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Freezing during the flowering of Prunus sibirica is detrimental to fruit production.
The late flowering (LF) type, which is delayed by 7–15 days compared with
the normal flowering (NF) type, avoids damages at low temperature, but the
molecular mechanism of LF remains unclear. Therefore, this study was conducted
to comprehensively characterize floral bud differentiation. A histological analysis
showed that initial floral bud differentiation was delayed in the LF type compared
to the NF type. Genome-wide associated studies (GWAS) showed that a candidate
gene (PaF106G0600023738.01) was significantly associated with LF type. It was
identified as trehalose-6-phosphate phosphatase (PsTPPF ), which is involved in
trehalose-6-phosphate (Tre6P) signaling pathway and acts on floral transition. A whole-
transcriptome RNA sequencing analysis was conducted, and a total of 6,110 differential
expression (DE) mRNAs, 1,351 DE lncRNAs, and 148 DE miRNAs were identified.
In addition, 24 DE mRNAs related with floral transition were predicted, and these
involved the following: three interactions between DE lncRNAs and DE mRNAs
of photoperiod pathway with two mRNAs (COP1, PaF106G0400018289.01 and
CO3, MXLOC_025744) and three lncRNAs (CCLR, LTCONS_00031803, COCLR1,
LTCONS_00046726, and COCLR2, LTCONS_00046731); one interaction between DE
miRNAs and DE mRNAs with one mRNA, encoding trehalose-6-phosphate synthase
(PsTPS1, PaF106G0100001132.01), and one miRNA (miRNA167h). Combined with
the expression profiles and Tre6P levels, functions of PsTPPF and PsTPS1 in Tre6P
regulation were considered to be associated with flowering time. A new network of
ceRNAs correlated with LF was constructed, and it consisted of one mRNA (PsTPS1),
one lncRNA (TCLR, LTCONS_00034157), and one miRNA (miR167h). This study
provided insight into the molecular regulatory mechanism of LF in Prunus sibirica.
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INTRODUCTION

Prunus sibirica is a stone fruit and woody oil plant that has
excellent resistance to extreme environment conditions and is
both economically and ecologically valuable (Zhang et al., 2006;
Wang et al., 2017). It is an early flowering phenotype species,
and its yield is susceptible to low-temperature weather during
flowering. When P. sibirica flowers late, damage is avoided,
and apricot yield is ensured; however, only few studies have
investigated the associated mechanism (Wang et al., 2019).

Floral transition time is an important factor affecting the
flowering of plants, and it further affects their life cycle. It is
controlled by a complex network of numerous genes involved in
genetic pathways, and several floral transition genes have been
reported, including CONSTAN (CO) in photoperiod pathway
(Suarez-Lopez et al., 2001), DELLA proteins in gibberellin (GA)
pathway (Hou et al., 2008), VRNs in vernalization pathway (Levy
et al., 2002), and SQUAMOSA promoter binding protein-like
(SPLs) in age pathway (Wu and Poethig, 2006), and trehalose-
6-phosphate synthase (TPS1) in trehalose-6-phosphate (Tre6P)
signaling pathway (Wahl et al., 2013).

Using the sequencing technique process, genome-wide
associate studies (GWASs) have been conducted to identify
candidate genes associated with important traits in perennial
fruit trees. For example, studies have investigated Prunus persica
and Pyrus pyrifolia to identify fruit quality and phonological
traits (Cao et al., 2016; Zhang et al., 2021), Prunus armeniaca
to analyze pathogen resistance (Mariette et al., 2016), Prunus
mume to determine floral traits (Zhang et al., 2018), and
Malus domestica for fruit quality traits (Duan et al., 2017).
Recently, several candidate genes associated with flowering time
in P. persica (Li et al., 2019), Helianthus annuus (Bonnafous
et al., 2018), and Brassica napus (Huang et al., 2021) have been
identified by GWASs.

Whole transcriptome RNA sequencing analyses have been
performed to investigate non-coding RNAs (ncRNAs), which
participate in multiple biological and abiotic functions. NcRNAs
are divided into two categories by length, small RNAs
and long non-coding RNAs (lncRNAs). Notably, ncRNAs
played important roles in the control of flowering; for
example, two well-known lncRNAs, COLD-INDUCED LONG
ANTISENSE INTRAGENIC RNA (COOLAIR) and COLD-
ASSISTED INTRONIC NON-CODING RNA (COLDAIR) acted
on vernalization process associated with controlling flowering
time by silencing the transcription of FLC (Liu et al., 2010;
Heo and Sung, 2011). The studies of Wu and Poethig (2006)
and Wu et al. (2009) first reported that miR156 and miR172
controlled floral transition in Arabidopsis thaliana, with opposite
regulatory effects. Several micro RNAs (miRNAs) involved
in floral transition have also been studied, such as miR159
(Li et al., 2013), miR168 (Xian et al., 2014), milR169d (Xu
et al., 2014), and miR390 (Fahlgren et al., 2006; Garcia, 2008).
Competing endogenous RNAs (ceRNAs) have been found to
be an RNA molecule class that possesses at least one common
miRNA response element (MRE) that is accessible to miRNA
binding (Salmena et al., 2011). Furthermore, protein-coding
RNAs and ncRNAs, such as pseudogene transcripts, lncRNAs,
and circular RNAs (circRNAs), have been found to communicate

and co-regulate with each other by competitively combining
same miRNAs; these are considered to be ceRNAs, and they
possibly participate in biology processes (Tay et al., 2014).
ceRNAs have been investigated in studies focusing on human
disease in relation to their functions of competitive expression
with a disease-causing gene (Lü et al., 2016; Liang et al., 2018).
However, only a few studies have focused on the ceRNA network
and association between ceRNA networks and flower traits in
plants; for example, studies have investigated ceRNA networks in
Solanum lycopersicum (Yang et al., 2019) and Brassica campestris
(Liang et al., 2019).

To elucidate the molecular mechanism of late flowering
(LF) in P. sibirica, we conducted a GWAS to identify the loci
and candidate genes associated with LF. We also conducted
an integrated analysis of mRNAs, lncRNAs, and miRNAs to
construct ceRNAs networks by whole transcriptome RNA-
sequencing. This study provides new insight into the genetic
regulation of LF mechanisms in P. sibirica.

MATERIALS AND METHODS

Plant Materials
A total of 66 P. sibirica accessions were used in this study,
which grown in the Inner Mongol Forest Seed Breeding Center
in Horinger County within the Inner Mongolia Autonomous
Region. Full bloom date (FBD) was defined as when up to
50% of the flowers opened (Pérez-Pastor et al., 2004), and the
FBD of all the accessions were measured from 2015 to 2017
(Supplementary Table 1). Fresh young leaves of P. sibirica
accessions were collected, immediately frozen in liquid nitrogen,
and stored in a refrigerator at −80◦C prior to conducting
the GWAS. A minimum of 5 g (fresh weight) of floral buds
collected from LF and normal flowering (NF) accessions were
respectively used to conduct histological analyses and whole-
transcriptome RNA sequencing.

Sampling and Observations of Tissue
Morphology in Paraffin Sections
Floral buds (a minimum of 20 floral buds from each sample)
from the LF and NF types were sampled every 10 days from
June 20 to July 10, 2017, every 3 days from July 10 to October
11, and every 7 days from October 11, 2017 to April 3, 2018.
After fixation in an FAA fixative solution for 24 h, the buds
were kept in a 70% alcohol solution under 4◦C. The materials
were then subjected to alcohol dehydration, xylene treatment,
waxed treatment, embedding, and slicing at a thickness of 6–
10 µm. Samples were subsequently dyed with Fast Green and
counterstained with safranin. Tissues were observed, and images
were obtained under an optical microscope, Olympus BX-51
(Olympus Optical, Tokyo, Japan).

DNA Preparation, Sequencing, Sequence
Alignment, and SNP Calling
A total of 66 P. sibirica accessions were used in this study,
of which 41 have been used in our previous study (Genome
Sequence Archive, PRJCA001987) and 25 were newly sequenced.
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The leaf DNA of 25 P. sibirica accessions was extracted with
CTAB methods, and sequence libraries were constructed with
fragment sizes of up to 300 bp. The libraries were then sequenced
on an Illumina HiSeq X Ten platform. After sequencing,
clean reads were obtained using fastp (version 1.12.6, default
parameters) by removing low-quality reads with adapters at both
or either end, and with the number of N bases accounting for
more than 5% (Chen et al., 2018b). The genome sequence data
of 25 P. sibirica accessions were submitted to Genome Sequence
Archive (PRJCA006925).

Whole-genome sequences for each accession were mapped
to the P. sibirica “F106” reference genome (Genome Database
for Rosaceae, tfGDR1049) using BWA-MEM (version 0.7.17,
-K 100000000 -v 3 -Y) (Li, 2013). Duplicates were then marked
using the genome analysis toolkit (GATK) MarkDuplicates
(version 4.1.2.0, –VALIDATION_STRINGENCY
SILENT –OPTICAL_DUPLICATE_PIXEL_DISTANCE 2500 –
ASSUME_SORT_ORDER “queryname”) (McKenna et al., 2010).
A GATK Haplotype Caller was used to detected SNP variant
calls (version 4.1.2.0, -ERC GVCF). The GATK (version 4.1.2.0)
was used for hard filtering with the following parameters: -filter
“QD < 2.0” –filter-name “QD2” -filter “QUAL < 30.0” –filter-
name “QUAL30” -filter “SOR > 3.0” –filter-name “SOR3”

-filter “FS > 60.0” –filter-name “FS60” -filter “MQ < 40.0” –
filter-name “MQ40”-filter “MQRankSum < -12.5” –filter-name
“MQRankSum-12.5” -filter “ReadPosRankSum < -8.0” –filter-
name “ReadPosRankSum-8.” All the SNPs were annotated for
potential coding effects using ANNOVAR (version 2018-04-16,
default parameters) (Yang and Wang, 2015).

Genome-Wide Association Study
To improve the statistical power of the analysis, a set of bi-
allelic SNPs with missing rates of less than0.2 and minor allele
frequency (MAF) of >0.05 were obtained to conduct subsequent
analyses. Principal component analysis was performed using
Smartpca (Zhang, 2009). A distance matrix was generated
with VCF2D (version 1.0), and a neighbor-joining tree was
constructed with 1,000 bootstraps using TreeBeST (version
1.9.2). A mixed linear model (MLM) program in Efficient
Mixed-Model Association Expedited (EMMAX, version beta-
07Mar2010, default parameters) (Kang et al., 2010) software
was used for the GWAS. The results were visualized as
Manhattan plots and Q–Q plots using the R package “qqman”
(Turner, 2014). We defined the cutoff of associated signals
as the Bonferroni test threshold (Gao et al., 2010), which
was set as0.05/total SNPs [−log10 (0.05/2598398) = 7.71].

FIGURE 1 | Comparison of the flower bud differentiation process between (A–E,K–O) LF and (F–J,P–T) NF in P. sibirica. (A) Undifferentiated stage with buds in the
leaf bud state; the growth point is small and tightly wrapped in layers of bud scales. (B,F) Initial differentiation stage with the top of the growth point bulges gradually
and the bud scales become loose. (C,G) Calyx differentiation stage with calyx primordia gradually becoming elongate and bent inward. (D,H) Petal differentiation
stage with petal primordium as a small second lobe at the bottom of the calyx primordium, wrapped in the calyx primordium and elongate with the calyx primordium.
(E,I) Stamen differentiation stage with stamen primordium as the third lobe inside, forming a number of protuberances. (J,K) Pistil differentiation stage with pistil
primordium bulges in the middle of the bottom and continued elongation. (L,P) Initiation of ovary and differentiation of sporogenous tissue. (M,Q) Initiation of ovule
and formation of microspore mother cell. (N,R) Differentiation of ovule. (S) Formation of pollen grain. (O) Flower bud of LF. (T) Bloom of NF.
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Candidate regions were defined as ±10 kilobase (kb) on
either side of significant association peaks. Exons and introns
of the candidate genes were drawn with Illustrator for
Biological Sequences (IBS, version 1.0.3) (Liu et al., 2015) using
genomic DNA sequences.

Total RNA Extraction, lncRNA and small
RNA Library Construction, and
Sequencing
The total RNA was extracted from floral buds of the LF
and NF types obtained on July 10, 2017 using a ethanol
precipitation protocol and a CTAB-PBIOZOL reagent. The
results were qualified and then quantified using a NanoDrop
and an Agilent 2100 (Thermo Fisher Scientific, Waltham,
MA, United States) bioanalyzer. Two biological replicates were
analyzed for each RNA sample.

For the long non-coding RNA library, total RNA was treated
with Ribo-ZeroTM Magnetic Kit (plant leaf) (epicenter) to deplete
rRNA. The transcription was reversed, and the adapters were
ligated. The qualified libraries were sequenced pair end on the
Hiseq X-Ten (BGI-Shenzhen, Shenzhen, China) platform. After
sequencing, clean reads were obtained by removing low-quality
reads and reads, with the number of N bases accounting for
more than 10%. The clean reads generated by high-throughput
sequencing were mapped on the P. sibirica genome using the
HISAT2 software (version 2.0.4) (Kim et al., 2015), and the reads
mapped on the genome were assembled into transcripts using
the StringTie software (version 1.0.4) (Pertea et al., 2015). The
raw data of mRNA sequencing were submitted to the Genome
Sequence Archive (PRJCA001987).

Small RNA library was prepared with 1 µg total RNA for each
sample. Total RNA was purified by electrophoretic separation
on a 15% urea denaturing polyacrylamide gel electrophoresis

(PAGE) gel, and small RNA regions corresponding to the 18–
30 nt bands in the marker lane (14–30 ssRNA Ladder Marker,
TAKARA, Dalian, China) were excised and recovered. The
adaptors were then ligated, transcribed into cDNA, and purified.
Final ligation PCR products were sequenced using the BGISEQ-
500 platform (BGI-Shenzhen, Shenzhen, China). The small RNA
sequencing raw data were submitted to the Genome Sequence
Archive (PRJCA006925).

Functional Annotation and Expression
Calculation
The CPC (Kong et al., 2007), txCdsPredict, and CNCI (Sun et al.,
2013) software, and Pfam database (Finn et al., 2016) were used
to predict the coding ability of the transcript and distinguish
between mRNA and lncRNA. The transcripts were then aligned
to the reference sequence with Bowtie2 (Langmead and Salzberg,
2012), and expression levels were calculated using fragments per
kilobase per million (FPKM) with RSEM (Li and Dewey, 2011).
The transcripts were subsequently aligned against the Kyoto
Encyclopedia of Genes (KEGG) database (Kanehisa et al., 2007)
and Gene ontology (GO) database (Ye et al., 2006). miRA (Evers
et al., 2015) was used to predict novel miRNAs by exploring the
characteristic hairpin structure of miRNA precursor. The small
RNA expression levels were calculated by transcripts per kilobase
million (TPM; ’t Hoen et al., 2008).

Significant differentially expressed genes, including mRNAs
and lncRNAs, were selected with | Log2Ratio| ≥ 1.00 and
adjusted p-value ≤ 0.001 by DEG-seq (Storey, 2003; Wang
et al., 2010). The P values were corrected using the Benjamini–
Hochberg method. DESeq2 (Love et al., 2014) with the default
threshold “| Log2Ratio| ≥ 1.00 and adjusted p-value ≤ 0.1”
was used to detected significant differentially expressed miRNAs.
Heatmaps were visualized with TBtools (version 1.098661)
(Chen et al., 2018a).

FIGURE 2 | GWAS of flowering time in Prunus sibirica. (A) Manhattan and quantile–quantile (QQ) plots for GWAS. (B) Gene structures of candidate genes. Brown
box indicated G-box element in the promoter of PsTPPF. Rounded rectangle and triangle represented exons and the last exons, respectively.
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Target Gene Prediction of lncRNAs and
miRNAs
The function of lncRNAs is mainly realized by their action on
target genes in a cis or trans relationship, and cis regulation
of lncRNAs and their target mRNAs are based on a location
relationship. Trans-regulation was predicted here by calculating
the binding energy. In addition, the two correlation coefficients
of lncRNA and mRNA were calculated using Spearman and
Pearson (Spearman_COR ≥ 0.6 and Pearson_COR ≥ 0.6).A cis
relationship was defined as lncRNA within 10 K upstream of
mRNA, or within 20 kb downstream of mRNA. If the lncRNA
and mRNA binding energy was beyond this range, RNAPlex
(Tafer and Hofacker, 2008) was used to analyze the binding
energy, and if it was found to be less than −30, it was defined
as a trans relationship.

psRobot (Wu et al., 2012), TAPIR (Bonnet et al., 2010),
and TargetFinder (Fahlgren and Carrington, 2010) were used to
predict the plant targets of the miRNA. Furthermore, GO and
KEGG pathway enrichment analyses of the target genes were
annotated based on the GO database (Ye et al., 2006) and KEGG
database (Kanehisa et al., 2007).

Identification of ceRNAs Involved in
Tre6P Signaling Pathway
A hypergeometric distribution model was used to test whether
the DE Tre6P signaling pathway genes shared a significant
number of miRNA binding sites with DE lncRNAs. The LF-
related ceRNAs were selected according to the following criteria:
(1) the DE floral transition pathway coding-genes, lncRNAs,
and miRNAs were significantly differentially expressed; (2) the
DE floral transition pathway coding-genes shared the same DE
miRNA with ceRNA (mRNA/lncRNA) and with the same MRE;
and (3) the expression levels of the floral transition pathway
coding-genes and predicted ceRNAs were opposite to those of
the shared miRNA. The ceRNA network was presented using
Cytoscape (version 3.8.0) (Shannon et al., 2003).

Determining Tre6P Content
Trehalose-6-phosphate (Tre6P) was extracted from the frozen
pulverized floral bud tissues of eight randomly selected accessions
(four NF and four LF types, 0.1–0.5 g fresh weight), and
three biological replicates were performed. Tissue homogenates
were extracted for 30 min of ice-cold PBS (pH 7.4) and
centrifuged for 15 min at 3,000 × g and 4◦C. Supernatants
were then used for detection of Tre6P content using Plant
Trehalose-6-Phosphate (T6P) ELISA Kit (Yan Qi Biological
Technology, Shanghai, China). The optical density (OD) of
the samples and six standard products was measured at the
wavelength of 450 nm with BioTek’s Gen5TM Microplate Readers
(BioTek, Winooski, VT, United States) and calculated based on
the standard curve (with a correlation coefficient R2

≥ 0.99),
which was established using the concentrations and ODs of
six standard products (0, 7.5, 15, 30, 60, and 120 pg/ml). The
Non-linear Curve Fit was established to build the standard
curve using the Origin Pro 2021 software (Supplementary
Figure 1). Student’s t-test was performed in analysis and

conducted using the Origin Pro 2021 software. Data are given
as the means ± standard deviation (SD) of three independent
biological replicates.

Quantitative Real-Time PCR Validation of
lncRNAs and mRNAs
Total RNA was extracted using GenePure Plus Plantpoly
RNA Kit (rich in polysaccharides and polyphenols) (CodonX
Biotechnology, Beijing, China). One microgram of DNA-free
RNA was transcribed into first-strand cDNA using All-in-
One First-Strand Synthesis MasterMix (with dsDNase) (CodonX
Biotechnology, Beijing, China). qRT-PCR was conducted with a
Roche LightCyler 480 instrument using 2 × SYBR Green qPCR
Premix (Universal) (CodonX Biotechnology, Beijing, China).
Primers for target genes were designed using Primer 3.0.1 The
actin gene was used as an internal reference to normalize the qRT-
PCR data. All the primers are listed in Supplementary Table 2.
Each reaction was performed in triplicate, and the data from real-
time PCR amplification were analyzed using the 2−11Ct method.
Student’s t-test was performed in the analysis and conducted
using the Origin Pro 2021 software. The data are presented
as the means ± standard deviation (SD) of three independent
biological replicates.

RESULTS

Morphological Comparisons Between NF
and LF Types
Both NF and LF type accessions were selected to explore the
process of floral bud differentiation. The FBD of LF types
was found to be delay by 7–15 days compared to that of NF
types (Supplementary Table 1). Histological analysis showed
that floral bud differentiation was divided into six floral bud
differentiation stages, namely, the undifferentiated (Figure 1A),
initial differentiation (Figures 1B,F), sepal differentiation
(Figures 1C,G), petal differentiation (Figures 1D,H), stamen
differentiation (Figures 1E,I), and pistil differentiation
(Figures 1J,K) stages, and four reproductive differentiation
stages (Figures 1L–N,P–S). Compared with the NF types, the
initial differentiation stage was exhibited at least 6 days later in
the LF types (Figures 1B,F). All of the floral bud differentiation
stages were delayed in the LF types, and this resulted in the
LF types remaining in the bud stage while the NF group was
blooming (Figures 1O,T).

Genome-Wide Association Study of
Flowering Time
To better identify the candidate genes associated with flowering
time, we conducted a GWAS for this trait in P. sibirica.
The phenotypes of 66 accessions were classified into NF
(43) and LF (23) types base on the FBD from the 3 years
in succession. A total of 2,598,398 high-quality SNPs were
identified by mapping against the P. sibirica reference genome,

1https://primer3.org/
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and these were used in the subsequent analyses. Principal
component analysis (PCA) showed two differentiated clusters,
which were consistent with the classifications from the FBD
(Supplementary Figure 2). The GWAS on flowering time was
conducted using an MLM, and this identified 16 SNPs with
12 predicted genes for the flowering time (Figure 2A), which
were located on chromosomes 1, 5, and 6 (Supplementary
Table 3). Among the SNPs, seven with three predicted
genes (PaF106G0500018905.01, PaF106G0500018906.01, and

PaF106G0600023738.01) were located in the gene region
(Figure 2 and Supplementary Table 3), including five SNPs on
chromosome 5 (Chr. 5: 3872427 bp,3874628 bp, 3874678 bp,
3874988 bp, and 3875280 bp) and two SNPs on chromosome
6 (Chr. 6: 18107193 bp and 18107219 bp). All the seven SNPs
were highly associated with the phenotype of flowering time,
which could be explained by 86.36–93.94% of the phenotypic
variance (Supplementary Table 4). The predicted functions
of PaF106G0500018906.01 and PaF106G0600023738.01 were

FIGURE 3 | The expression profiles of genes implicated in floral transition from six pathways. The four boxes (left to right) in one row of each heat map correspond to
the expression levels in NF_1, NF_2, LF_1, and LF_2, respectively. TPS, trehalose-6-phosphate synthase, TPP, trehalose-6-phosphate phosphatase, CDF3, cycling
dof factor 3; COP1, constitutively photomorphogenic 1; CO3, CONSTANS like 3; GAI, GA insensitive; ARP6, actin related protein 6; PIF4, phytochrome interacting
factor 4; FRI, FRIGIDA; VRN1, vernalization 1; AGL24, agamous like24; AP1, apetala1, LFY, LEAFY; TFL1, terminal flower 1. Full and dashed lines indicated the
directly and indirectly acting, respectively. Arrows meant positive relationships and stubs meant the opposite relationships.
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associated with ubiquitin-conjugating enzyme E2 (UBC) and
trehalose-6-phosphate phosphatase (TPP), respectively, whereas
the predicted function of PaF106G0500018905.01 was unknown.
In particular, an SNP mutation (Chr. 6: 18107219 bp)
was found to be located on the promoter of PsTPPF
(PaF106G0600023738.01), which resulted in a point mutation
in the third nucleotide of a G-box core sequence (TACGTG),
suggesting that the mutated site might hinder the binding of
G-box interaction proteins, thus affecting the transcriptional
expression PsTPPF. These results will be valuable for the
development of molecular markers for late flower breeding in
P. sibirica.

Analysis of lncRNA and mRNA in NF and
LF Types
To comprehensively understand the regulatory mechanism
associated with flowering time, whole-transcriptome RNA
sequencing of P. sibirica floral buds was conducted, and
515,976,068 raw reads were obtained. After filtering of adaptor
sequences and low-quality reads, over 97% clean reads remained
(Supplementary Table 5). Approximately 61% of these clean data
were mapped to the P. sibirica genome (Supplementary Table 5).
A total of 28,545 mRNAs, including 24,518 known and
4,027 novel ones, and 3,423 novel lncRNAs were identified
(Supplementary Table 6). We found that most of the lncRNAs
contained only one exon, and that most of the mRNAs have two
exons (Supplementary Figure 3A). The length of the lncRNAs
was concentrated at 500 bp, while the mRNAs were 500–1,000 bp
in length (Supplementary Figure 3B). We also found that most
of the lncRNAs and mRNAs contained only one transcript
(Supplementary Figure 3C).

We analyzed the expression profiles of the differential
expression (DE) mRNAs and lncRNAs. A total of 6,110
DEmRNAs and 1,351 DE lncRNAs were identified. Of these,
3,017 known mRNAs, 586 novel mRNAs, and 731 lncRNAs
were upregulated. In contrast, 2,038 known mRNAs, 469 novel
mRNAs, and 620 lncRNAs were downregulated (Supplementary
Figure 4). Notably, PsTPPF was highly expressed in LF than NF
types; it was a candidate gene identified by GWAS (Figure 3).

A DE lncRNA-DE mRNA network was constructed according
to location relationship and binding sequence. A total of
9,345 pairs of cis-regulatory (Supplementary Table 7) and
1,871 pairs of trans-regulatory genes were identified; of
which, 2,723 pairs (1,829 mRNAs and 1,054 lncRNAs) in cis-
regulatory relationship and 633 pairs (38 mRNAs and 280
lncRNAs) in trans-regulatory were found to be DE mRNAs–
DE lncRNA interactions. GO and KEGG pathway analyses
of the putative target DE mRNAs were performed to better
understand the potential function of the DE lncRNAs. The
GO analysis showed that 852, 1,119, and 871 genes enriched
the biological process (BP), cellular component (CC), and
molecular function (MF) categories, respectively. Cellular process
(GO: 0009987) in the BP category, membrane (GO:0016020)
in the CC category, and binding (GO:0005488) in the
MFs category were the top subcategories of each category
(Supplementary Figure 5A). The most enriched 20 KEGG

pathways of the target mRNAs were analyzed, and the most
significant enriched pathways were the biosynthesis of secondary
metabolites (ko:01110), plant hormone signal transduction
(ko: 04075), and starch and sucrose metabolism (ko: 00500)
(Supplementary Figure 5B).

Analysis of sRNA in NF and LF Types
A total of 116,046,350 raw reads were generated from the
small RNA libraries (Supplementary Table 8). After filtering
for adaptor sequences and low-quality reads, 111,180,013 clean
reads remained (Supplementary Table 8), and over 81%
of the clean tags were mapped to the reference genome
(Supplementary Table 8). We identified 241 conserved miRNAs
(Supplementary Figure 6A) and 317 predicted miRNAs
(Supplementary Figure 6B). The lengths of the conserved
miRNAs ranged from 18 to 24 nucleotides (nt), and 21 nt
miRNAs (142) were the most abundant (Supplementary
Figure 7A). The lengths of the predicted miRNAs ranged from
19 to 30 nt, and 30 nt miRNAs (95) were the most abundant
(Supplementary Figure 7B).

We identified 148 DE miRNAs in LF vs. NF types,
including 80 upregulated miRNAs and 68 downregulated
miRNAs (Supplementary Figure 8). Among these miRNAs,
352 DE miRNA–DE mRNA interactions, including 37 DE
miRNA and 310 DE mRNAs were identified according to
the negative regulation between the DE miRNAs and the
corresponding DE mRNAs. miR482d-5p_4 was the most
abundant miRNA, followed by miR167d, miR395a-3p, and
miR396a (Supplementary Figure 9). To understand the potential
functions of the DE miRNAs, we conducted GO and KEGG
pathway analyses of the putative target DE mRNAs. The GO
analysis showed that 187, 404, and 304 genes could be categorized
as BP, CC, and MF categories, respectively. The most enriched
subcategories of each category were as follows: cellular process
(GO:0009987) in the BP category, membrane part (GO:0044425),
membrane (GO:0016020) in the CC category, and catalytic
activity (GO:0003824) in the MF category (Supplementary
Figure 10A). We analyzed the enriched 20 KEGG pathways
of the target mRNAs, and the top two significant enriched
pathways were found to be metabolic pathways (ko:01100)
and the biosynthesis of secondary metabolites (ko:01110)
(Supplementary Figure 10B).

Identification of DE mRNAs and Their
Corresponding lncRNAs and miRNAs
Involved in Floral Transition Pathways
To understand the relationship between lncRNAs and miRNAs,
and flowering time, we further selected 24 DE mRNAs by blasting
with known floral transition genes (Figure 3 and Supplementary
Table 9), which involved in the photoperiod, vernalization, GA,
temperature, and Tre6P signaling pathways. We analyzed the
24 mRNAs and their corresponding miRNAs and lncRNAs.
Ten lncRNA–DE mRNA pairs, containing ten lncRNAs and
six DE mRNAs, were selected to construct the lncRNA–mRNA
network (Figure 4A). Specially and specifically, three DE
lncRNA-DE mRNA pairs, COP1 (PaF106G0400018289.01),
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FIGURE 4 | Interaction networks of differential expression (DE) floral transition genes with (A) lncRNAs and (B) miRNAs. Ellipse, hexagon, and round rectangle
indicated the mRNA, lncRNA, and miRNA, respectively. Arbitrary shape with thick border represented differentially expressed.

CCLR (LTCONS_00031803), CO3 (MXLOC_025744), COCLR1
(LTCONS_00046726), CO3 (MXLOC_025744), and COCLR2
(LTCONS_00046731) were positively regulated. In addition,

we identified 12 miRNA-mRNA interactions of 24 DE mRNAs
(Figure 4B). Notably, miR167h and its target mRNA, PsTPS1
(PaF106G0100001132.01), encoding trehalose-6-phosphate
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synthase, were predicted, and these have been previously
identified as being involved in the Tre6P signaling pathway of
floral transition (Schluepmann et al., 2003).

Regulation of LF by the Tre6P Signaling
Pathway
There are three genes associated with the LF types that
were obtained from GWAS: PaF106G0500018905.01 and
PaF106G0500018906.01 were not expressed in either LF or NF
types, but PsTPPF was differentially expressed in LF vs. NF types.
TPS and TPP can affect floral transition by controlling Tre6P
content (Wahl et al., 2013), which is the only product of the
enzymatic synthesis reaction of TPS and the only substrate of
the enzymatic degradation reaction by TPP. In RNA-seq, PsTPS1
was expressed at low levels in the LF types, whereas PsTPPF
was highly expressed in the LF types(Figure 5A). Furthermore,
we analyzed the expression profiles of PsTPS1 and PsTPPF in
the two types of groups to confirm the result by qRT-PCR, and
the expression patterns were found to be consistent with the
sequencing results. This suggested that the expression levels
of PsTPS1 and PsTPPF may be associated with flowering time
in P. sibirica (Figures 5B,C). We further found that the Tre6P
content in most of the LF-type floral buds was lower than that
in the NF types, which indicates that the decrease in Tre6P
content in LF was caused by the expression levels of PsTPS1 and
PsTPPF (Figure 5D).

Construction of ceRNA Networks of
Tre6P Signaling Pathway
Two candidate DE mRNAs involved in the Tre6P signaling
pathway, PsTPS1 and PsTPPF, were identified with an integrative
strategy of combining GWAS and whole-transcriptome RNA
sequencing analysis. To better understand the gene regulatory
network of the LF types, putative DE lncRNA–DE miRNA–
DE mRNAs in ceRNA networks were identified. According
to the ceRNA hypothesis, the expression levels of lncRNAs
and miRNAs, and mRNAs and miRNAs should show negative
correlations, and the lncRNAs and mRNAs should show a
positive correlation (Tay et al., 2014). We identified a ceRNA
network consisting of one mRNA (PsTPS1), one miRNA
(miR167h, a miR167 family member), and one lncRNA (TCLR)
(Figure 5A). In the constructed ceRNA network, the expression
profiles of PsTPS1 and TCLR were negatively correlated with
miR167h. In addition, there was not a ceRNA network of PsTPPF.

DISCUSSION

When flowering in early spring, the yield of P. sibirica is reduced
when temperatures are low (Dennis, 1979), and promoting the
LF trait has become an important breeding objective. In this
study, we comprehensive investigated the characterization of
floral bud differentiation and found that compared with the
NF types, the delay in the initial differentiation stage resulted
in delay flowering time in the LF types. Many floral transition
genes of A. thaliana, Vitis vinifera, and M. domestica have been
found to affect the flowering time of transgenic plants at the

time of floral transition (Boss et al., 2006; Tränkner et al., 2010;
Wahl et al., 2013).

Floral transition time is one of the factors affecting the
flowering time of plants (Blázquez et al., 2001), and it is regulated
by a complex network composed of multiple genes that affect
flowering time in response to exogenous environmental and
endogenous influences (Blázquez et al., 2001). The results of
this study show that 24 DE mRNAs of a regulatory network
from both environmental and endogenous signals relate to floral
transition and likely control the LF trait. Our results show that
COP1and CO3 act on photoperiod pathway, and these have been
previously reported to affect the flowering time in A. thaliana
and Oryza sativa (Jang et al., 2008; Kim et al., 2008). We also
found that COP1 and CO3 interacted with three new lncRNAs
(CCLR, COCLR1, and COCLR2). The expression patterns of PIF4
and ARP6 in regulating LF are in accordance with those of
earlier studies conducted on A. thaliana, which found PIF4 and
ARP6 controlling flowering time by activating the expression
of FT and FLC, respectively, in response to warm temperatures
(Deal et al., 2005; Kumar et al., 2012). Our results indicate that
environmental signals, such as photoperiod and temperature,
may be associated with LF in P. sibirica. Integration genes, such
as TFL1, in Arabis alpina (Wang et al., 2011), Populus (Mohamed
et al., 2010), M. domestica (Kotoda et al., 2006), Rosa, and
Fragaria vesca (Iwata et al., 2012) have been found to act as a
photoperiod-regulated floral repressor. In this study, TFL1 was
found to be differentially expressed in NF vs. LF types, and this
result is supported by those of previous studies. Furthermore,
phytohormone metabolic and signaling pathways have previously
been proposed as flowering regulators (Ohto et al., 2001; Davis,
2009). For example, GA2OXs and GAI have been reported to
control the flowering time of Kalanchoë blossfeldiana, Petunia
hybrida, and A. thaliana (Wilson and Somerville, 1995; Gargul
et al., 2013) through GA metabolic and signal pathways, and
FsPP2Cs negatively regulated the flowering time in A. thaliana in
the ABA signal pathway (Reyes et al., 2006). These genes were also
differentially expressed in NF vs. LF types in our study, and they
likely play important roles in controlling the LF trait of P. sibirica.
In summary, the genes identified here provide information about
the regulatory pathways of floral transition, and can be used as
genetic resources for developing LF varieties of P. sibirica.

Previous studies have shown a correlation between sugar
content and floral transition in A. thaliana (Ohto et al., 2001;
Ortiz-Marchena et al., 2015), M. domestica (Li et al., 2018), and
R. chinensis (Guo et al., 2017). Tre6P is an intermediate product of
starch and sucrose metabolism, and it acts both as energy source
and signal molecule of flowering time (Schluepmann et al., 2003;
Fichtner and Lunn, 2021). Moreover, Tre6P content is regulated
by the expression of TPS and TPP in A. thaliana (Schluepmann
et al., 2003; Wahl et al., 2013). Two candidate genes (PsTPPF
and PsTPS1) involved in Tre6P signaling pathway were found by
GWAS and the whole-transcriptome RNA sequencing analysis in
our study, and their expression levels showed inhibitory effects
to the content level of Tre6P. However, as floral transition is
controlled by an intricate genetic network, it is considered that
the other 22 floral transition genes may also regulate the LF trait
together with PsTPPF and PsTPS1 in the LF types of P. sibirica.
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FIGURE 5 | Trehalose-6-phosphate (Tre6P) signaling pathways regulation mechanism. Relative transcript levels of (A) PsTPPF and (B) PsTPS1, and content of (C)
Tre6P in eight randomly selected accessions. (D) CeRNA of Tre6P signaling pathway. Trehalose-6-phosphate synthase (TPS) catalyzes glucose-6-phosphate (Glc6P)
and UDP-glucose (UDPG) into Tre6P, and then Tre6P is dephosphorylated into trehalose by trehalose-6-phosphate phosphatase (TPP). PsTPS1 was
down-regulated by competitively binding miR167h with TCLR. The histograms were visualized using FPKM of mRNA and lncRNA and TPM of miRNA. H2O: Water.
PA, Phosphoric acid; TRE, Trehalose; *, significant differences p < 0.05.

The ceRNA regulatory network has not been widely
constructed in plants, and the first ceRNA interaction of pho2-
induced phosphate starvation1 (IPS1)-miR399 was reported in
A. thaliana (Franco-Zorrilla et al., 2007). Therefore, to explore
the ceRNA network and functions of the important candidate
genes associated with LF in P. sibirica, we conducted an
integrated analysis of the ceRNAs of PsTPPF and PsTPS1 in
the Tre6P signaling pathway. We identified a ceRNA network
composed of one interaction ceRNA, one lncRNA (TCLR), and

one mRNA (PsTPS1), which shared with one miRNA (miR167h).
We hypothesize that the low expression of PsTPS1 is negatively
regulated by TCLR competitively binding to miR167h, and that
the high expression of PsTPPF is caused by a single SNP located
in its promoter, which might result in the LF trait in P. sibirica.
Studies have shown that miR167a-d played important roles
in floral organ development in A. thaliana (Wu et al., 2006).
However. miR167h may be related with LF through the Tre6P
signaling pathway in P. sibirica.
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We proposed that a new regulatory flowering gene (PsTPPF)
is related to LF in P. sibirica, and we constructed a new
ceRNA network (PsTPS1, TCLR, and miR167h) for the LF
types of P. sibirica. However, it is also considered that the
other 22 differentially expressed floral transition genes with
their interactional lncRNAs and miRNAs may also be involved
in the regulation of LF of P. sibirica, and further studies are,
thus, required. This study identified the molecular regulation
mechanism associated with LF in P. sibirica, and the results can
be used as a valuable genetic resource for breeding LF varieties of
P. sibirica.
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