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Land plants develop highly diversified shoot architectures, all of which are derived from the 
pluripotent stem cells in shoot apical meristems (SAMs). As sustainable resources for 
continuous organ formation in the aboveground tissues, SAMs play an important role in 
determining plant yield and biomass production. In this review, we summarize recent 
advances in understanding one group of key regulators – the HAIRY MERISTEM (HAM) 
family GRAS domain proteins – in shoot meristems. We highlight the functions of HAM 
family members in dictating shoot stem cell initiation and proliferation, the signaling cascade 
that shapes HAM expression domains in shoot meristems, and the conservation and 
diversification of HAM family members in land plants. We also discuss future directions that 
potentially lead to a more comprehensive view of the HAM gene family and stem cell 
homeostasis in land plants.
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HAM KEEPS SHOOT STEM CELLS UNDIFFERENTIATED

Land plants develop diversified shoot architectures, which are determined and sustained by 
pluripotent stem cells in shoot apical meristems (SAMs). In seed plants, the multicellular 
SAMs are organized into distinct cell layers and zones (Foster, 1938; Satina et  al., 1940; 
Meyerowitz, 1997). In the model species Arabidopsis and many other flowering plants, SAMs 
consist of three clonally distinct cell layers: the epidermal layer (L1), the sub-epidermal layer 
(L2), and the corpus (L3) (Figure 1). In addition, SAMs can be divided into different functional 
zones, including the central zone (CZ) where the self-renewing stem cells reside, the peripheral 
zone (PZ) where organ initiation takes place, and the rib meristem (RM) where the differentiated 
cells help specify the overlaying stem cells (Meyerowitz, 1997). Over more than 20  years of 
studies, multiple key regulatory pathways, such as the WUSCHEL-CLAVATA loop, KNOX/
SHOOTMERISTEMLESS pathway, ERECTA family receptors, Class III HD-ZIP transcription 
factors, and the cytokinin and auxin signaling, have been identified and well characterized in 
Arabidopsis SAMs (Sablowski, 2007; Barton, 2010; Su et  al., 2011; Shpak, 2013; Gaillochet 
and Lohmann, 2015; Somssich et  al., 2016; Fletcher, 2018; Kieber and Schaller, 2018; Shi and 
Vernoux, 2021; Willoughby and Nimchuk, 2021). In this review, we  focus on the function 
and regulation of one group of conserved stem cell regulators, the HAIRY MERISTEM (HAM) 
family GRAS (GAI, RGA, and SCR) domain proteins, in shoot meristems.

The HAIRY MERISTEM (HAM) gene was firstly identified and characterized in Petunia, 
and it was named after the phenotype of its loss-of-function mutant, the ectopic formation 
of differentiated hairs (trichomes) at the surface of shoot apices (Stuurman et  al., 2002). 
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The HAM loss-of-function in Petunia also shows early termination 
of SAMs, arrested axillary shoot development, and reduced 
number of carpels and stamens (Stuurman et al., 2002), suggesting 
the key role of HAM in maintaining shoot meristems 
undifferentiated in Petunia. In the model species Arabidopsis, 
four HAM homologs (HAM1-HAM4) are classified into two 
different groups, based on the phylogenetic analyses (Engstrom 
et  al., 2011; Geng et  al., 2021b). HAM1, HAM2, and HAM3, 
which are also named as LOST MERISTEM1 (LOM1), LOM2, 
and LOM3, respectively (Schulze et  al., 2010), belong to the 
Type II group (Engstrom et  al., 2011; Geng et  al., 2021b). 
These Type II members (HAM1-3) are expressed in Arabidopsis 
shoot meristems, root meristems, and vascular tissues (Schulze 
et  al., 2010; Engstrom et  al., 2011; Zhou et  al., 2015). HAM4, 
the only member of the Type I group in Arabidopsis (Engstrom 
et  al., 2011; Geng et  al., 2021b), is specifically expressed in 
the provascular and vascular tissues (Zhou et al., 2015), sharing 
redundant function with HAM1-3 during shoot and root 
development (Engstrom et  al., 2011; Zhou et  al., 2015).

The Type II HAM members (HAM1, HAM2, and HAM3) 
play both overlapping and distinct roles in control of Arabidopsis 

SAMs. The single loss-of-function mutant of each Type II 
member does not result in any obvious defects in Arabidopsis 
shoot meristem development (Schulze et  al., 2010; Engstrom 
et  al., 2011). By contrast, the ham1ham2ham3 (ham123) triple 
loss-of-function mutant or the ham1ham2 (ham12) double 
mutant showed delayed inflorescence initiation, early termination 
of shoot meristems, disorganized meristem structure and 
morphology, and reduced axillary shoot branches (Schulze 
et  al., 2010; Wang et  al., 2010; Engstrom et  al., 2011; Han 
et  al., 2020a), demonstrating essential and redundant roles of 
Type II members in meristem initiation and maintenance in 
Arabidopsis. A recent study further shows that HAM1 and 
HAM2, both of which are expressed in the L3 layer, are required 
for maintaining SAMs undifferentiated and driving de novo 
formation of new axillary stem cell niches (Han et  al., 2020a). 
HAM3, the other member of the Type II group, plays a minor 
role in shoot stem cell maintenance but likely contributes to 
other aspects of shoot development (Han et  al., 2020a).

HAM SUSTAINS THE WUSCHEL-
CLAVATA REGULATORY LOOP

In Arabidopsis, the homeobox domain transcription factor 
WUSCHEL (WUS) and the secreted peptide CLAVATA3 (CLV3) 
form a negative feedback loop to keep a constant population 
of stem cells in SAMs (Schoof et  al., 2000; Somssich et  al., 
2016; Fletcher, 2018; Figure  2A). The WUS transcripts are 
restricted into the organizing center (OC) in deep cell layers 
(Mayer et  al., 1998) and WUS proteins move into stem cells 
in the central zone to activate CLV3 expression (Schoof et  al., 
2000; Yadav et  al., 2011; Daum et  al., 2014). On the contrary, 
the CLV3 peptide, secreted from stem cells, activates the CLV 
receptor signaling pathways and confines WUS transcripts to 
the OC to avoid overproliferation of stem cells (Schoof et  al., 
2000). The ability of WUS to directly activate its own inhibitor 
CLV3 brings a potential risk to shut down itself and the feedback 
loop; therefore, the precise spatial–temporal regulations of WUS 
and CLV3 are required for stem cell maintenance.

Several studies demonstrated that Type II HAM members 
play essential roles in initiating and maintaining the WUS-CLV3 
feedback loop, and further sustaining shoot stem cell homeostasis 
in Arabidopsis (Schulze et  al., 2010; Zhou et  al., 2015, 2018; 
Gruel et al., 2018; Han et al., 2020a; Geng et al., 2021b), which 
also has been summarized in the reviews (Biedermann and 
Laux, 2018; Han et  al., 2020b). Through the screening of an 
Arabidopsis transcription factor library, Type II HAM proteins 
are identified as the WUS interacting partners (Zhou et  al., 
2015). Among them, both HAM1 and HAM2 are co-expressed 
with WUS in the L3 layer. HAM1/2 act as WUS transcriptional 
cofactors to regulate the downstream targets and drive 
proliferation of shoot stem cells (Zhou et al., 2015). In addition, 
the expression patterns of HAM1/2 and CLV3 are largely 
complementary in Arabidopsis SAMs (Zhou et al., 2018). CLV3 
is highly expressed in the L1 and L2 layers of the central 
zone, where HAM1 and HAM2 are absent or barely detectable 
(Zhou et  al., 2018; Han et  al., 2020a). These results lead to a 

FIGURE 1 | Confocal images of Arabidopsis inflorescence shoot apical 
meristems (SAMs). (A) The 3D projection view of an Arabidopsis SAM, with 
the depth color coding. Blue represents the top surface layer and red 
represents the deepest layer. (B) The orthogonal view of an Arabidopsis SAM, 
showing three clonally distinct cell layers: the epidermal layer (L1), sub-
epidermal layer (L2), and corpus (L3).
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hypothesis that HAM1/2 together with WUS determine the 
CLV3 expression pattern and confine the CLV3 domain to the 
stem cells in the outer layers of SAMs (Zhou et  al., 2018; Han 
et  al., 2020b; Figure  2A). Specifically, WUS protein activates 
CLV3 in the central zone where HAM1/2 proteins are absent, 
and HAM1/2 keep CLV3 off in the rib meristem, preventing 
WUS-dependent activation of CLV3 and/or repressing CLV3 
transcription (Zhou et  al., 2018). This working model has been 
supported by (Zhou et  al., 2018; Han et  al., 2020a; Geng et  al., 
2021b) and aligns with (Brand et  al., 2000, 2002; Schoof et  al., 
2000; Graf et  al., 2010; Schulze et  al., 2010) a number of 
experimental results. It is also shown plausible by several 
independent computational simulations (Gruel et al., 2018; Zhou 
et  al., 2018; Liu et  al., 2020). In addition, through confocal 
imaging of HAM translational reporters and genetic 
complementation analyses, recent work shows that both HAM1 
and HAM2 proteins, which show highly comparable expression 
patterns in the L3 layer of SAMs, are necessary and sufficient 
for determining the CLV3 pattern (Han et  al., 2020a). HAM3, 
which is only expressed in the boundary between the meristem 
and primordia and at a few cells of the peripheral zone, is 
dispensable in shaping the CLV3 domain (Han et  al., 2020a). 
In contrast, when HAM3 is expressed in the rib meristem 
under the control of the HAM2 promoter, it rescues the ectopic 
expression of CLV3 in the ham123 triple mutant (Han et  al., 
2020a), suggesting HAM3 protein maintains the function 
interchangeable with that of HAM1 and HAM2.

During the de novo formation of shoot stem cell niches, 
the expression patterns of HAM1/2 are dynamically regulated, 

which drive the switch of the CLV3 expression domain from 
the basal to apical region of developing axillary meristems 
over time (Zhou et  al., 2018). In contrast, the expression of 
CLV3 is restricted to the basal part of developing axillary 
meristems in the ham123 mutant, consistent with the mutant 
defects in axillary bud initiation (Schulze et  al., 2010; Wang 
et  al., 2010; Engstrom et  al., 2011; Zhou et  al., 2018).

A SIGNALING CASCADE SHAPES HAM 
PATTERNS IN ARABIDOPSIS SHOOT 
MERISTEMS

In Arabidopsis, a small group of micro RNAs – the microRNA171 
(miR171) – function as the negative regulator of Type II HAM 
members (Llave et  al., 2002; Rhoades et  al., 2002; Schulze 
et  al., 2010; Wang et  al., 2010; Engstrom et  al., 2011; Han 
et  al., 2020c). miR171 specifically recognizes and binds to 
Arabidopsis HAM1, HAM2, and HAM3, mediating the cleavage 
of their transcripts (Llave et  al., 2002; Rhoades et  al., 2002). 
Consistently, MIR171 overexpression leads to ectopic expression 
of CLV3 in the rib meristem and reduced shoot branching, 
which mimic the phenotype of the ham123 mutant (Schulze 
et al., 2010; Wang et al., 2010; Zhou et al., 2018; Han et al., 2020a).

The epidermis-derived miR171 defines the apical-basal 
concentration gradient of HAM1/2  in Arabidopsis SAMs and 
axillary meristems (Takanashi et  al., 2018; Han et  al., 2020c). 
Four MIR171 family genes (MIR171A, MIR171B, MIR171C, 
and MIR170) are identified in Arabidopsis, all producing miR171 
precursors and contributing to the total level of mature miR171 
(Llave et al., 2002; Rhoades et al., 2002). All these MIR171/170 
genes are directly activated by the homeodomain transcription 
factor ARABIDOPSIS THALIANA MERISTEM LAYER 1 
(ATML1) and its close homolog PROTODERMAL FACTOR 
2 (PDF2) in the L1 layer (Han et al., 2020c). Once synthesized 
in the epidermis, mature miR171 moves downwards within 
limited distance and it mediates the cleavage of the transcripts 
of HAM1-3 in the apical region of SAMs (Han et  al., 2020c). 
Based on these results, a L1(ATML1/PDF2)-miR171-HAM 
signaling cascade has been proposed, which initiates and then 
maintains the apical-basal concentration gradient of Type II 
HAM proteins in Arabidopsis shoot meristems (Han et  al., 
2020c; Figure 2B). The essential function of the L1-miR171-HAM 
signaling cascade is simulated by a computational model and 
further validated by in vivo experimentations including the 
time-lapse live imaging upon the transient activation of 
ATML1  in the SAMs (Han et  al., 2020c).

EVOLUTION OF HAM GENE FAMILY IN 
LAND PLANTS

The phylogenetic analysis suggested that the HAM gene family 
emerged during the divergence of land plant lineages (Geng 
et  al., 2021b). In non-flowering plants including bryophytes, 
lycophytes, ferns, and gymnosperms, HAM members are maintained 
with a low copy number (Engstrom et al., 2011; Geng et al., 2021b). 

A

B

FIGURE 2 | Illustrations of the HAM regulatory circuits in SAMs. 
(A) A diagram illustrates that HAM1/2 sustain the WUS-CLV3 feedback loop 
in Arabidopsis SAMs. (B) A diagram illustrates the L1(ATML1/PDF2)-miR171-
HAM signaling cascade, which shapes HAM1/2 expression patterns in 
Arabidopsis SAMs. The positive and negative regulations and protein–protein 
interactions are indicated in (A,B).
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By contrast, the HAM gene family likely duplicated in a common 
ancestor of flowering plants, expanding to two diversified groups 
(Type I  and Type II) as mentioned above, in flowering plants 
(Geng et  al., 2021b). Type II HAM members are widely present 
in flowering plants, whereas Type I  HAM members were 
independently lost in the species from different orders (including 
Poales and Asparagales) in monocots (Geng et  al., 2021b).

HAM family members from several flowering plants share 
similar functions in maintaining indeterminacy of SAMs and 
promoting de novo formation of axillary meristems (Stuurman 
et  al., 2002; Schulze et  al., 2010; Wang et  al., 2010; Engstrom 
et  al., 2011; David-Schwartz et  al., 2013; Zhou et  al., 2015, 2018; 
Hendelman et  al., 2016). For example, the ham loss-of-function 
mutant in pepper (Capsicum annuum) shows the shoot meristem 
defect (David-Schwartz et al., 2013) comparable to that characterized 
in the Petunia ham mutant and in the Arabidopsis ham123 
mutant (Stuurman et  al., 2002; Schulze et  al., 2010; Engstrom 
et  al., 2011). Several HAM homologs, including AmHAM1 (the 
Type I) and AmHAM2 (the Type II) from Amborella trichopoda 
(the species as a sister group to all other flowering plants), one 
Type II HAM from a monocot (rice), and two Type II HAM 
members from eudicots (soybean and pepper), are able to replace 
the role of Arabidopsis Type II HAM members in Arabidopsis 
shoot meristems (Geng et al., 2021b), demonstrating the conserved 
function of HAM family members in flowering plants.

The results from cross-species complementation assays also 
indicate the conserved biochemical function between the 
non-flowering HAM proteins and the Type II HAM proteins 
from flowering plants, in regulating meristem development 
(Geng et  al., 2021b). When different non-flowering HAM 
members (including PpHAM from the bryophyte Physcomitrium 
(Physcomitrella) patens, SmHAM from the lycophyte Selaginella 
moellendorffii, CrHAM from the fern Ceratopteris richardii, 
and LkHAM from the gymnosperm Larix kaempferi) are 
expressed under the control of the Arabidopsis HAM2 promoter, 
they replace the function of Type II members (HAM1, HAM2, 
and HAM3) in regulating the CLV3 expression domain, 
maintaining established SAMs, and promoting the initiation 
of new stem cell niches in Arabidopsis ham123 mutants (Geng 
et al., 2021b). Consistently, the function of PpGRAS12/PpHAM 
was also characterized in the moss Physcomitrium 
(Physcomitrella) patens (Beheshti et al., 2021). Overexpression 
of PpGRAS12 leads to formation of supernumerary apical 
meristems on each gametophore, suggesting a positive role 
of PpGRAS12/PpHAM in control of stem cell population at 
the gametophyte stage (Beheshti et  al., 2021). Taken together, 
all the current results lead to a hypothesis that regulation 
of stem cell homeostasis is an ancestral and conserved trait 
of the HAM gene family, which deserves more functional 
studies of HAM homologs in land plants, especially in seed-
free plants. Recent advances in the genomic and transcriptomic 
resources (Marchant et al., 2019; Geng et al., 2021a), established 
transformation system (Plackett et  al., 2014) and quantitative 
confocal imaging platform (Wu et  al., 2021) in seed-free 
vascular plants, such as in Ceratopteris richardii, will facilitate 
us to test this hypothesis and further understand meristem 
evolution in land plants.

CONSERVATION AND DIVERSIFICATION 
OF THE MIR171-HAM REGULATION IN 
LAND PLANTS

The phylogenetic analysis and sequence alignment demonstrate 
that the 21-nt miR171 binding site (5′-GATATTGGCGCGGC 
TCAATCA-3′) is highly conserved within the coding sequences 
of the non-flowering HAM members and the majority of Type 
II HAM members in flowering plants (Engstrom et  al., 2011; 
Geng et  al., 2021b). The negative regulation of Type II HAM 
members by miR171 seems to be conserved in flowering plants 
as well. For example, transcripts of two HAM family genes 
(SlHAM1 and SlHAM2) in tomato (Solanum lycopersicum) and 
four HAM homologs in rice (Oryza sativa) are also specifically 
targeted and cleaved by miR171 (Fan et  al., 2015; Hendelman 
et  al., 2016). Overexpression of MIR171 genes in tomato and 
rice results in reduced expression of these HAM homologs 
and the disruption of meristem development (Fan et  al., 2015; 
Hendelman et  al., 2016).

Furthermore, when the non-flowering HAM members (such 
as PpHAM, SmHAM, CrHAM, and LkHAM) and several Type 
II HAM members from flowering plants (including Amborella, 
the monocot rice, and the dicot soybean and pepper) are expressed 
under the control of Arabidopsis HAM2 promoter, these HAM 
reporters showed the concentration gradient from low to high 
along the apical-basal axis of Arabidopsis SAMs (Geng and 
Zhou, 2021; Geng et  al., 2021b). These expression patterns are 
largely comparable to that of the miR171-sensitive HAM2 
translational reporter (Han et  al., 2020a; Geng et  al., 2021b); 
however, they are different from that of the miR171-insenstive  
HAM2 transcriptional reporter, which shows high expression 
in all the cells from different layers in Arabidopsis SAMs (Han 
et  al., 2020a). These findings suggest a conserved role of the 
miR171 binding sites in the non-flowering HAM members and 
in the majority of Type II HAM members from flowering plants.

Different from the Type II, Type I HAM genes show different 
extents of diversification in the miR171 binding site (Engstrom 
et al., 2011; Geng et al., 2021b). Based on the sequence alignment 
(Geng et  al., 2021b), only a few Type I  HAM members (such 
as AmHAM1 from Amborella trichopoda and the HAM homologs 
from Nelumbo nucifera and Vitis vinifera) maintain the conserved 
miR171 binding site, and many others from a considerable 
number of flowering plants lost the conservation of the miR171 
binding site. For example, HAM4 (the Arabidopsis Type I HAM) 
contains six nucleotides different from the conserved miR171 
binding sequence and is unlikely targeted by miR171 (Engstrom 
et  al., 2011; Geng et  al., 2021b).

FUTURE PERSPECTIVES

Over the last several years, significant progress has been made 
in understanding the functions of Type II HAM members in 
shoot meristems and their interaction with the WUS-CLV3 loop, 
the regulatory mechanism by which Type II HAM proteins are 
excluded from stem cells in Arabidopsis SAMs, and evolution 
of different groups of HAM members in land plants. In the 
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future, several important questions are still remaining to be explored. 
For example, in Arabidopsis SAMs, in contrast to WUS and 
CLV3 that are specifically expressed in a few cells, HAM1 and 
HAM2 proteins are expressed in a broader domain (Zhou et  al., 
2015, 2018; Han et  al., 2020a). It will be  interesting to explore 
whether the Type II HAM members also integrate additional 
and multiple regulatory pathways in control of shoot stem cells. 
In addition, the L1-miR171-HAM signaling cascade plays a crucial 
role during the initiation and maintenance of Arabidopsis shoot 
meristems (Han et al., 2020c). It will be worth determining whether 
this signaling cascade also functions in other meristematic tissues 
in Arabidopsis and whether this regulatory mechanism is conserved 
across flowering plants or even in non-flowering plants. Furthermore, 
the function of Type I HAM members is not completely understood 
yet. Determining whether and how this group of HAM members 
have been recruited into various developmental processes and 
undergone neofunctionalization in land plants will be an essential 
question in the future.
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