition accuracy (Table 2)
was selected as the basic network to better reflect the
improvement of recognition accuracy of multi-modal
networks. Table 4 shows the detection performance
of each category based on multi-modal network M1,
where the F1 scores of HLB, healthy, Zn-deficient, and
suspected HLB-diseased leaves reached 95, 98, 96, and 94%,
respectively, showing that average recognition accuracy
reached over 95%.

Visualization Analysis of Models
Figure 9 shows the change of loss and accuracy with epoch
during the training process of each network. It can be seen
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FIGURE 7 | Change with epoch of loss and accuracy of three feature fusion methods used in present. (A) Work Acc-Epochs. (B) Loss-Epochs.

FIGURE 8 | Loss calculation method based on auxiliary and mixture loss.

from Figure 9 that with increasing epoch loss, the fitting effect
of the multi-modal model is obviously better than that of
the RGB image network, and both tend to stabilize after 20
epochs. Compared with single-modal networks, including the
spectrum network and RGB image networks using VGG16,
ResNet50, and ResNeXt101, the three multi-modal networks
achieved significantly better performance with faster convergence
(as shown in Figure 9A) and higher accuracy (as shown in
Figure 9B).

Figure 10 shows the confusion matrix of the three models.
Figures 10B,C is the confusion matrix of the RGB image
network and the hyperspectral network. It can be seen that
the classification effects of the RGB image network and the
hyperspectral image network have complementary aspects,
especially for zinc deficiency. Classification of symptoms and
HLB symptoms. Figure 10A is the effect of the final multi-
modal network. It can be seen that the final confusion matrix has
achieved a good effect.
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DISCUSSION

Most existing networks can significantly improve the recognition
accuracy by increasing the depth of the network, the
dimensionality of the network, and the size of the data set.

TABLE 3 | Experimental environment.

Hardware Brand Number

CPU
Storage
Graphics card
Hard disk

I7–10700
Kingston, 16 GB
GeForce GTX3070
West Statistics, 1 TB

1
2
1
1

Main board Dell Precision 3640 tower 1

TABLE 4 | Four classification results of multi-modal network M1.

Type Precision
(%)

Recall (%) F1 score
(%)

HLB 96 94 95

Health
Zn-deficient
HLB suspected

98
97
92

99
94
96

98
96
94

*M1, ResNet50+ hyperspectral feature extraction network. HLB,
Citrus Huanglongbing.

Such as ResNet, from ResNet50 to ResNet101, its recognition
accuracy is improved, but the recognition speed and calculation
amount are increased. When more than 101 layers are added,
the recognition accuracy is not improved. This shows that
although only increasing network depth can increase the
accuracy, the cost is too high. The GoogleNet is to increase
the width of each layer without increasing the depth of
the network, but this improvement is also limited. Besides,
dataset is difficult work in agriculture as it is restricted by
the environment and the growth cycle of plants. Multi-
modal networks can expand the data dimension through
network fusion and fusion of features extracted from
different data. Under the condition of insufficient data for
a deep-learning network, it is relatively simple to combine
other sources of information to improve the accuracy of
the network from a horizontal perspective rather than a
vertical perspective.

In the present study, the four testing categories discussed
have similar symptoms, and are difficult to discriminate only
by visual imaging. Hyperspectral data can reflect the internal
information of plants to a certain extent, such as chlorophyll or
element content, and can make up for the lack of RGB imagery
and solve the discrimination problem resulting from the similar
appearance of leaves.

Regarding the multi-feature fusion part, fusion weight
coefficients were introduced to the weigh the output result,

FIGURE 9 | Change with epoch of loss and accuracy of different networks in training process. (A) Loss-Epochs curve. (B) Acc-Epochs curve.

FIGURE 10 | Confusion matrix of the three models. (A) Multi-modal network. (B) RGB image network. (C) Hyperspectral band network.
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thus improving the fitting effect of the proposed multi-
modal network. The image recognition accuracy of
the multi-modal model can be even improved by
adding more dimensional information or improving the
performance of the constituent network. The proposed
method can also be applied to other agricultural
applications, such as pest and disease detection with similar
symptoms or appearances.

On a commercial scale, evidently, a capital investment
is initially required for adopting the employed approach
(Taheri-Garavand et al., 2021a Industrial Crop Prod
171, 113985). Nevertheless, the wide-ranging large-scale
commercial applications can provide high returns through
considerable improvements in process enhancement and
cost reduction. Spectroscopy is a high-cost and high-tech
imaging device, and its application areas are still being
developed. However, through the research in this article,
it can further expand its application fields and improve
its technology. Through the neural network fusion method
and the combination of RGB images, the recognition
and classification of agricultural pests or agricultural
diseases are enhanced.

CONCLUSION

A multi-modal network for citrus HLB detection and a
bilinear fusion method based on RGB images and hyperspectral
information are proposed in this study. Four HLB types
with similar symptoms of leaves (HLB, suspected HLB, Zn-
deficient, and healthy) were tested experimentally to verify
the effectiveness of the multi-modal network. Results show
that the F1-score of HLB detection based on multi-modal
network reached 95%, that of healthy leaves reached 98%, that
of Zn-deficient leaves reached 96 %, and that of suspected
HLB diseased leaves reached 94%. The image recognition
accuracy of the multi-modal model can effectively improve

the recognition accuracy of the model when the size of the
dataset is limited.
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