
fpls-12-802802 January 10, 2022 Time: 13:43 # 1

REVIEW
published: 14 January 2022

doi: 10.3389/fpls.2021.802802

Edited by:
Pei Xu,

China Jiliang University, China

Reviewed by:
Chong Cai,

China Jiliang University, China
Rakesh Srivastava,

National Botanical Research Institute
(CSIR), India

*Correspondence:
Cai-Zhong Jiang

cjiang@ucdavis.edu;
caizhong.jiang@usda.gov

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Crop and Product Physiology,
a section of the journal

Frontiers in Plant Science

Received: 27 October 2021
Accepted: 20 December 2021

Published: 14 January 2022

Citation:
Wang H, Zhang Y, Norris A and

Jiang C-Z (2022) S1-bZIP
Transcription Factors Play Important

Roles in the Regulation of Fruit Quality
and Stress Response.

Front. Plant Sci. 12:802802.
doi: 10.3389/fpls.2021.802802

S1-bZIP Transcription Factors Play
Important Roles in the Regulation of
Fruit Quality and Stress Response
Hong Wang1,2†, Yunting Zhang2,3†, Ayla Norris4 and Cai-Zhong Jiang2,4*

1 Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural
Sciences, Nanjing, China, 2 Department of Plant Sciences, University of California at Davis, Davis, CA, United States,
3 College of Horticulture, Sichuan Agricultural University, Chengdu, China, 4 Crops Pathology and Genetics Research Unit,
United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States

Sugar metabolism not only determines fruit sweetness and quality but also acts as
signaling molecules to substantially connect with other primary metabolic processes
and, therefore, modulates plant growth and development, fruit ripening, and stress
response. The basic region/leucine zipper motif (bZIP) transcription factor family is
ubiquitous in eukaryotes and plays a diverse array of biological functions in plants.
Among the bZIP family members, the smallest bZIP subgroup, S1-bZIP, is a unique
one, due to the conserved upstream open reading frames (uORFs) in the 5′ leader
region of their mRNA. The translated small peptides from these uORFs are suggested
to mediate Sucrose-Induced Repression of Translation (SIRT), an important mechanism
to maintain sucrose homeostasis in plants. Here, we review recent research on the
evolution, sequence features, and biological functions of this bZIP subgroup. S1-
bZIPs play important roles in fruit quality, abiotic and biotic stress responses, plant
growth and development, and other metabolite biosynthesis by acting as signaling
hubs through dimerization with the subgroup C-bZIPs and other cofactors like SnRK1
to coordinate the expression of downstream genes. Direction for further research and
genetic engineering of S1-bZIPs in plants is suggested for the improvement of quality
and safety traits of fruit.

Keywords: uORF, amino acid metabolism, sugar metabolism, biotic and abiotic stress, plant growth and
development

INTRODUCTION

Plants have developed diverse mechanisms to regulate their biological and metabolic processes via
transcription factor (TF) regulatory networks (Riechmann et al., 2000). Among the TF families,
the basic leucine zipper (bZIP) family is present in all eukaryotes and is one of the largest
and most diverse TF groups in higher plants. There are about four times more bZIP genes in
the Arabidopsis genome than in the genomes of other model organisms such as Saccharomyces
cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster (Riechmann et al., 2000). Large
numbers of bZIP TF family members have been found in many plant species including rice
(Nijhawan et al., 2008), maize (Wei et al., 2012), tomato (Li D. et al., 2015), common wheat (Li
X. et al., 2015), sorghum (Wang et al., 2011), soybean (Liao et al., 2008), banana (Hu et al., 2016a),
cassava (Hu et al., 2016b), grape (Liu J. et al., 2014), peach (Wang et al., 2015), strawberry (Wang
et al., 2015; Zhang et al., 2022), apple (Wang et al., 2015; Li et al., 2016), rapeseed (Zhou et al., 2017),
radish (Fan et al., 2019), cucumber (Baloglu et al., 2014), tea plant (Xue et al., 2018), sweet potato
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(Yang Y. et al., 2019), watermelon/melon (Unel et al., 2019),
Chinese jujube (Zhang et al., 2020a), pepper (Gai et al., 2020),
Chinese pear (Manzoor et al., 2021), poplar (Zhao et al., 2021),
quinoa (Li et al., 2020) and plum (Li et al., 2021).

The bZIP family is phylogenetically categorized into different
groups, with different species having various members of
homologs. For example, the Arabidopsis AtbZIP family members
were systematically classified into 10 groups (A–I and S) based
on conserved motifs (Jakoby et al., 2002). Subsequently, a
more complete classification was expanded into 13 groups,
designated as A-J, M, and S (Corrêa et al., 2008). The tomato
SlbZIPs were classified as nine clades (Li D. et al., 2015).
The cucumber CsbZIPs and sorghum SbbZIPs were separately
categorized into six and seven groups (Wang et al., 2011;
Baloglu et al., 2014). The bZIP family in both rice and maize
has 11 groups which are the same as castor bean (Nijhawan
et al., 2008; Wei et al., 2012; Jin et al., 2014). The plum
PmbZIP proteins were divided into 12 groups (Li et al., 2021).
Chinese pear PbbZIPs were categorized into 13 groups (Manzoor
et al., 2021). Several interspecies clustering studies indicate
that the S group found in Arabidopsis has especially high
homology across different species (Li D. et al., 2015; Li et al.,
2020; Manzoor et al., 2021), although some clades might be
specific to Arabidopsis compared to peach, strawberry, and apple
(Wang et al., 2015).

These classifications, phylogeny, and homology analyses
define the possible biological roles of bZIPs in green plant
evolution (Corrêa et al., 2008). Basic leucine zipper TFs
orchestrate a diverse array of functions in multiple biological
processes including flower development (Chuang et al., 1999;
Walsh and Freeling, 1999; Strathmann et al., 2001; Abe et al.,
2005; Wigge et al., 2005; Muszynski et al., 2006; Romera-Branchat
et al., 2020) and pollen development (Gibalová et al., 2009; Iven
et al., 2010), seed maturation (Izawa et al., 1994; Toh et al., 2012;
Zinsmeister et al., 2016; Jain et al., 2018), senescence (Smykowski
et al., 2015), light signaling (Chen et al., 2013; Abbas et al.,
2014; Xu, 2020), anthocyanin and chlorophyll biosynthesis (An
et al., 2017; Wang et al., 2020), nutrient signaling (Dröge-Laser
and Weiste, 2018; Pedrotti et al., 2018; Yang Z. et al., 2019),
hormone signaling such as salicylic acid, ABA, ethylene, auxin,
and cytokinin (Singh et al., 2002; Li et al., 2011; Weiste and
Dröge-Laser, 2014; Zong et al., 2016; Xu et al., 2018; Lv et al.,
2019; Srivastava et al., 2019), sugar signaling (Kang et al., 2010;
Ma et al., 2011; Thalor et al., 2012; Sagor et al., 2016), and
abiotic/biotic stress signaling (Tsugama et al., 2012, 2016; Alves
et al., 2013; Zong et al., 2016; Sun et al., 2017; Li et al., 2019; Yang
J. et al., 2019; Carianopol et al., 2020) in plants.

Group S is the largest bZIP subgroup in several species such
as Arabidopsis (Jakoby et al., 2002) and safflower (Li et al., 2020)
and comprises three to four even smaller subgroups. In this
review, we focus on the well-studied S1-bZIP subgroup, whose
members contain unique conserved upstream open reading
frames (uORFs) in the 5′ region of their transcripts and play
important regulatory roles in many metabolic processes relating
to fruit quality and stress responses. Our review aims to
provide perspectives for further surveying the biological function,
exploring regulatory mechanisms, and genome engineering the

S1-bZIPs to obtain desirable traits for quality improvement in
horticultural plants.

CLASSIFICATION AND STRUCTURE OF
S1-bZIPs

Of the AtbZIPs, the 17 members of the S group are further
separated into three subgroups based on homology: S1, S2,
and S3 (Ehlert et al., 2006). The S1 subgroup (S1-bZIP) in
Arabidopsis contains five members: AtbZIP1, −2, −11, −44,
and −53. Recent studies indicate that other species, including
many horticultural plants, also have multiple members of the S1-
bZIP subgroup (Figure 1A and Supplementary Table 1). Like
other bZIP members, those in the S1 subgroup are characterized
by a conserved bZIP domain, composed of two functionally
distinct motifs (a basic region and a leucine zipper) located
on a contiguous α-helix. The basic region of −18 amino
acids contains, sequentially, a nuclear localization signal and
an invariant N-x7-R/K-x9 motif for DNA binding. This motif
preferentially binds to the A-box, C-box, and G-box of target
promoters which contain DNA sequences with an ACGT core
(Jakoby et al., 2002; Dröge-Laser et al., 2018; Li et al., 2021). The
leucine zipper comprises a heptad repeat of leucines or other
numerous hydrophobic amino acids (L-x6-L-x6-L) (Figure 1B).
Compared to other groups, members of the S group include the
extraordinarily high number of eight hydrophobic amino acid
repeats (Ehlert et al., 2006; Dröge-Laser et al., 2018) (Figure 1B).
The two subunits form a zipper structure that binds DNA to form
dimers through interactions with the hydrophobic sides of the
helices (Jakoby et al., 2002). Of three S subgroups, only members
of the S1 subgroup show specific heterodimerization with C
group bZIP proteins (C-bZIPs), whereas weak homodimerization
within members of the S1 subgroup is detected (Ehlert et al., 2006;
Peviani et al., 2016). Phylogenetic analysis between S1 and C
group bZIPs from angiosperms, gymnosperms, mosses, and algae
suggests that the S1 and C groups evolved from a proto-S/C bZIP
in algae species that homodimerized, which has since diverged
into heterodimerizing pairs prior to the evolution of seeds plants
(Peviani et al., 2016).

UNIQUE UPSTREAM OPEN READING
FRAME STRUCTURE AND
TRANSLATIONAL REGULATION
MECHANISM OF S1-bZIPs

Besides their common structural features, S1-bZIPs are unique
in that they have an unusually long 5′-leader sequence in the
upstream region of the main open reading frame (mORF) of
the mRNA. This leader sequence contains several upstream open
reading frames (uORFs) that encode small peptides (Dröge-Laser
et al., 2018). Among those, the second uORF is conserved and
encodes a Sucrose Control peptide (SC-peptide) of 28 residues,
which regulates the translation of the mORF and reduces protein
expression through a mechanism known as Sucrose-Induced
Repression of Translation (SIRT), which contributes to sucrose
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FIGURE 1 | Phylogenetic analysis of S1-bZIPs in some species. (A) The phylogenetic tree was constructed by the neighbor-joining method (NJ) using MEGAx
software. The phylogenetic trees were drawn with EvoView at the following URL: https://www.evolgenius.info/evolview/. Colored dots represent members from
various species. The proteins were classified into six different clades. Each clade was assigned a different color according to their inclusion of each Arabidopsis
S1-bZIP member. (B) The predicted amino acid sequences encoded by the Arabidopsis S1 and C group bZIP mORFs are aligned with the S1 homologs from other
species using the multiple sequence alignment tools of ClustalW (Chenna et al., 2003) and the alignment results were displayed using Jalview (Waterhouse et al.,
2009). The addition of the Arabidopsis C-bZIP serves as an outgroup.
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FIGURE 2 | Full-length gene structure of the S1-bZIPs, and alignment of the highly conserved S1-bZIP uORFs encoding the sucrose control peptide (SC-peptide)
from some species. Conserved amino acids are depicted in color.

homeostasis in the cells (Wiese et al., 2004; Rahmani et al.,
2009). Here, we summarize uORFs of the S1-bZIP subgroup
from different horticultural plants, including banana (Hu et al.,

2016a), grape (Liu J. et al., 2014), apple (Wang et al., 2015),
peach (Wang et al., 2015), cucumber (Baloglu et al., 2014),
strawberry (Baloglu et al., 2014; Zhang et al., 2022), petunia
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FIGURE 3 | Multiple levels of regulation and biological function of S1-bZIPs. (A) Translation regulation of S1-bZIPs by SIRT. SIRT: Sucrose-induced repression of
translation. (B) Biological function and target genes regulated by S1-bZIP. The regulated target genes by S1-bZIP (white) or heterodimers of S1-bZIPs and C-bZIPs
(gray). Gene names: ASN1, ASPARAGINE SYNTHETASE 1; ProDH, Proline Dehydrogenase; TRE1, Trehalase 1; TPP5/-6, trehalose-phosphate phosphatase 5/-6;
SPP, sucrose-phosphatase; SPS1/-2, sucrose-phosphate synthase 1/-2; HXK1, hexokinase 1; DAHPS, 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase;
SK1, shikimate kinase 1; EPSPS, 5-enolpyruvylshikimate 3-phosphate synthase; CS, chorismate synthase; BCAT2, BRANCHED-CHAIN AMINO ACID
TRANSAMINASE2; TAT7, TYROSINE AMINOTRANSFERA- SE7; IPT5b, Isopentenyltransferase 5b; NHX1, Na+/H+exchanger 1; COR413-TM1, cold acclimation
protein; CBF1/-3, C-repeat/DRE binding factor 1/-3; ADA2b: transcriptional adapter ADA2b; IAA4-1/4-2/-3, INDOL-3-ACETIC ACID INDUCIBLE 4-1/4-2/-3; SHY2,
SHORT HYPOCOTYL 2; GH3.3, Indole-3-acetic acid-amido synthetase; NIN88, Defective invertase; 2S2, SEED STORAGE ALBUMIN; CRU3, CRUCIFERIN 3;
MAN7, endo-beta-mannase 7; P, phosphorylation.

(Sun et al., 2017), and white pear (Wu et al., 2013) (Figure 2 and
Supplementary Table 1).

The regulation of gene expression involves different layers,
including transcriptional and translational controls (van der
Horst et al., 2020). Compared with transcriptional regulation,
translational control allows more immediate responses to adjust
protein expression and reprogram metabolism upon cellular
signals or environmental stimuli (Jorgensen and Dorantes-
Acosta, 2012; Chen et al., 2020). The translation process
of mRNA includes four major steps: initiation, elongation,
termination, and ribosome re-initiation (van der Horst et al.,
2020). Translation initiation is the major step that determines
the rate of protein biosynthesis and is regulated by multiple
mechanisms (Sonenberg and Hinnebusch, 2009; Jackson et al.,
2010; Hinnebusch et al., 2016; Zhang et al., 2019; van der Horst
et al., 2020). uORFs have been suggested to play a critical role
in regulating the translation of the mORF (Morris and Geballe,
2000; Kochetov, 2008; Ruiz-Orera and Albà, 2019). uORFs of

S1-bZIPs are involved in the translational regulation in a SIRT
manner (Jorgensen and Dorantes-Acosta, 2012; von Arnim et al.,
2014). The SC-peptide encoded by the uORF in the 5′leader
region of AtbZIP11 is capable of repressing translation of the
subsequent mORF in the presence of sucrose (Rahmani et al.,
2009). High sucrose levels enhance ribosome stalling on the
uORF, which results in poor translation of the mORF (Rook
et al., 1998; Hummel et al., 2009; Peviani et al., 2016; Merchante
et al., 2017; van der Horst et al., 2020) (Figure 3A). The
members of the Arabidopsis S1-bZIP subfamily show similar
responses to sucrose. Translation of AtbZIP1, AtbZIP2, AtbZIP11,
AtbZIP44 and AtbZIP53 is downregulated by sucrose (Rook
et al., 1998; Price et al., 2004; Kang et al., 2010). Transgenic
seedlings with 35S:bZIP11 5′ leader::LUC show significantly
reduced luciferase activities when treated with sucrose while
those incubated in media lacking sucrose show two- to three-fold
higher luciferase activities (Rahmani et al., 2009). SIRT-mediating
S1-bZIP orthologs exist in all seed plants (Peviani et al., 2016).
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Previous research showed that amino acids such as serine,
leucine, and tyrosine in the conserved peptide of uORF are
essential for SIRT (Rahmani et al., 2009). However, it has been
shown that expressing the gymnosperm 5′uORF sequence, which
only contains the conserved leucine and tyrosine in Arabidopsis
cells efficiently mediates the translational repression of the LUC
reporter gene in response to sucrose (Peviani et al., 2016). This
study suggests that the SIRT mechanism most likely depends
on structural conformation, but not on recognition of specific
sequence motifs (Peviani et al., 2016). Recently, interesting
research conducted using gene-editing technology in strawberry
demonstrated that uORFs are involved in regulating protein
translation efficiency and sucrose content (Xing et al., 2020)
(Figure 3A). In the study, to manipulate the SC-uORF of
FvebZIPs1.1, the start codons of the uORF and the codons
encoding a conserved pair of amino acid arginine within the SC-
peptide were edited using the CRISPR/Cas9 system. Mutations
in the start codons and the conserved C-terminal region of the
SC-peptide significantly reduced translation of the SC-uORF.
This consequently enhanced the translation efficiency of the
downstream mORF. Seven novel alleles with C-to-T substitutions
and small deletions within the uORF were identified. To test
if phenotypic effects were additive in heterozygous and biallelic
plants, 4000 T1 seedlings were generated by crossing the biallelic
and homozygous T0 mutants to each other and to wild type.
35 novel genotypes were obtained in T1 and inherited in T2
generation. In comparison with wild-type fruits, the mutants had
significantly higher levels of fructose, glucose, and total sugar
contents, demonstrating that engineering the conserved SC-
uORF of FvebZIPs1.1 can increase the sugar content in strawberry
(Xing et al., 2020). In addition, the citric acid content was
slightly lower in the homozygous mutants than that in wild type.
A continuum of gradual increase of sugar contents was generated
in T1 by combining heterozygous, homozygous, and biallelic
mutants, and inherited in T2 generation by propagating stolons
of these T1 mutants, therefore confirming the transmissibility
of novel genotypes and phenotypes from T1 to T2 by asexual
propagation (Xing et al., 2020). Given that sugars can modulate
multiple growth and development processes, the agricultural
traits including leaf shapes, leaf areas, plant height, growth rates,
pollination, fruit size and fruit weight were further evaluated
in FvebZIPs1.1 uORF mutants. Remarkably, editing SC-uORF
does not severely impair plant growth. The agricultural traits
in FvebZIPs1.1 uORF mutants were similar to wild-type (Xing
et al., 2020), whereas impaired phenotypes and retarded growth
are observed in transgenic lines with the overexpression of
AtbZIP11, tbz17, and FvbZIP11 mORF (Ma et al., 2011; Thalor
et al., 2012; Zhang et al., 2022). Taken together, this suggests
a broad application of editing uORFs of S1-bZIPs for quality
improvement in horticultural plants.

S1-bZIPs AFFECT AMINO ACID
METABOLISM

Amino acids are not only involved in plant response to
stress but also influence fruit flavor (Keutgen and Pawelzik,

2008). For example, asparagine is present in almost all fruits
and determines fruit flavor and quality in a concentration-
dependent manner (Aisala et al., 2020). Glutamate is responsible
for “umami” or savory taste (Lindemann, 2001). Glycine,
alanine, serine, threonine, proline, glutamine, and lysine are
highly correlated with sweetness (Sagor et al., 2016), while
phenylalanine and tyrosine are bitter (Belitz et al., 2001).
The molecular taste receptor, found in humans and rodents,
responds to asparagine and aspartic acid (Nelson et al.,
2002). Asparagine is considered to serve as a nitrogen
storage molecule and synthesized at night under low-carbon
conditions (Lam et al., 1994; Hanson et al., 2008). Asparagine
and glutamate are synthesized from aspartate and glutamine
through ASPARAGINE SYNTHETASE1 (ASN) (Lam et al.,
1994; Hanson et al., 2008). A high sugar content represses
the expression of ASN and reduces asparagine content (Lam
et al., 1994). Likewise, proline levels change in response to
energy levels. PROLINE DEHYDROGENASE (ProDH) converts
proline to glutamate (Hayashi et al., 2000). Recent studies
demonstrate that S1-bZIPs directly regulate the expression
of ProDH and ASN1 via binding to the C-boxes, ACT
motifs (ACTCAT), and G-boxes in their promoters, thereby
influencing amino acid metabolism (Weltmeier et al., 2006;
Hanson et al., 2008; Dietrich et al., 2011). Overexpression of
tbz17 mORF in tobacco significantly induces the expression
of ASN, whereas silencing of tbz17 represses the expression
of ProDH and ASN (Thalor et al., 2012). One of the
target genes of AtbZIP53 is ProDH2 (Satoh et al., 2004).
Overexpression of SlbZIP1 and AtbZIP11 mORFs in the
transgenic tomato and Arabidopsis significantly up-regulates
the expression of ASN1 and ProDH2 and affects amino acid
contents (Hanson et al., 2008; Dietrich et al., 2011; Thalor
et al., 2012; Sagor et al., 2016). For example, overexpression
of SlbZIP1 increases the content of alanine, aspartic acid,
glutamate, serine, threonine, tyrosine, and total amino acid
content. Energy deprivation induces the expression of ASN1
and ProDH, which contributes to the recycling of amino
acids to mitigate deficits of carbon, nitrogen, and energy
(Dietrich et al., 2011). Many amino acid catabolism related
genes induced by AtbZIP11 are largely repressed by treatments
with sugar (Hanson et al., 2008). Moreover, under high-
sucrose conditions, the translation of AtbZIP11 is inhibited
via a uORF (Hanson et al., 2008; Yamashita et al., 2017).
These findings indicate that ASN1 and ProDH are ultimately
regulated in a sugar-dependent manner, with AtbZIP11 acting
as the link between sugar signaling and amino acid/nitrogen
metabolism (Hanson et al., 2008). Additionally, AtbZIP1
and AtbZIP53 are also involved in modulating amino acid
metabolism during stress responses (Baena-González et al., 2007;
Hartmann et al., 2015). In Arabidopsis, it has been demonstrated
that AtbZIP53 preferentially forms heterodimers with group
C-bZIP members like AtbZIP9, AtbZIP10, and AtbZIP25 for
controlling the gene expression of ASN1 and ProDH (Weltmeier
et al., 2006; Garg et al., 2019) (Figure 3B). However, the
interacting partners between the S1- and C-bZIPs are not
identified in many other crops and need to be investigated in
the future.
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S1-bZIPs AFFECT SUGAR METABOLISM

Overexpression of S1-bZIP mORFs induces sugar-related gene
expression and increases sugar content (Figure 3B). Previous
studies have shown that overexpression of tbz17 and SlbZIP1
mORF up-regulates the expression level of genes encoding
sucrose phosphate synthase (SPS) and sucrose phosphate
phosphatase (SPP), whereas silencing tbz17 down-regulates the
expression of these genes (Thalor et al., 2012). Knockout
and overexpression of AtbZIP1 affects sugar-responsive gene
expression (Kang et al., 2010). Furthermore, it has been
demonstrated that constitutive expression of the S1-bZIP1s
such as tbz17 and AtbZIP11 mORF significantly increases the
sucrose concentration in transgenic lines (Ma et al., 2011; Thalor
et al., 2012). Interestingly, the contents of glucose and fructose
were significantly increased and the citric acid content was
significantly decreased in transgenic plants with overexpression
AtbZIP11 (Ma et al., 2011). The induction of the AtbZIP11 mORF
also results in the up-regulation of genes associated with the
metabolism of trehalose, myo-inositol and raffinose. Transgenic
Arabidopsis lines overexpressing AtbZIP11 showed decreased
contents of the trehalose-6-phosphate (T6P), limiting the plant’s
ability to use available sugars, thereby slowing plant growth.
This growth inhibition in Arabidopsis cannot be reversed by the
exogenous application of metabolizable sugars such as glucose
and sucrose (Ma et al., 2011). The use of the fruit-specific E8
promoter to drive overexpression of SlbZIP1 increases the sugar
contents in tomato while avoiding growth impairment (Sagor
et al., 2016). Remarkably, sucrose contents were approximately
sixfold higher in transgenic lines with approximately 1.5-fold
higher fructose, glucose, and total sugar contents than in wild
type. Similar effects such as significantly increased glucose and
fructose contents and significantly reduced citric acid content
were observed in mutants with enhanced FvebZIP1.1 mORF
protein expression due to the uORFs mutation (Xing et al., 2020).
In a recent study, heterologous overexpression of strawberry
FvbZIP11 affects fruit quality and flavor in tomato (Zhang
et al., 2022). In comparison with wild type, the total soluble
solid was significantly increased at the breaker, pink and red
ripe stages in three transgenic tomato lines. The soluble sugar
(SS) content was significantly accumulated at 30–50 days after
anthesis in transgenic line 6. In addition, the titratable acid
content (TTA) was significantly reduced at 30 days after anthesis,
while SS/TTA ratio was significantly increased from 20 to 50 days
after anthesis in the transgenic tomato line (Zhang et al., 2022).
Taken together, these studies demonstrate that the S1-bZIPs play
important roles in the regulation of sugar metabolism for quality
improvement in plants.

REGULATORY ROLES OF S1-bZIPs IN
RESPONSE TO BIOTIC AND ABIOTIC
STRESSES

S1-bZIPs play an essential role in plant adaptation to
unfavorable conditions (Alves et al., 2013; Sornaraj et al.,
2016; Noman et al., 2017) (Figure 3B). It has been documented

that S1-bZIPs play important roles in plant innate immunity,
especially against attack by various pathogens (Lee et al., 2002;
Alves et al., 2013), and in response to abiotic stresses, such as cold
(Shimizu et al., 2005; Kobayashi et al., 2008), drought (Ditzer
and Bartels, 2006; Shekhawat and Ganapathi, 2014), and salinity
(Hartmann et al., 2015). It has been demonstrated that the
C-/S1-bZIP-SnRK1 complex participates in the reprogramming
of primary metabolism related to carbohydrate and amino acid
and induces salt stress tolerance through ABA-independent
signaling in Arabidopsis roots (Hartmann et al., 2015). Similarly,
C-/S1-bZIP-SnRK1 signaling is involved in defenses against
biotic stresses, which are also energy-consuming processes that
require metabolic readjustment in plants (Hulsmans et al., 2016).
Research in our laboratory has suggested that petunia PhOBF1, a
homolog of AtbZIP11, is involved in plant defenses against a wide
range of viral pathogens (Sun et al., 2017). In the study, silencing
PhOBF1 resulted in the reduction of RNA silencing-related
gene expression, including RNA-dependent RNA polymerases,
Dicer-like RNase III enzymes, and Argonaut. PhOBF1-RNAi
plants displayed a compromised resistance to tobacco rattle virus
(TRV) and tobacco mosaic virus (TMV). On the other hand,
overexpression of PhOBF1 in petunia enhances resistance to
these virus infections. Interestingly, PhOBF1-silenced petunia
lines produced much lower levels of the compounds associated
with the shikimate and phenylpropanoid pathways such as free
salicylic acid (SA), salicylic acid glucoside, and phenylalanine,
but much higher levels of those were detected in PhOBF1
overexpressing plants (Sun et al., 2017). Intriguingly, PhbZIP44,
a paralog of PhOBF1 appears to be unable to participate in this
antiviral process, suggesting functional diversity and specificity
among the S1-bZIPs (Sun et al., 2017).

In Arabidopsis, S1-bZIPs AtbZIP11/ATB2, AtbZIP44,
AtbZIP2/GBF5, and AtbZIP53 can bind to a 6-bp cis-acting
element (ACTCAT) located in the promoter of ProDH (Satoh
et al., 2004), which is responsive to hypoosmolarity and proline.
AtbZIP53 directly and strongly promotes hypoosmolarity-
induced transcription of ProDH, which is enhanced by the
synergistic interplay between AtbZIP53 and the group C member
AtbZIP10 (Satoh et al., 2004; Weltmeier et al., 2006). Analysis of
transcriptome data has revealed the complexity of the response
to abiotic stresses by S1-AtbZIPs. For instance, the transcript
level of AtbZIP53 was found to be strongly up-regulated by
salt stress in roots and by osmotic stress in green tissues. Cold,
osmotic, and salt elicitors were found to remarkably increase the
expression of AtbZIP1 in roots and AtbZIP11 in green tissues
but inhibit the expression of AtbZIP2 in green tissues. AtbZIP44
shows a solid and specific response to cold stress in the root
and to salinity in green tissues (Kilian et al., 2007; Weltmeier
et al., 2009). The expression of AtbZIP1 in roots was significantly
induced by salt treatment. Arabidopsis bzip1 bzip53 double
mutant reprograms carbohydrate and amino acid metabolism to
help roots adapt to salt stress. Furthermore, AtbZIP1 binds the
promoter of BCAT2 and TAT7 and plays a role as a signalling
module of SnRK1-bZIP1 under salt stress. This pathway is
independent of ABA-SnRK2-AREB signaling pathways, whereas
bZIP53 transcription partially depends on the SnRK2/AREB
pathway (Hartmann et al., 2015). In tomato, SlbZIP1 increases
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salt tolerance by increasing the gene expression related to ABA
biosynthesis and signal transduction (Zhu et al., 2018). In
response to water deficiency, two cucumber S1-bZIP member
(CsbZIP6 and CsbZIP30) transcripts accumulated in the root
but decreased in leaves (Baloglu et al., 2014). Likewise, in sweet
potato, the expression of IbbZIP1 is highly induced by treatments
with NaCl and ABA. Abiotic stress-related genes are significantly
up-regulated in the transgenic Arabidopsis overexpressing
IbbZIP1, suggesting the role of IbbZIP1 in salt and drought
tolerance (Kang et al., 2019). In apple, an S1-bZIP, MdbZIP80,
has been shown to negatively regulate cytokinin-mediated
drought and salt tolerance (Feng et al., 2021). This study shows
that MdbZIP80 specifically heterodimerizes with C-bZIPs
MdbZIP2 and MdbZIP39. The formed C-/S1-bZIP complex then
binds to the ACTCAT motif in the promoter of MdIPT5b, a
gene encoding the rate-limiting enzyme isopentenyltransferase
in the cytokinin biosynthesis pathway, thereby suppressing
its expression. This leads to drought and salt stress response
through the cytokinin pathway by delaying drought-induced
premature leaf senescence by reducing oxidative damage
and maintaining plant growth (Feng et al., 2021). Another
study demonstrates that low temperature stress induces mlipl5
expression, and the protein subsequently binds to the promoter
region of Adh1 (Kusano et al., 1995). Interestingly, mechanical
damage in tea leaves leads to the activation of S1-bZIPs such as
CsbZIP2, −11, −14, −16, −20, −21, −28 and −30 (Xue et al.,
2018). Overall, it appears that the expression levels of these
S1-bZIPs respond to stress signals in a tissue-specific manner.
The members of S1-bZIP share partially redundant functions
but play a role in unique regulatory mechanisms. Generally,
the S1- and C-AtbZIPs heterodimerize to mediate stress signal
transduction cascades. For example, S1-bZIP AtbZIP53 forms
heterodimers with group C-bZIP members such as AtbZIP10
or AtbZIP25 and increases DNA binding activity, resulting in
strong activation of the target genes. These heterodimers can
also form tertiary complexes with the non-bZIP protein ABI3
(ABSCISIC ACID INSENSITIVE 3) to play a synergistic role
in target gene expression (Alonso et al., 2009; Weltmeier et al.,
2009); however, it needs to be demonstrated whether other
members of S1-bZIP such as AtbZIP1 heterodimers are formed
under stress conditions (Hartmann et al., 2015).

The S1-bZIP gene low-temperature-induced protein 19 (lip19)
is significantly induced by low temperature in monocots (Shimizu
et al., 2005; Kobayashi et al., 2008; Cai et al., 2018). The LIP19
protein appears to be unable to form homodimers and bind to
DNA in rice (Kobayashi et al., 2008). However, the counterpart
of LIP19 proteins in maize and wheat can form homodimers
and bind to cis-elements in DNA sequences (Kobayashi et al.,
2008; Cai et al., 2018). The WLIP19 can heterodimerize with
wheat TaOBF1, another low temperature-responsive S1-bZIP
member. The stable heterodimerization between LIP19-type and
OBF1-type proteins seems to induce the expression of target
genes in response to different abiotic stresses, especially cold
stress (Shimizu et al., 2005; Kobayashi et al., 2008; Cai et al.,
2018). However, there is no definitive evidence showing that
the formation of heterodimers or homodimers between WLIP19
and TaOBF1 directly affects the expression of the downstream

stress-responsive genes including COR (cold-responsive) and
LEA (late embryogenesis-abundant) genes (Lee et al., 2002).
Recent research indicates that a group C-bZIP TabZIP6 dimerizes
with WLIP19, TaOBF1, or itself and then binds to the promoters
of genes encoding CBFs (C-repeat binding factors), resulting
in inhibition of their expression. These dimers can also inhibit
the expression of some COR genes (Liu C. et al., 2014). Rice
S1-bZIP plays a vital role in ABA-mediated drought and salt
stress response. One of the S1-bZIPs, OsbZIP71, appears to be
able to form homodimers and heterodimers with group C-bZIP
members OsbZIP15, OsbZIP20, OsbZIP33, and OsbZIP88. It has
been speculated that these heterodimers help OsbZIP71 bind to
the promoters of its target genes, OsNHX1, and COR413-TM1
because OsbZIP71 on its own has weak DNA-binding activity
to the G-box element and no transcriptional activation activity
(Liu C. et al., 2014). Thus, the interplay between C-group and
S1-subgroup is proposed to affect plant response to stress.

BIOLOGICAL ROLES OF S1-bZIPs AS
REGULATORS OF PLANT GROWTH AND
DEVELOPMENT

Plant growth and development are tightly interlinked with
the control of metabolism, especially energy homeostasis.
Transient energy deprivation causes plants to adjust their
metabolism to adapt to daily light/dark cycles and unpredictable
environmental changes. It has been proposed that the Snf1-
related kinase 1 (SnRK1) and Target of Rapamycin (TOR)
kinase function to reprogram plant metabolism in response
to the energy status (Baena-González et al., 2007; Hulsmans
et al., 2016). Evidence suggests that SnRK1 mediates the
phosphorylation of S1-bZIPs to control plant growth and
development under starvation and nutrient-replete conditions
(Lastdrager et al., 2014) (Figure 3B). As the transcriptional
regulators downstream of SnRK1, AtbZIP11 can directly control
a subset of SnRK1-dependent genes via binding to G-box
elements in their promoter regions (Pedrotti et al., 2018).
Furthermore, heterodimerization between group C- and S1-
bZIPs is enhanced by the phosphorylation of group C-bZIPs
by SnRK1. Phosphorylation of AtbZIP63 provides the structural
basis for forming the AtbZIP63-AtbZIP1-SnRK1/AtbZIP63-
AtbZIP11-SnRK1 complex and ultimately leads to the adjustment
of metabolism to ensure plant survival under low energy
conditions (Pedrotti et al., 2018). Notably, the formation of the
complex is dependent on the SnRK1-specific phosphorylation
sites, which are pivotal for the function of AtbZIP1 and AtbZIP53
(Hartmann et al., 2015). Additionally, the identification of many
SnRK1-independent genes regulated by AtbZIP11 indicates a
function of AtbZIP11 beyond SnRK1 signaling (Dröge-Laser
et al., 2018). It seems that heterodimers within the C-/S1-
bZIP network function as a hub to integrate SnRK1-dependent
and -independent signals to adjust growth/development and
stress responses (Mair et al., 2015). Recent studies showed
that S1-bZIPs regulate the root apical meristem size through
controlling polar auxin flux (Weiste et al., 2017). Under low-
energy conditions, AtbZIP2, AtbZIP11, and AtbZIP44 directly
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activate the transcription of INDOLE-3-ACETIC ACID PROTEIN
3/SHORT HYPOCOTYL 2 (IAA3/SHY2), a negative regulator
of auxin signaling, which leads to the down-regulation of
PIN-FORMED (PIN) genes, limiting polar auxin transport to
the root tip and blocking auxin-driven primary root growth
(Weiste et al., 2017).

S1-bZIPs play essential roles in plant growth and
development, especially seed maturation, root growth, and
flower development (Figure 3B). For example, the transcript
abundance of AtbZIP53 is markedly induced during the late
stages of seed development (Weltmeier et al., 2009). AtbZIP53
enhances the gene expression associated with seed maturation by
specific heterodimerization with group C-bZIPs (Alonso et al.,
2009). AtbZIP11 and AtbZIP44 play a role in embryogenesis.
AtbZIP44 shows high transcript levels at the early stage of seed
development and is involved in micropylar endosperm loosening
and seed coat rupture via its interaction with the promoter
of AtMAN7 (Weltmeier et al., 2009). The atbzip44 knock-out
mutant shows slower germination and reduced expression
of AtMAN7 (Iglesias-Fernández et al., 2013). In Populus, the
binding of poplar bZIP53 to the promoter of IAA4-1 and IAA4-2
inhibits adventitious root development (Zhang et al., 2020b). In
horticultural plants, three S1-bZIP members (VvbZIP07, 14, and
47) are highly expressed in grape seed (Liu J. et al., 2014), but their
regulatory mechanisms have yet to be elucidated. Other studies
have shown that S1-bZIPs are related to floral development. For
example, CsbZIP-06 is highly expressed in female cucumber
flowers and ovaries (Baloglu et al., 2014). Transgenic lines
overexpressing mORF of BZI-4 show reduced flower size and
impaired pollen development (Iven et al., 2010). Overexpressing
AtbZIP1, AtbZIP53, tbz17, MusabZIP53, and FvbZIP11 shortened
internode length, and stunted vegetative growth (Alonso et al.,
2009; Dietrich et al., 2011; Thalor et al., 2012; Shekhawat and
Ganapathi, 2014). FabZIPs1.1 and FvbZIP11 have been shown
to be involved in fruit ripening in strawberry (Chen et al., 2020;
Zhang et al., 2022). Banana MabZIP91 and MabZIP104, which
belong to S1-bZIP subgroup, showed high transcript abundance
during fruit development and ripening (Chen et al., 2020). These
studies illustrate the various roles of S1-bZIPs as a regulator of
plant growth and development (Figure 3B).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

The S1-bZIP subgroup, with their functional diversity in all
plants, reflects their importance as regulators. The literature
covered in this review suggests that the small but unique and
crucial S1-bZIP transcription factors play essential roles in the
balance of carbon and amino acid metabolism, plant growth
and development, and stress responses (Figure 3). S1-bZIPs
also play important roles in regulating fruit quality and stress
response. Through heterodimerization with group C-bZIPs, S1-
bZIPs orchestrate an array of downstream transcriptional and
metabolic control. However the C group bZIP dimerization
partners of many S1-bZIPs have yet to be identified. The S1-
bZIPs regulate sugar signaling and amino acid metabolism

under energy-deprived conditions, which involves the Sucrose
Induced Repression of Translation mechanism of the uORFs and
through interaction with the SnRK1 pathway. However, further
research is needed to explore whether and how SnRK1 and TOR
kinase interact with C- and S1-bZIPs complex. The SC-uORF
negatively regulates the translation of S1-bZIP mORFs and, in
turn, downstream targets of the S1-bZIPs, which further affect
fruit quality and other metabolite biosynthesis. Evidence suggests
that overexpression of S1-bZIP mORFs significantly increased
the fruit sugar content and sweetness, showing the potential
for improvement of fruit quality (Thalor et al., 2012; Sagor
et al., 2016; Chen et al., 2020; Zhang et al., 2022). In addition,
functional diversity and specificity among the S1-bZIPs need to
be further defined. Using substitution of conserved amino acid
residues in the DNA-binding domain could be a useful approach
to clarify specific interconnections among S1-bZIPs and their
dimerization partners in horticultural plants (Garg et al., 2019).
Using CRISPR technology to create indel mutations in uORF
start codons or enhancing the expression of S1-bZIPs using fruit-
specific promoters could provide broad applications to control
the levels of sucrose and other nutrients for the improvement
of the quality of fruits, vegetables, and flowers, and to improve
stress response without the detrimental effects on plant growth
and development in horticultural plants (Corrêa et al., 2008;
Shipman et al., 2021).
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