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Root-knot nematodes (RKNs) are notorious plant-parasitic nematodes first recorded in 
1855 in cucumber plants. They are microscopic, obligate endoparasites that cause severe 
losses in agriculture and horticulture. They evade plant immunity, hijack the plant cell 
cycle, and metabolism to modify healthy cells into giant cells (GCs) – RKN feeding sites. 
RKNs secrete various effector molecules which suppress the plant defence and tamper 
with plant cellular and molecular biology. These effectors originate mainly from sub-ventral 
and dorsal oesophageal glands. Recently, a few non-oesophageal gland secreted effectors 
have been discovered. Effectors are essential for the entry of RKNs in plants, subsequently 
formation and maintenance of the GCs during the parasitism. In the past two decades, 
advanced genomic and post-genomic techniques identified many effectors, out of which 
only a few are well characterized. In this review, we provide molecular and functional 
details of RKN effectors secreted during parasitism. We  list the known effectors and 
pinpoint their molecular functions. Moreover, we attempt to provide a comprehensive 
insight into RKN effectors concerning their implications on overall plant and nematode 
biology. Since effectors are the primary and prime molecular weapons of RKNs to invade 
the plant, it is imperative to understand their intriguing and complex functions to design 
counter-strategies against RKN infection.

Keywords: root-knot nematode, effectors, oesophageal glands, giant cells, plant-nematode interaction

INTRODUCTION

Root-knot nematodes (RKNs) are ubiquitous, obligate, biotrophic plant-endoparasites of the 
genus Meloidogyne spread across tropical and subtropical regions. About 100 species of Meloidogyne 
are known to attack more than 3,000 plants species causing multibillion-dollar annual losses 
(Gowda et  al., 2017; Forghani and Hajihassani, 2020). Their life cycle varies between 3 to 
6 weeks based on species and environmental conditions. Adult females lay about 500 to 1,000 
eggs in a gelatinous matrix which is secreted on the root surface. Under favourable conditions, 
second-stage juveniles (pre-parasitic J2s) hatch out of eggs which is the only infective stage 
that enter the plant roots near the root-tip. Once inside, they (parasitic J2s) migrate through 
intercellular spaces until they reach the root meristem. Here parasitic J2s make a U-turn and 
migrate up the vascular cylinder and become sedentary on reaching the protoxylem. At this 
point, they select 5 to 8 cells and pump them with various effectors secreted from the oesophageal 
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glands resulting in the cellular reprogramming and the formation 
of giant cells (GCs; Figure  1A; Abad and Williamson, 2010).

To enter the plant root and develop the GCs, RKNs use 
two vital weapons. First is the brute force of their stylet to 
mechanically and enzymatically break the plant cell wall; 
second is the effectors secreted through the oesophageal glands 
to manipulate host cell metabolism. RKNs have two types of 
oesophageal glands: a pair of the sub-ventral glands (SvGs) 
and a dorsal gland (DG; Figure  1B). Temporally, SvGs are 
active during the early stage of infection (pre-parasitic and 
parasitic J2s) and DG becomes functional during early and 
late infection (parasitic J2s to adults). Effectors are important 
molecules deployed by pests and pathogens to facilitate the 
infection and nutrient acquisition (Carreón-Anguiano et  al., 
2020). Described RKN effectors are mostly proteinaceous 
molecules secreted to target host molecular components to 
enable parasitism (Vieira and Gleason, 2019). With the help 
of recent developments in pan-omics and bioinformatics tools, 
many effectors have been identified (Jaubert et  al., 2002b; 
Huang et  al., 2003, 2004; Abad et  al., 2008; Bellafiore et  al., 
2008; Opperman et  al., 2008; Rehman et  al., 2016; Shukla 
et  al., 2018; Vieira and Gleason, 2019). Initially, M. incognita 
was the most studied RKN for effectors. However, recently 
many experimentations on M. javanica, M. graminicola,  
M. arenaria, M. enterolobii and M. chitwoodi have increased 
the numbers of known effectors. The effectors secreted by 
RKNs are classified into various groups based on their function 

during infection viz.: plant cell wall degrading enzymes 
(PCWDEs), plant defence modulators, plant hormone regulators, 
cell cycle modulators, cytoskeleton organizers, and plant 
metabolic re-programmers (Figure  2; Favery et  al., 2020). 
However, many effectors have no homology to known proteins 
making the RKN infection process complex to elucidate. 
Various tedious and complex experimental methodologies such 
as yeast 2-hybrid, pull-down experiments, RNAi approach, 
and in-situ strategies have been utilized to implicate their 
molecular functions (Eves-van den Akker et  al., 2021). In 
the past decade, few non-oesophageal effectors have also been 
identified increasing the layers of complexity of plant-RKN 
interactions (Danchin et  al., 2013; Rutter et  al., 2014; Zhao 
et  al., 2019).

During the past 5 years, over 50 reviews have discussed the 
general biology, ecology, and evolution of plant-parasitic 
nematodes (Kikuchi et  al., 2017; Siddique and Grundler, 2018; 
Kaloshian and Teixeira, 2019; Hewezi, 2020; Eves-van den 
Akker, 2021). Of these reviews, eight articles describe the 
effectors of plant-parasitic nematodes (Ali et  al., 2017; Mejias 
et  al., 2019; Perrine-Walker, 2019; Sato et  al., 2019; Vieira and 
Gleason, 2019; Favery et  al., 2020; Eves-van den Akker, 2021; 
Eves-van den Akker et  al., 2021). These reviews summarize 
the effector-mediated molecular and physiological changes in 
plants (Ali et  al., 2017; Mejias et  al., 2019; Perrine-Walker, 
2019; Favery et  al., 2020; Eves-van den Akker, 2021), plant 
immune responses against nematodes (Sato et  al., 2019), and 
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FIGURE 1 | Root-knot nematode infection and glands involved in effector synthesis. (A) Root-knot nematode infected roots show a gall-like structure on the root 
surface. Inside the gall, adult sedentary nematodes reside. These adults secrete a large number of effectors in the plant cells converting them into multinucleated 
GCs, the feeding sites of nematodes. (B) The anatomy of the anterior structure of pre-parasitic juvenile RKN shows two main oesophageal glands. The oesophageal 
glands, namely sub-ventral glands (SvGs) and dorsal gland (DG) are the primary sites of effector production in nematodes. The effectors produced by these glands 
are secreted through the stylet into the plant cells.
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new effector discovery tools (Vieira and Gleason, 2019; Eves-
van den Akker et  al., 2021). However, to the best of our 
knowledge, none of the reviews focuses exclusively on RKN 
effectors. Hence, in this review, we  have compiled the recent 
advances in the understanding of the molecular and biochemical 
mechanisms of exclusively RKN effectors during the process 
of parasitism so as to summarise the extent of progress and 
identify the gaps for cracking the Pandora box of nematode 
infection process. First, we  discuss the effector discovery 
strategies, then provide the molecular information of various 
RKN effectors, their site of biosynthesis along with localization 
in plant organelles and expression kinetics during nematode 
infection process and development. We  begin with effectors 
from SvGs and how they allow pre-parasitic and parasitic J2s 
to initiate the infection process. This is followed by the role 
of DG effectors secreted by the sedentary stages of RKNs. 
We  also highlight the functions of effectors and their effects 
on overall plant immunity, metabolism, and cell cycle. Finally, 
we  discuss the non-oesophageal effectors and their roles in 
parasitism. Thus, we  provide a comprehensive insight into the 
RKN infection process, where the specific role of effectors is 
described at the molecular level.

STRATEGIES AND SUCCESS IN THE 
DISCOVERY OF EFFECTORS FROM 
RKNs

The obligate sedentary mode of parasitism along with microscopic 
nature of RKNs are significant impediments to study their 
secretory proteins. Different strategies like differential gene 
expression, cDNA library screening, and direct analysis of 

secretory proteins employed in the late 1990s to study the 
RKN effectors were of limited success (Bird, 2004). In 2003, 
direct micro-aspiration of cytoplasm from M. incognita 
oesophageal glands and cDNA sequencing identified 37 effectors 
(Huang et al., 2003). Later solid-phase subtractive hybridization 
was used to identify and clone the effector genes from  
M. incognita (Huang et  al., 2004). The first genomic approach 
of EST sequencing of pre-parasitic M. incognita J2s revealed 
several cell wall degrading enzymes (McCarter et  al., 2003). 
In 2008, the first draft genome of M. incognita identified 
various putative effectors (Abad et  al., 2008). In subsequent 
years sequencing of other RKN species viz., M. hapla,  
M. javanica, M. arenaria, M. floridensis, M. graminicola, and 
M. enterolobii boosted the effector discovery rate (Opperman 
et  al., 2008; Blanc-Mathieu et  al., 2017; Szitenberg et  al., 2017; 
Sato et  al., 2018; Somvanshi et  al., 2018, 2021; Koutsovoulos 
et  al., 2020). Genome-wide searches of proteins with signal 
peptides was done to identify putative effectors. Furthermore, 
genome-wide transcriptomic analyses of pre-parasitic J2s helped 
to identify putative effector genes that were upregulated 
specifically during early parasitic stages (Dubreuil et  al., 2007; 
Haegeman et  al., 2013). Later, dual RNAseq allowed the 
discovery of effectors in a stage-specific manner (Li et  al., 
2016; Petitot et  al., 2016, 2020; Shukla et  al., 2018; Grynberg 
et al., 2020). Recently, life stage specific transcriptomics combined 
with available genome data gave insights into spatio-temporal 
regulation of M. incognita effector expression (Da Rocha et al., 
2021). In addition to these, in situ hybridization in specific 
regions of the nematode body provided significant impetus 
for validating the effectors (Roze et  al., 2008; Haegeman et  al., 
2013; Rutter et  al., 2014; Gleason et  al., 2017; Nguyen et  al., 
2018). Presently, M.incognita stands as the most studied RKN 
species with more than 100 putative oesophageal effector genes 

FIGURE 2 | Types of effectors secreted by RKNs. Effectors secreted by RKNs are divided into various categories namely cell cycle modulators, PCWDEs, 
cytoskeleton organizers, plant metabolic re-programmers, plant hormone regulators, and plant defence modulators. Various effectors from these categories work in 
tight coordination to modify normal plant cells into GCs.
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being reported (Da Rocha et  al., 2021). The details about the 
molecular functions of the well/partially characterized effectors 
from M. incognita and other RKNs are described in the 
following sections.

ROLE OF SUB-VENTRAL 
OESOPHAGEAL GLANDS IN EARLY 
INFECTION

SvGs are highly active during the early infection of RKNs. To 
enter the root, RKNs must degrade the plant cell wall, a 
complex structure supporting cell growth and development. It 
acts as a primary physical barrier to plant pathogens and 
consists of cellulose crosslinked with hemicellulose bound to 
a pectin matrix (Houston et  al., 2016). To invade this complex 
structure, pre-parasitic RKNs produce various PCWDEs in 
SvGs which are secreted through the stylet (Figure  3A). Once 

inside the root, the juveniles start moving through the intercellular 
space towards the vascular bundle. After locating a suitable 
site, they become sedentary and begin the formation of GCs. 
A multitude of effectors is released during this stage from 
SvGs aiding the initiation and establishment of GCs.

PCWDEs Mediated Entry of RKNs in the 
Roots
Cellulase is the first PCWDE identified from the pre-parasitic 
juveniles (Rosso et  al., 1999; Béra-Maillet et  al., 2000; Ledger 
et  al., 2006; Hu et  al., 2013). It hydrolyses the β-1, 4 glycosidic 
linkages of cellulose, the major component of the cell wall. 
Further, pectate lyase and polygalacturonase degrade the pectin 
matrix (Table 1; Doyle and Lambert, 2002; Jaubert et al., 2002a; 
Huang et  al., 2005a; Chen et  al., 2021). Pectate lyase results in 
an eliminative cleavage of pectin, whereas polygalacturonase 
hydrolyses the α-1, 4 glycosidic bonds of pectin. Although these 
enzymes act on pectin, the side chains of pectin – arabinan 

A

B

C

FIGURE 3 | Molecular effects of CWDEs. (A) Pre-parasitic juveniles produce a cocktail of CWDEs in the SvGs. Cellulases act on cellulose, the major backbone of 
the plant cell wall. Xylanase cleaves hemicellulose. Pectate lyase acts on pectin which weakens the cell wall. (B) The real-time expression profile of CWDEs shows 
maximum expression during pre-parasitic J2s which reduces with RKN development. The expression data is derived from (Shivakumara et al., 2017). About 400 ng 
RNA was used to prepare cDNA. The transcript level in all the stages was compared with that in eggs. Expression level was quantified using 2−ΔΔCt method. 18S 
rRNA was used as a reference gene. (C) Pre-parasitic juveniles latched to the root surface prior to entering the root. The RNAseq analysis of pre-parasitic J2s at this 
stage in different host plants could reveal the CWDE isoform expression dynamics. The image is reproduced from (Shivakumara et al., 2017) with permission from 
the corresponding authors.
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and arabinogalactan – limit their access to the pectin backbone. 
A putative arabinanase has been identified in the RKN genomes, 
however, it is yet uncharacterized (Danchin et  al., 2010). Other 
than cellulose and pectin, hemicellulose is also present in the 
plant cell wall, especially in monocots which is degraded by 
RKN xylanase (Mitreva-Dautova et  al., 2006). Together with 
these enzymes, cellulose-binding proteins (CBPs) are also reported 
in RKNs (Table 1). These proteins do not have enzymatic activity 
but show strong binding with cellulose and act as anchors for 
cellulases (Ding et  al., 1998). All the PCWDEs are expressed 
specifically in the pre-parasitic J2s (Figure 3B). A large number 
of PCWDEs are conserved across multiple RKN species making 
them indispensable for root penetration (Table  1). Silencing of 
CWDEs reduced the root-penetration efficiency of RKNs implying 
their necessity in the early infection (Adam et  al., 2008; 
Shivakumara et  al., 2016). Further, pre-parasitic juveniles also 
assimilate carbon from root surface while they enter the roots 
(Shivakumara et al., 2017). This early carbon assimilation supports 
the idea of host-delivered RNAi control strategies that can 
provide additional benefit of reducing the nematode burden 
inside the transgenic host expressing RNAi construct.

RKNs have an unprecedented diversity of CWDEs and have 
about 60 genes encompassing 6 different CWDE families. A study 
on the evolution of PCWDEs has shown that RKNs have acquired 
these enzymes by horizontal gene transfer from various soil-
dwelling and plant pathogenic bacteria (Danchin et  al., 2010). 
In case of polygalacturonase and pectate lyase, the enzyme orthologs 
are observed in the bacteria Ralstonia solanacearum and Clavibacter 
michiganensis, respectively. Both these bacteria are notorious plant 
pathogens and share the soil niche and host plants with RKNs 
(Nandi et  al., 2018; Xue et  al., 2020). In case of cellulase and 
xylanase, the closest orthologs are present in soil-dwelling bacteria 
Cytophaga hutchisonii and Clostridium acetobutylicum, respectively. 
The phylogenetic evidence underlined with the sympatric nature 

of these bacteria with RKNs makes them the most likely donors 
of PCWDEs (Danchin et al., 2010). Furthermore, in RKNs massive 
amount of gene duplication events have led to multigenic PCWDE 
families. Although the gross cell wall composition is similar across 
different plants; structural and molecular heterogeneity is 
documented (Zhang et  al., 2021). These variations might be  the 
reason for the evolution of multiple isoforms of PCWDEs in 
various RKN species. The effect of cell wall composition on the 
isoform expression pattern is yet unexplored. RNAseq of the 
pre-parasitic J2s latched onto root tips of different host plants, 
before they enter the roots may shed light on the dynamics of 
multiple PCWDE isoforms (Figure  3C). Other than cell wall 
composition, in M. incognita CWDEs expression is reported to 
be regulated by other effectors viz., Meloidogyne secretory protein 
(MSP)-1, 18, and 20. Silencing of these effectors showed 
transcriptional oscillation of various CWDEs which suggests the 
presence of effector-dependent retrograde signalling in RKNs 
(Shivakumara et al., 2016, 2017; Chaudhary et al., 2019a; Somvanshi 
et al., 2020). The lack of knowledge about CWDE isoform dynamics 
is one of the major bottlenecks for not achieving complete control 
of RKN infection via silencing of CWDEs. Hence, the retrograde 
signalling and effector crosstalk needs to be  explored further to 
control CWDEs expression and limit RKN parasitism. Besides, 
transcriptional changes in pre-parasitic J2s in response to root 
exudates implies RKNs’ ability to perceive root signals and modulate 
gene expression (Teillet et  al., 2013). It will be  interesting to 
identify the RKN genes activated by root exudates, as it will 
enrich our knowledge of early events in RKN parasitism.

Protection of RKNs and GCs From Plant 
Immunity
RKNs are exposed to the host defence system inside the roots 
which need to be  counteracted for survival and establishing a 

TABLE 1 | Experimentally identified effectors from the sub-ventral glands of various RKNs.

S. No. Effector
Functionally 
characterized in

Effector type Role in parasitism References

1. Cellulase M. incognita, M. javanica PCWDEs Digest cellulose Rosso et al., 1999; Béra-
Maillet et al., 2000; 
Ledger et al., 2006; Hu 
et al., 2013

2. Pectate lyase M. javanica, M. incognita, 
M. graminicola

Digest pectin Doyle and Lambert, 
2002; Huang et al., 
2005a; Chen et al., 2021

3. Polygalacturonase M. incognita Jaubert et al., 2002a
4. Xylanase M. incognita Digest hemicellulose Mitreva-Dautova et al., 

2006
5. Cellulose-binding protein M. incognita Anchor for cellulase Ding et al., 1998
6. Calreticulin M. incognita Plant defence 

modulators
PTI suppression Jaubert et al., 2002b

7. Mh-265 M. hapla Gleason et al., 2017
8. MSP-40 M. incognita Cell death suppression Niu et al., 2016
9. ISE-5 M. incognita Shi et al., 2018
10. 2G02 M. javanica Song et al., 2021a
11. GPP M. graminicola Chen et al., 2017
12. TTL-5 M. javanica ROS response 

suppression
Lin et al., 2016

13. C-type lectin M. graminicola, M. 
incognita

Zhao et al., 2021
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successful interaction with hosts. Furthermore, RKNs being 
biotrophic parasites, require live plant cells for their feeding. 
Therefore, they must protect their feeding sites from the host 
defence system. Pattern triggered immunity (PTI) is the primary 
defence response of plants against invading pathogens including 
RKNs, which recognizes pathogen-associated molecular patterns 
and damage-associated molecular patterns released from the 
disrupted host tissue. However, the well adapted plant pathogens 
can counteract PTI by secreting multiple effectors. Hence, PTI 
is further complemented by effector-triggered immunity (ETI) 
in which plants recognize the pathogenic effectors that deflect/
diffuse the PTI. During RKN attack, plants recognize the 
ascarosides secreted by pre-parasitic J2s which induces the PTI 
(Manosalva et  al., 2015; Sato et  al., 2019). Therefore, RKNs 
secrete various effectors in the plant apoplast and cytoplasm 
to interfere with PTI (Table  1). Calreticulin (MiCRT) is the 
first immune-modulatory effector identified from M. incognita 
which is localized to the plant apoplast where it suppresses 
PTI (Jaubert et  al., 2002b). Although its mode of action is 
unknown, it is proposed that MiCRT functions as a Ca2+ chelating 
agent. In the plant apoplast, it can prevent Ca2+ influx that 
may suppress the immune signalling. MiCRT silencing reduced 
the number of galls on plants suggesting its role in successful 
nematode establishment after root invasion (Jaouannet et  al., 
2013). Another effector called Mh265 from M. hapla is localized 
to the plant cell cytoplasm and has similar PTI-suppressive 
effects (Gleason et  al., 2017). Other than PTI, hypersensitive 
response (HR) is another important defence pathway in plants 
which restricts the spread of pathogens by rapid localized cell 
death at pathogen penetration site (Morel and Dangl, 1997). 
It is known that HR hampers GC formation, therefore for 
survival and successful parasitism, RKNs must suppress 
HR-mediated cell death (Kumar et  al., 2014). Various effectors 
play a crucial role in cell death suppression. In M. incognita, 
an effector called MSP-40, is localized to the plant cytoplasm 
and interacts with the mitogen-associated protein kinase pathway 
leading to the suppression of cell death that protects GCs during 
development (Figures  4A,B). Moreover, silencing of MiMsp-40 
resulted in a significant reduction in the number of galls 
indicating its essentiality for parasitism. MSP-40 is observed to 
be  conserved in four other RKN species suggesting it to be  an 
important effector for parasitism (Niu et  al., 2016). Another 
cytoplasm-targeted effector called ISE-5 secreted by parasitic 
J2s of M. incognita suppresses cell death along with basal immune 
response. Overexpression of Miise-5 in plants resulted in increased 
susceptibility to RKN infection indicating its importance in 
mediating parasitic success. MiISE-5 homologue is observed 
only in M. floridiens suggesting it to be  a specialized effector 
for limited RKNs (Shi et  al., 2018). Another effector called 
2G02 expressed by pre- and parasitic J2s of M. javanica is 
localized to the plant cell nuclei and is present in all the 
sequenced RKNs. It suppresses HR-mediated cell death and 
also reduces the jasmonic acid levels which ultimately enhances 
the nematode survival (Song et  al., 2021b). On the other hand, 
RKN effector GPP observed only in M. graminicola is localized 
to the plant nuclei where it suppresses cell death helping GCs 
to survive. The species specificity of GPP suggests the presence 

of unique infection processes in different RKNs. Silencing of 
Mggpp resulted in fewer adult females signifying its role in 
nematode development (Chen et  al., 2017).

During the early stage of RKN infection, rapid production 
of reactive oxygen species (ROS) is observed (Melillo et al., 2006). 
ROS play a crucial role as signalling molecules that activate 
additional immune responses. RKNs produce at least four effectors 
– a transthyretin-like protein TTL-5, C-type lectin, protein 
disulphide isomerase, and Mg16820 – that hinder the ROS 
response of hosts. TTL-5 studied in M. javanica and present in 
various species of RKNs is produced by parasitic J2s and shows 
strong interaction with the plant protein FTRc in the plastids. 
FTRc functions in redox regulation, a part of the antioxidant 
immune system (Vieira Dos Santos and Rey, 2006). It is seen 
that MjTTL-5-FTRc interaction increases the ROS-scavenging 
activity along with the suppression of PTI which increases the 
susceptibility of plants to RKNs. Silencing of Mjttl-5 resulted in 
fewer adult females implying its part in RKN development (Lin 
et  al., 2016; Figures  4A,B). Another effector in this context is 
C-type lectin that suppresses the ROS response and inhibits PTI, 
is secreted in the plant apoplast by parasitic J2s. Silencing of 
C-type lectin decreased the number of penetrating nematodes 
that suggests its importance in early RKN-plant interactions 
(Zhuo et  al., 2019). Recently, a direct interaction between M. 
incognita C-type lectin and plant catalase was observed. Catalase 
plays an essential role in H2O2 homeostasis, and its interaction 
with C-type lectin points to the fact that the RKNs manipulate 
the plant ROS response to establish parasitism (Zhao et al., 2021). 
In addition to these, protein disulphide isomerase, an apoplast-
localized effector, plays a crucial role in oxidative stress response. 
It is reported in M. incognita and interacts with stress associated 
zinc finger protein SAP12, which acts as a redox sensor under 
oxidizing conditions. Interestingly, SAP12 expression increases 
significantly during RKN attacks. Therefore, protein disulphide 
isomerase interaction with SAP12 can potentially regulate redox 
signalling in plants (Zhao et  al., 2020). Additionally, silencing 
of this effector resulted in the reduction of reproductive ability 
of nematodes hinting at reduced RKN fitness (Tian et  al., 2019, 
2020). Another effector called Mg16820 is reported only in M. 
graminicola. It is secreted by parasitic J2s in the plant apoplast 
and cytoplasm, where it suppresses the ROS synthesis. In the 
cytoplasm it interacts with dehydration stress inducible protein 
1 (DIP-1) that is a crucial abscisic acid responsive gene with 
functions in biotic and abiotic stress response. The interaction 
of Mg16820 with DIP-1 may result in suppression of biotic stress 
response helping RKNs to infect plant roots (Naalden et  al., 
2018). Other than PTI, cell death, and ROS response modulation, 
RKN effectors also interact with defence-related proteases in 
plants (Table  1). In M. chitwoodi, Mc1194 an effector expressed 
by pre-parasitic J2s interacts with plant defence cysteine protease 
RD21A. However, the results of this interaction on RD21A 
proteolytic activity are not yet tested experimentally (Davies 
et  al., 2015).

SvG effectors interfere with every major pathway of plant 
immunity. This allows the formation of GCs during early 
infection. Currently, the role of very few SvG effectors is known. 
Future investigations could reveal the functions of other SvG 
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effectors and how they support nematode parasitism. Silencing 
of these effectors shows various negative impacts on the RKN 
lifecycle that suggests the loss of fitness of nematodes to 
overcome active plant immunity. Moreover, the presence of 
species-specific and multi-species effectors indicates molecular 
variations in the RKN infection process. Besides the molecular 
functions of effectors, the RKN immunity network in plants 
is not well known. Presently, the knowledge about the nematode 
associated molecular patterns of RKNs, their immune receptors 
in plants, and the components of RKN-specific ETI is limited. 
Understanding this molecular network could definitely lay the 
groundwork for novel RKN-control strategies.

Hormonal, Transcriptional and Metabolic 
Changes for GC Ontogenesis
Plant immunity modulation is followed by metabolic and 
transcriptomic fluctuations. RKNs substantially affect the root 
morphology suggesting the manipulation of auxin biosynthesis. 
To achieve this, parasitic J2s secrete an enzyme called chorismate 
mutase (Lambert et al., 1999; Painter and Lambert, 2003; Huang 
et  al., 2005b; Long et  al., 2006). Chorismate mutase is also 
present in the plants’ plastids and is a part of the shikimate 
pathway (Romero et  al., 1995; Tzin and Galili, 2010). RKNs 
secrete their chorismate mutase in the plant cytoplasm during 
early infection which suppresses lateral root development and 

A

B

C

D

FIGURE 4 | Molecular effects of RKN effectors (A) Parasitic juveniles produce effectors in SvGs which modulates plant defence response and cell cycle allowing 
the formation of GCs. The effectors secreted by parasitic juveniles (shown by red hexagon) target various cellular components and pathways of plants. In the 
cytoplasm MSP-40 and chorismate mutase suppress the cell death and auxin biosynthesis, respectively. In the plastids, TTL-5 interacts with plant FTRc suppressing 
the plant ROS response. In the nucleus MSP-16 interacts with plant SCL-6. These interactions result in alteration of mitotic cell division and alternative splicing. 
(B) The expression dynamics reveals that these effectors are produced pre-parasitic and parasitic J2s. Real-time expression data from various articles is used to 
generate the illustrative patterns of effector gene expression across the different stages of RKN (Huang et al., 2005b, 2006b; Lin et al., 2016; Niu et al., 2016). The 
maximum expression for a given effector in a particular life-stage is considered as 10. Accordingly, expression at remaining life-stages is calculated which is less 
than 10. The bars depict these transformed values. Since, these are transformed values from different data sets, it is not possible to give error bars in this case. 
(C) Adult sedentary RKNs produce effectors in DG that help in maintaining GCs throughout the parasitism. Eff-1 interacts with multiple plant proteins in the nucleus 
leading to cell cycle modulation and RNA instability. Similarly, NULG-1 targeted to the nuclei also help in cell cycle modulation. In the cytoplasm, TCTP and Misp-12 
suppress the cell death and salicylic acid biosynthesis, respectively. These effectors and various others help in GC maintenance by suppression of cell death, plant 
defence response, and cell cycle modulation. (D) The expression profile suggests their maximum expression in J3/J4 and adult stages only. Real-time expression 
data from various articles is used to generate the graph (Xie et al., 2016; Zhuo et al., 2017; Godinho Mendes et al., 2021a,b). The maximum expression for a given 
effector in a particular life-stage is considered as 10. Accordingly, expression at remaining life-stages is calculated which is less than 10. The bars depict these 
transformed values. Since, these are transformed values are from different data sets, it is not possible to give error bars in this case.
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vascular cell differentiation, a phenotype similar to auxin 
deficiency (Aloni, 1995; Doyle and Lambert, 2003; Figures 4A, B). 
It is proposed that RKN chorismate mutase localized to the 
plant cytoplasm redirects the flux of chorismate from plastids 
to the cytoplasm. Since chorismate is the precursor of auxin 
in plastids, the altered flux results in the suppression of auxin 
biosynthesis arresting the lateral root development (Doyle and 
Lambert, 2003; Tzin and Galili, 2010; Figure 4A). The widespread 
presence of chorismate mutase in RKN species suggests that 
this enzyme is one of the key factors that modulate plant 
metabolism during infection. Apart from RKNs, plant pathogenic 
fungi Ustilago maydis also secretes chorismate mutase in the 
host plants during infection. It is observed that fungal chorismate 
mutase channels the flow of chorismate into phenylpropanoid 
pathway and prevents the production of salicylic acid (Djamei 
et  al., 2011). Therefore, it will be  interesting to study the 
function of RKN chorismate mutase through metabolic profiling 
of plants.

Further to hijack the plant cell cycle, RKNs take over plant 
transcription. A peptide termed 16D10 (also known as MSP-16) 
is secreted by parasitic J2s (Huang et  al., 2003). This short 
peptide is highly conserved across various RKN species and 
has a CLAVATA3/Embryo Surrounding Region-Related (CLE) 
protein domain. CLE peptides are ubiquitous plant peptides 
involved in stem cell homeostasis (Wang et al., 2016). Interestingly, 
nematodes are the only animals that produce CLE proteins. 
In plants, 16D10 interacts with transcription regulators  - SCL6 
and 21. SCL6 is involved in mitosis regulation, whereas SCL21 
has a role in phytochrome signalling and chitin elicitor perception 
(Day et  al., 2003; Yamada et  al., 2003; Bolle, 2004; Huang 
et  al., 2006a). The direct interaction of 16D10 with the mitosis 
regulatory protein has major repercussions on the plant cell 
cycle and could be  the reason for enhanced root development 
(Huang et  al., 2006b; Figures  4A,B). Moreover, silencing of 
16D10 showed a significant reduction in the number of galls 
and eggs across various RKN species. This suggests its 
fundamental role in parasitism and nematode development 
making it an attractive target for RKN control (Huang et  al., 
2006a; Yang et  al., 2013; Dinh et  al., 2014, 2015). Along with 
transcription regulators, RKNs impact the alternative splicing 
of plant transcripts with the help of an effector called EFF-18 
(Mejias et  al., 2021). In the plant nucleolus, it interacts with 
a ribonucleoprotein SmD1, a key component of spliceosomal 
machinery (Mejias et al., 2021). EFF18-SmD1 interaction directly 
alters the genes involved in auxin and abscisic acid signalling, 
RNA-binding proteins, and DNA-replication related proteins 
(Mejias et al., 2021). This suggests the pivotal role of EFF-18 in 
the reprogramming of plant cells for giant cell ontogenesis.

Apart from affecting immune, metabolic, and transcriptomic 
pathways, RKNs also remodel the cytoskeletal architecture of 
plant cells (de Engler et  al., 2004, 2010). Parasitic J2s secrete 
profilin (Leelarasamee et  al., 2018) which is a small protein 
that binds to actin monomers to regulate its homeostasis (Smant 
et  al., 1998; Pernier et  al., 2016). RKN profilin affects the 
polymerization of soluble actin (Leelarasamee et  al., 2018). 
This corroborates well with the presence of fragmented actin 
filaments in GCs (de Engler et  al., 2004; de Engler and Favery, 

2011; Liu et  al., 2016a). This indicates that RKNs reduce the 
actin network density in GCs to facilitate their feeding rate. 
Recently, a nucleus-targeted effector called Minc00344 was seen 
to interact directly with HUB-10, a kinesin light chain-related 
protein. It is known that HUB-10 is involved in maintaining 
the stability of cortical microtubules in Arabidopsis which 
ultimately help in maintaining the plant cell growth and shape 
(Liu et  al., 2016b; Ganguly et  al., 2020). Therefore, 
Minc00344-HUB-10 interaction may result in GC growth and 
shape modulation (Godinho Mendes et  al., 2021a). Since GCs 
are multinucleated and act like metabolic sink for RKNs, they 
require a high supply of water and other solutes for sustenance 
to support the feeding nematodes (Rodiuc et al., 2014). Parasitic 
J2s secrete 8D05 (also known as MSP-9) that interacts with 
a plant aquaporin called tonoplast intrinsic protein 2 (TIP-2) – 
a tonoplast-located water channel (Xue et  al., 2013). TIP-2 is 
involved in water transport by enhancing water permeability 
and is essential for the transport of urea and extracytosolic 
ammonia across the tonoplast membrane (Daniels et  al., 1996; 
Liu et  al., 2003; Leitão et  al., 2012; Xue et  al., 2013). As 
ammonia plays a principal role in plant metabolism, the 
regulation of its transporters is equally important for plant 
cell development (Loqué et  al., 2005). As GCs show high 
metabolic activity, increased solute concentration can result in 
high turgor pressure, thus requiring proper regulation to maintain 
cell integrity. Therefore, the interaction of MSP-9 with TIP-2 
suggests its role in regulating the transport of water and other 
nutrients across GCs (Xue et  al., 2013).

Though several other SvG effectors are known, their role 
in infection is yet to be  deciphered. A protein belonging to 
SXP/RAL-2 superfamily is identified in parasitic J2s of  
M. incognita (Tytgat et al., 2005). SXP-RAL-2 proteins described 
as being secreted by animal-parasitic nematodes into their hosts 
interact with the host immune system, however, its role in 
RKNs in yet unknown (Kobayashi et  al., 2007). An aspartic-
like protease is secreted by parasitic J2s in the plant apoplast. 
It is hypothesized to degrade the plant proteins involved in 
defence (Vieira et al., 2011). MSP-3 which shows high expression 
in parasitic juveniles has a putative pentein domain that may 
take part in the translational regulation and cell signalling. Its 
silencing resulted in reduced number of galls and mature 
females signifying its involvement in RKN development (Joshi 
et  al., 2020). Another protein known as MSP-2 produced by 
parasitic J2s of M. incognita contains the ShK toxin domain. 
Proteins with this domain are known to block the K+ channels. 
Therefore, MSP-2 is proposed to be  involved in blocking plant 
K+ channels. Silencing of Mimsp-2 causes substantial 
developmental retardation in RKN females implying its need 
in nematode development (Joshi et  al., 2019). Venom allergen-
like proteins (VAPs) are also synthesized by pre-and parasitic 
J2s (Ding et  al., 2000; Wang et  al., 2007). VAPs from animal 
parasitic nematodes are involved in host immunomodulation 
(Bower et  al., 2008). Furthermore, VAP from cyst nematode 
Globodera rostochiensis target the apoplastic cysteine protease 
Rcr3pim and results in the loss of basal immune response of 
host plants (Lozano-Torres et al., 2014). However, their functions 
in RKNs are still enigmatic. The silencing of VAP resulted in 
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the decline of RKN development and reproduction (Chaudhary 
et  al., 2019b). It further hampered the early-stage infection 
behaviour by altering the PCWDEs expression (Duarte et  al., 
2017; Chaudhary et  al., 2019a). This suggests its role as a 
regulator of PCWDEs. Expression of 2 VAPs was observed in 
M. graminicola trying to infect RKN-resistant rice plants, 
suggesting their function to counteract host immunity (Petitot 
et  al., 2020). Similarly, silencing of msp-20 in M. incognita 
had negative effects on PCWDEs expression. It also hampered 
nematode development, behaviour, and cellular physiology by 
disturbing various developmental signalling pathways 
(Shivakumara et  al., 2017; Somvanshi et  al., 2020). This clearly 
suggests the pleiotropic effects of effector silencing on RKN 
fitness (Somvanshi et al., 2020). Therefore, it will be  interesting 
to study in vivo functions of these effectors and targeting 
effectors with crucial molecular functions for RKN control.

RKN SvGs are active during the early stage of infection. 
To date, many effectors are studied at the pre-parasitic stage. 
However, the effectors released by parasitic J2s are still under 
investigation. A detailed experimental analysis of all these 
effectors is necessary to elucidate the molecular remodelling 
occurring in plant cells during the process of parasitism. Further, 
it is necessary to understand the transcriptional regulation of 
these effectors in RKNs. Detailed pan-omics analysis along 
with functional studies will provide a better insight into sptio-
temporal regulation and molecular mechanism of these effectors. 
Identification of master cis- or trans-regulatory elements of 
SvG effectors will help in controlling the RKN infection at 
early stages.

MAINTENANCE OF GCs IN LATE 
INFECTION REQUIRES SECRETIONS 
FROM DG

After becoming sedentary and initiating feeding site formation, 
RKNs undergo moulting through non-feeding J3, J4 and the 
adult female stage that start feeding on the GCs. During this 
period slowly SvGs functioning reduces and DG becomes active. 
DG effectors are involved in two major functions: plant cell 

cycle modulation and suppression of cell death (Table  2). 
EFF-1, a nuclear localized effector is expressed in J3/J4 and 
females of M. incognita and present in multiple RKN species 
(Jaouannet et  al., 2012). In the GC nucleus, it interacts with 
three plant proteins namely HUB-6, glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH), and universal stress protein (USP; 
Godinho Mendes et al., 2021b; Truong et al., 2021; Figure 4B). 
HUB-6 is an important transcription factor that regulates the 
cell cycle, plant development, and plant immune response (Li, 
2015). This suggests that HUB-6 is a major target for parasitism 
and the modifications upon binding EFF-1 abets nematodes 
to suppress plant defence, regulate the cell cycle, and maintain 
GCs (Godinho Mendes et  al., 2021b). GAPDH is one of the 
most important housekeeping enzymes. It is a moonlighting 
protein involved in glycolysis, apoptosis, autophagy, gene 
expression regulation, and response to stress (Tristan et  al., 
2011). It is known that cytoplasmic GAPDH re-localizes to 
the nucleus under oxidative stress and protects nucleic acids. 
The ROS response generated during RKN infection could target 
GAPDH to GC nuclei and the interaction of EFF-1 with 
GAPDH suggests an alteration in its nuclear function of nucleic 
acid protection (Truong et  al., 2021). USP is a multifunctional 
protein involved in biotic and abiotic stress responses and in 
the nucleus, it binds to RNA to protect it during environmental 
stress (Chi et  al., 2019). EFF-1-USP interaction in the nucleus 
suggests that it affects the RNA-protective function of USP 
which may facilitate transcriptional modulation in GCs (Truong 
et  al., 2021). Further transcriptomic study identified another 
effector localized to the GC nuclei, namely a small glycine 
cysteine-rich-1 (Table 2). This protein has no known functional 
domains and is highly expressed during J3 and J4 stages 
(Figure  4B). In plants, it inhibits cell death suggesting its role 
in maintaining GCs during non-feeding stages of parasitism. 
Additionally, its silencing showed a substantial decrease in the 
number of eggs indicating the reduced fitness of RKNs due 
to defects in GC functioning (Nguyen et  al., 2018). NULG-1 
expressed only in parasitic stages is a highly conserved effector 
across RKN species and its overexpression in plants increased 
their susceptibility to RKNs (Table  2). Further, its silencing 
resulted in fewer galls, eggs, and parasitic nematodes in roots 
thus underpinning its critical role in parasitism (Wu et  al., 

TABLE 2 | Experimentally identified effectors from the dorsal gland of various RKNs.

S. No. Effector
Functionally 
characterized in

Effector type Role in parasitism References

1. EFF-1 M. incognita Cell cycle modulator
Plant cell cycle 
modulation

Godinho Mendes et al., 2021b

2. NULG-1 M. javanica

Plant defence modulator

Plant defence 
suppression

Godinho Mendes et al., 2021a
3. Mo237 M. graminicola Chen et al., 2018

4. Mo289 M. graminicola
ROS response 
suppression

Song et al., 2021a

5. MSP-18 M. incognita
Cell death suppression

Grossi-de-Sa et al., 2019
6. SGCR-1 M. incognita Nguyen et al., 2018
7. TCTP M. enterolobi Zhuo et al., 2017

8. MiSP-12 M. incognita Plant hormone regulator
SA-biosynthesis 
suppression

Xie et al., 2016
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2012). Recently it was seen that NULG-1 interacts with a 
plant HUB-10 that is involved in the regulation of the plant 
defence response (Bürstenbinder et  al., 2013). The Hub-10 
mutant plants showed substantial increase in the number of 
RKN galls and eggs, clearly suggesting its involvement in 
defence against RKNs. The interaction of NULG-1 with HUB-10 
may neutralize its defensive actions aiding the RKN infection 
(Godinho Mendes et  al., 2021a; Figures  4C,D). An effector 
from M. graminicola called as Mo237 is secreted into plant 
nucleus and cytoplasm by J3 and J4 stages. This effector is 
observed in multiple RKN species and it interacts with 3 plant 
proteins – 1,3-β-glucan synthase component, cysteine-rich repeat 
secretory protein 55, and pathogenesis-related Betvl family 
protein – all of which are involved in plant defence. Interaction 
of Mo237 with these plant proteins results in suppression of 
plant-defence genes, cell wall callose deposition, and ROS burst 
signifying its role in the suppression of basal plant immunity 
during later parasitic stages. Mo237 overexpression in plants 
resulted in about 67% increase in the adult female number 
indicating its necessity in parasitism and RKN development 
(Chen et  al., 2018). Another effector Mo289 expressed by J3 
and J4 of various RKNs interacts specifically with a copper 
metallochaperone heavy metal-associated plant protein 04  in 
the host cytoplasm and nucleus. This interaction disrupts the 
activity of Cu/Zn superoxide dismutase resulting in overall 
suppression of ROS response. Further, it also results in suppression 
of cell death suggesting its role in maintenance of GCs. 
Overexpression of Mo289  in plants showed increased 
susceptibility to RKN infection, whereas RNAi of the same 
effector led to decrease in the number of females implying 
its importance in nematode development and parasitism (Song 
et  al., 2021a).

Although some effectors target nuclear processes, others 
remain specifically in the cytoplasm and aid in GC maintenance. 
Translationally controlled tumour protein (TCTP) is a highly 
conserved multifunctional eukaryotic protein involved in spindle 
formation, modulation of cell growth signalling pathways, and 
anti-apoptosis (Bommer, 2017). It is found in the secretions 
of animal-parasitic nematodes and helps them in reproduction, 
adaptation to stress, and modulation of the allergic inflammatory 
response (Gnanasekar et  al., 2002; Mak et  al., 2007; Meyvis 
et  al., 2009). In M. enterolobii, TCTP is highly expressed in 
J3s and secreted in the plant cytoplasm where it suppresses 
cell death (Figures  4C,D; Bellafiore et  al., 2008; Zhuo et  al., 
2017). Thus, MeTCTP is an important effector for GC 
maintenance. Another cytoplasmic effector named Misp-12 is 
expressed specifically in females. Its silencing resulted in a 
sharp decrease in J3/J4 and female population in plants implying 
its role in nematode maturation. Interestingly, it suppresses 
salicylic acid biosynthesis as it harms the nematode lifecycle 
(Xie et  al., 2016; Figures  4C,D).

Other than effectors described above, functions of a large 
number of DG effectors are yet to be  explored (Table  2). 
Overexpression of MSP-7  in plants accelerated the formation of 
GCs and increased the number of RKN eggs. It is speculated 
to have an important role in establishing a compatible interaction 
between hosts and nematodes (de Souza et  al., 2011). An 

apoplast-targeted effector 6D4 is secreted by the sedentary stages 
of RKNs. Its exact involvement in parasitism is unknown, however, 
it may have a role in giant cell maintenance (Vieira et al., 2011). 
MSP-18 is expressed in all the parasitic stages of nematodes 
with maximum expression in J3/J4. The silencing of MSP-18 
resulted in a significant decrease in the nematode population. 
Further, it also reduced the expression of pectate lyase and 
polygalacturonase suggesting its crosstalk with CWDEs 
(Shivakumara et al., 2017). Besides, MSP-18 overexpressing plants 
are more susceptible to nematode infection and it also suppresses 
the plant cell death that may help in GC maintenance (Grossi-
de-Sa et  al., 2019).

DG is highly active in the later stages of RKN parasitism. 
However, the molecular switch that suppresses SvGs and activates 
DG is yet to be  discovered. Recently, a DNA motif named 
Mel-DOG was identified upstream of many DG effectors 
suggesting it to be  their cis-regulatory motif. Although its 
functional characterization is still ongoing, it will be interesting 
to target such genomic motifs to suppress multiple genes using 
novel genome editing technologies that are being developed 
for parasitic nematodes. (Da Rocha et  al., 2021; Eves-van den 
Akker et  al., 2021; Kranse et  al., 2021). Possibility of targeting 
functionally similar and diverse genes for silencing in  
M. incognita using a fusion gene construct has been demonstrated 
recently (Banakar et  al., 2020; Hada et  al., 2020; 2021).

NON-OESOPHAGEAL EFFECTORS:  
A NEW LAYER OF COMPLEXITY TO 
ENDOPARASITISM

RKNs secrete some effectors from body parts other than oesophageal 
glands (Table  3). Amphids are the first non-oesophageal organ 
reported to secrete effectors (Semblat et  al., 2001). Amphids are 
the anterior sensilla of the RKNs. Amphidal secretions are thought 
to be  involved in chemoreception (Perry, 1996). A protein called 
Meloidogyne avirulent protein (MAP)-1 is a putative secretory 
protein from amphids (Semblat et  al., 2001; Castagnone-Sereno 
et  al., 2009) and is localized to the plant apoplast during early 
parasitism. It is hypothesized to be  involved in the induction 
of GCs (Vieira et al., 2011). Further bioinformatic analyses showed 
the presence of an endoglucanase domain in MAP-1 implying 
its involvement in cell wall digestion (Adam et  al., 2009). 
Furthermore, various repetitive regions are identified in MAP-1 
sequences which suggest its involvement in direct interaction 
with plant ligands and GCs wall. However, all these speculations 
remain to be  proved experimentally (Semblat et  al., 2001; 
Castagnone-Sereno et al., 2009). Another amphidal effector observed 
in M. hapla is MhTTL2 containing a transthyretin-like protein 
domain. However, its exact function in parasitism is not understood 
yet (Gleason et al., 2017). Another interesting effector, Minc00801 
is observed in the rectal glands of adult females (Rutter et  al., 
2014). Since rectal glands function in producing the egg mass 
matrix, this effector may have some role in nematode reproduction. 
Corroboratively, silencing of Minc00801 resulted in a substantial 
decrease in the number of galls suggesting its importance in 
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the overall RKN lifecycle (Danchin et  al., 2013). In M. javanica, 
a fatty acid and retinol binding protein (FAR-1) is secreted by 
sedentary stages into host plants through the cuticle. Overexpression 
of Mjfar-1 in tomato resulted in enhanced susceptibility of plants 
to RKNs and produced larger GCs compared to control. Moreover, 
its silencing showed reduction in RKN development. It was also 
observed that Mjfar-1 overexpression resulted in substantial 
downregulation of JA-responsive genes, implying its role in 
suppression of immune response (Iberkleid et al., 2013). Recently, 
a macrophage migration inhibitory factor (MIF) was identified 
to be secreted from the hypodermis of RKNs (Zhao et al., 2019). 
MIFs are well studied in mammals and are known to be involved 
in inflammation and innate immune responses (Xu et  al., 2013). 
In animal-parasitic nematodes, MIF-like proteins are involved in 
the immune escape from host cells. MIF of hookworms interacts 
with CD74 of human cells which facilitates larval infection and 
development (Cho et  al., 2007). In parasitic J2s their expression 
is maximum, and they are secreted in the giant cells. In planta, 
MIF interacts with annexin, a central regulator of plant growth 
and stress signalling. It also suppresses PTI as well as PCD 
which can aid in nematode infection (Zhao et  al., 2019).

Non-oesophageal effectors of RKNs are still an uncharted 
area of research. With new transcriptomic datasets and 
microscopy techniques, these effectors are being discovered. 
The molecular complexity evolved by RKNs to hijack plant 
cells is intriguing. Such a high degree of evolution makes 
these microscopic worms one of the most successful plant 
endoparasites and very challenging to understand.

SPECIES-SPECIFIC AND HOST-SPECIFIC 
EFFECTOR DYNAMICS

The genus Meloidogyne is very diverse and divided into 3 
groups based on the mode of reproduction (Karssen and Moens, 
2006). However, the overall infection process of all the species 
is similar. Various effectors of M. incognita are highly conserved 
across different species suggesting a common infection 
mechanism (Da Rocha et al., 2021). Nevertheless, some species 
show the presence of unique effectors. The 48 non-redundant 
SvG effectors and 34 DG effectors of M. incognita are conserved 
in M. arenaria, M. javanica, and M. enterolobii, all of which 
are polyploid and parthenogenetic species. On the other hand, 

only 25 SvG effectors and 8 DG effectors are conserved in 
M. hapla which is diploid and facultative parthenogenetic RKN. 
This suggests a probable link between the mode of reproduction 
and effector diversity in RKNs (Da Rocha et al., 2021). Currently, 
the genomic data is available for only 7 species which makes 
it difficult to identify any host-specific or species-specific 
effectors. Still a limited number of such effectors are observed. 
GPP, an SvG effector, is observed only in M. graminicola which 
infects plants of Poaceae family, suggesting a plant-specific 
infection pathway (Chen et  al., 2017). Similarly, M. chitwoodi 
has a cysteine protease inhibitor that helps in inhibition of 
host defence proteases (Davies et al., 2015). M. chitwoodi mainly 
infects plants of Solanaceae family, therefore the presence of 
a unique effector suggests a host-specific infection mechanism. 
Similarly, DG-encoded MSP-6 is also unique to M. incognita, 
the function of which is yet undetermined (Da Rocha et al., 2021).

In case of resistant and susceptible RKN plants, changes in 
the effector dynamics are observed. In RKN resistant rice plants, 
effector genes of M. graminicola were expressed for a relatively 
long time as compared to susceptible plants. Moreover, two 
VAPs were specifically induced during infection of resistant plants 
reflecting their necessity to counteract host defence system (Petitot 
et  al., 2020). Similar results were also observed in case of  
M. incognita feeding on susceptible and resistant tomato plants. 
In case of resistant plants substantial upregulation of various 
effectors was observed suggesting their involvement in establishing 
infection (Shukla et  al., 2018). This suggests that RKNs can 
tweak their effector expression according to the host plant. It 
will be interesting to study the effector dynamics of RKN species 
in different host and non-hosts as well as resistant and susceptible 
plant lines to further understand the effector diversity 
and dynamics.

CONCLUSION AND FUTURE 
PROSPECTS

RKNs are unique plant-parasitic nematodes that cause severe 
losses in plant productivity. It is known that for successful 
parasitism, RKNs secrete a repertoire of effectors that manipulate 
host physiology, development and immunity. These effectors are 
expressed in a timely manner during infection. As pre-parasitic 
J2s invade the cell wall barrier, a myriad of CWDEs is upregulated 

TABLE 3 | Experimentally identified non-oesophageal effectors from various RKNs.

S. No. Effector Secreted from Observed in Putative functions References

1. MAP-1 Amphids M. incognita Induction of GCs, 
Digestion of cell wall

Semblat et al., 2001; 
Castagnone-Sereno et al., 2009; 
Vieira et al., 2011

2. TTL-2 M. hapla – Gleason et al., 2017
3. Minc00801 Rectal gland M. incognita Involved in RKN 

reproduction
Rutter et al., 2014

4. FAR-1 Cuticle M. javanica JA-suppression Iberkleid et al., 2013
5. MIF Hypodermis M. incognita Suppression of PTI and 

cell death
Zhao et al., 2019
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during eggs to pre-parasitic J2 transition. Once inside the root, 
RKNs become sedentary, undergo moulting, and initiate GC 
progression. These developmental changes are demarcated by a 
sharp increase in the expression of secretory enzymes and proteins 
involved in stress tolerance and plant immunity modulation 
(Da Rocha et  al., 2021). Most of the studies till date have 
focussed on the effects of a single effector at a time. However, 
it is evident that RKNs deploy multiple effectors to achieve 
parasitism and we  need to look at the orchestral effect of all 
the effectors in order to elucidate their infection process. Recently, 
for the first-time multiple effector silencing was achieved in M. 
incognita using a fusion gene construct to silence functionally 
diverse genes (Hada et  al., 2021). Simultaneous knockdown of 
three effectors namely, MSP-1, 18, and 20 resulted in the reduced 
nematode burden in plants. Furthermore, the fusion gene construct 
showed better performance than single gene knockdown. Thus, 
this strategy opens the door for simultaneous knockdown of 
multiple functional genes of RKNs to develop highly resistant 
plants (Hada et  al., 2021). Moreover, a few months back in a 
ground-breaking report, delivery and expression of exogenous 
nucleic acids in juvenile and adult plant-parasitic nematodes 
was shown (Kranse et  al., 2021). This research builds the 
foundation for genetic manipulation of plant-parasitic nematodes 
and opens up a huge avenue to study the molecular biology 
of the sedentary endoparasitic nematodes that threaten the 
global agriculture.

From the available reports, we have obtained several exciting 
molecular dynamics that happen during the parasitism through 
effector molecules not only in the plants but also in the nematodes. 
Interestingly, the expression profile of candidate effectors in the 
nematode life cycle sheds light on their specific function(s). 
For example, the tactics by which RKNs hijacks the plant cell 
cycle, metabolism, and suppress defence to promote growth 
and reproduction is exciting and systematically programmed. 
In this respect, the functions of effectors secreted by SvGs and 
DG are well coordinated. It will be  interesting to know whether 
such molecules are present in other plant and animal nematodes. 
Molecular insights obtained from species-specific and host-specific 
effectors will reveal unique parasitism pathways. Furthermore, 
early-stage carbon assimilation by pre-parasitic juveniles makes 
them susceptible to root surface mediated RNAi control strategies. 
We  suggest the following studies will be  very much relevant 
and necessary on RKNs and plants concerning their compatible 
and non-compatible interactions

 1. Role of RKN effectors in host and non-host plants to 
unravel specificity.

 2. Profiling of effector expression during the infection process 
in diverse hosts prior to root entry to understand the 
importance and role of PCWDE isoforms.

 3. Deciphering the rationale for the presence of such large 
number of effectors across RKN species.

 4. Characterization of promoters, cis/trans regulators and other 
transcriptional regulators of RKN effectors and their 
secretion/activation.

 5. Nematode associated molecular patterns and discovery of 
elicitors and their perception by plants to activate specific 
defence in nematode-resistant lines.

 6. Development and utilization of tools for functional 
characterization of nematode molecules.

 7. Retrograde signalling in nematode.
 8. Understanding and employing simultaneous knockdown of 

multiple effector genes of RKNs to increase plant protection.
 9. Utilization of RKN-inducible root specific promoters to 

generate novel root mediated RNAi plants.
 10. RKN genome sequencing for identification of species-

specific effectors.

Since effectors are the implacable molecular weapons that 
RKNs harbour to invade the plant, it is extremely important 
to understand their functions to design counter-strategies against 
their infection to control losses and increase the productivity 
in agricultural and horticultural crops.
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