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More and more studies have focused on responses of ecosystem carbon cycling to
climate change and phenological change, and aboveground net primary productivity
(ANPP) is a primary component of global carbon cycling. However, it remains unclear
whether the climate change or the phenological change has stronger effects on ANPP.
In this study, we compared the effects of phenological change and climate change
on ANPP during 2000–2013 across 36 alpine grassland sites on the Tibetan Plateau.
Our results indicated that ANPP showed a positive relationship with plant phenology
such as prolonged length of growing season and advanced start of growing season,
and environmental variables such as growing season precipitation (GSP), actual vapor
pressure (Ea), relative humidity (RH), and the ratio of GSP to ≥5◦C accumulated
temperature (GSP/AccT), respectively. The linear change trend of ANPP increased with
that of GSP, Ea, RH, and GSP/AccT rather than phenology variables. Interestingly, GSP
had the closer correlation with ANPP and meanwhile the linear slope of GSP had the
closer correlation with that of ANPP among all the concerned variables. Therefore,
climate change, mainly attributed to precipitation change, had a stronger effect on ANPP
than did phenological change in alpine grasslands on the Tibetan Plateau.

Keywords: green-up date, growing season length, warming, precipitation, alpine ecosystem, Tibetan Plateau

INTRODUCTION

Aboveground net primary productivity (ANPP) is a primary component of global carbon cycling
in terrestrial ecosystems and understanding its drivers has long been a goal of ecology (Wu et al.,
2011; Robinson et al., 2013). Climate change, especially warming and precipitation change, is a
vital abiotic variable in driving ANPP variations (Rustad et al., 2001; Wu et al., 2011). More
and more studies have analyzed responses of ANPP to warming and precipitation variations
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(Klein et al., 2007; Wu et al., 2011; Wang et al., 2012; Fu Z. et al.,
2015). Warming and water availability not only directly affect
plant physiology related to plant photosynthesis and in turn plant
photosynthesis (Fu G. et al., 2015) but also indirectly affect plant
growth by altering nitrogen availability, species composition,
and plant phenology (Wan et al., 2005; Wang et al., 2012).
The net effect of climate change on ANPP is dependent on
the relative strength of climate change-induced direct effect and
indirect effect on ANPP. Many studies have indicated that the
effect of precipitation change on ANPP is stronger than that of
warming (Wu et al., 2011; Shen et al., 2014), while some other
studies have found quite the contrary results (Wang et al., 2012).
Therefore, it remains unclear on the relative effects of warming
and precipitation change on ANPP.

Plant phenology (e.g., start of growing season, SGS; end of
growing season, EGS; and length of growing season, LGS), as
a critical aspect of biological systems (Dorji et al., 2013), is
an important biotic variable in affecting ANPP (Berdanier and
Klein, 2011). A growing number of studies have focused on
the correlations between plant phenology and plant productivity
(Parmentier et al., 2011; Miller and Smith, 2012; Kross et al.,
2014), while there are no consistent findings, with positive
(Wu et al., 2012), negative (Jia et al., 2010), or no effects
(Parmentier et al., 2011; Zhu et al., 2017) of prolonged LGS on
plant productivity. Plant phenology itself is sensitive to climate
change, and both warming and water availability can alter plant
phenology (Prieto et al., 2009; Chen et al., 2011; Shen et al., 2011;
Westergaard-Nielsen et al., 2017). These diverse findings imply
that the effects of plant phenology on plant productivity can be
regulated by climate changes (Wu et al., 2012; Wang et al., 2017).
Moreover, these previous studies have mainly focused on gross
primary production, net primary production, and net ecosystem
production (Piao et al., 2007; Zhao and Liu, 2012; Takagi et al.,
2015) rather than ANPP (Baptist et al., 2010; Berdanier and
Klein, 2011). Therefore, the effects of plant phenology on ANPP
remains unclear.

The Tibetan Plateau is one of the most sensitive regions
to climate change and is mainly covered by alpine grasslands.
A large number of studies have examined plant phenological
changes and their driving mechanisms related to climate change
in alpine grasslands on the Tibetan Plateau (Piao et al., 2011;
Shen, 2011; Cong et al., 2012; Dorji et al., 2013; Ding et al.,
2016; Ganjurjav et al., 2016b). However, only a few studies
have compared the effects of climate change and phenological
change on productivity (i.e., gross primary productivity, net
primary productivity, and net ecosystem productivity) in alpine
grasslands on the Tibetan Plateau (Yang et al., 2015; Wang et al.,
2017; Zhu et al., 2017), and no studies have investigated the
responses of ANPP to climate change and phenological change.
Alpine grasslands are main pasture, and the ANPP in alpine
grasslands plays vital roles in sustainable development of pastoral
livestock industry on the Tibetan Plateau. Therefore, in this
study, we analyzed the correlations of ANPP with phenological
variables (i.e., SGS, EGS, and LGS) and climate variables (e.g.,
precipitation and temperature). The main objective of this study
was to better predict future changes in ANPP under global change

by comparing the relative effects of climate and phenological
variables on ANPP in alpine grasslands on the Tibetan Plateau.

MATERIALS AND METHODS

Aboveground Biomass Sampling and
Aboveground Net Primary Productivity
Estimation
Articles published in 2000–2015 were searched using the Web
of Science and the China National Knowledge Infrastructure to
obtain aboveground biomass (AGB) in alpine grasslands on the
Tibetan Plateau. There were 195 AGB data (2.99–759.19 g m−2),
which were sampled during July–August of 2000–2013. There
were 123 sampling sites (Supplementary Figure 1). Moderate
Resolution Imaging Spectroradiometer (MODIS) NDVI data
(MOD13A3, Collection 6) during June–September of 2000–
2013 were downloaded. The relationship between AGB and
NDVI was developed (Supplementary Figure 2). Then, the
AGB were obtained during June–September of 2000–2013 in
alpine grasslands on the whole Tibetan Plateau using the models
mentioned above. Many previous studies, which were conducted
in alpine grasslands on the Tibetan Plateau, have indicated that
the maximum AGB during the growing season could be treated
as aboveground net primary production (ANPP; Klein et al.,
2007; Wang et al., 2012). Therefore, the maximum AGB during
June–September was treated as ANPP in this study.

MOD13A2 and Phenological Metrics
NDVI data were obtained from MODIS vegetation indices
product (MOD13A2, Collection 6). The spatial and temporal
resolutions of MOD13A2 NDVI are 1 km × 1 km and 16 days,
respectively. Images collected during 2000–2013 were used for
this study. The Timesat-SG method was used to estimate SGS,
EGS, and LGS (Cong et al., 2012). In this study, 20 and 50% was
used as the two dynamic thresholds to determine SGS and EGS,
respectively (Cong et al., 2012; Wang et al., 2017).

Climate Data
Climate data were obtained from 36 meteorological stations
(Figure 1) of the China Meteorological Data Sharing Service
System (Deng et al., 2013; Zhang et al., 2013). The climate
data included growing-season precipitation (GSP), actual
vapor pressure (Ea), relative humidity (RH), minimum
relative humidity (RHmin), vapor pressure deficit (VPD), air
temperature (Ta), minimum air temperature (Tamin), maximum
air temperature (Tamax), ≥5◦C accumulated temperature (AccT),
and the ratio of GSP to AccT (GSP/AccT). The GSP/AccT ratio
is a synthesized factor of temperature and precipitation, which
has been used in several previous studies (Wang et al., 2013;
Wu et al., 2014; Fu et al., 2018). The GSP, Ea, RH, RHmin, and
VPD could be used as variables related to water availability,
and Ta, Tamin, Tamax, and AccT could be used as variables
related to temperature.
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FIGURE 1 | Location of 36 meteorological stations on the Tibetan Plateau.

Statistical Analysis
Although spatial interpolation is a general approach to obtain
climate data at regional scale (Attorre et al., 2007; Hashimoto
et al., 2008), there remains some errors in the interpolated climate
data, especially for precipitation (Hashimoto et al., 2008; Fu et al.,
2017). Therefore, we only analyzed the effects of climate change
on aboveground productivity at the 36 meteorological stations
in this study. Simple linear regressions of ANPP with SGS,
EGS, LGS, GSP, Ea, RH, RHmin, VPD, Ta, Tamin, Tamax, AccT,
and GSP/AccT were performed using all the data, respectively.
Correlation coefficients of ANPP with SGS, EGS, LGS, GSP,
Ea, RH, RHmin, VPD, Ta, Tamin, Tamax, AccT, and GSP/AccT
were conducted for each site, respectively. The largest absolute
value of correlation coefficients of ANPP with these concerned
variables was treated as the dominated factor. The variation
of ANPP was partitioned using climate variables (i.e., GSP, Ea,
RH, RHmin, VPD, Ta, Tamin, Tamax, AccT, and GSP/AccT) and
phenological variables (i.e., SGS, EGS, and LGS) was partitioned
using varpart function. Linear regression coefficients (i.e., slope)
between ANPP, SGS, EGS, LGS, GSP, Ea, RH, RHmin, VPD, Ta,
Tamin, Tamax, AccT, GSP/AccT, and time series (i.e., from 2000 to
2013) were conducted to obtain the temporal changes of these
concerned parameters during 2000–2013 for each one of the 36
sites. The linear changes of ANPP, SGS, EGS, LGS, GSP, Ea, RH,
RHmin, VPD, Ta, Tamin, Tamax, AccT, and GSP/AccT were labeled
as slope_ANPP, slope_SGS, slope_EGS, slope_LGS, slope_GSP,
slope_Ea, slope_RH, slope_RHmin, slope_VPD, slope_Ta,
slope_Tamin, slope_Tamax, slope_AccT, and slope_GSP/AccT,
respectively. Simple linear regressions of slope_ANPP with
slope_SGS, slope_EGS, slope_LGS, slope_GSP, slope_Ea,
slope_RH, slope_RHmin, slope_VPD, slope_Ta, slope_Tamin,
slope_Tamax, slope_AccT, and slope_GSP/AccT were performed,

respectively. The variation of slope_ANPP was partitioned
using climate change (i.e., slope_GSP, slope_Ea, slope_RH,
slope_RHmin, slope_VPD, slope_Ta, slope_Tamin, slope_Tamax,
slope_AccT, and slope_GSP/AccT) and phenological change (i.e.,
slope_SGS, slope_EGS, and slope_LGS) was partitioned using
varpart function.

RESULTS

Climate Change
The change trends of climate variables are listed in
Supplementary Table 1. The GSP in seven sites showed
decreasing trends by −15.23 to −0.14 mm a−1, while that in
the other 29 sites showed increasing trends by 0.90–13.27 mm
a−1. The Ea in 20 sites showed decreasing trends by −0.02 to
−0.12 kPa a−1, while that in the other 16 sites showed increasing
trends by 0.001–0.04 kPa a−1. The RH in 35 sites showed
decreasing trends by −1.00 to −0.02% a−1, while that in the
other one site showed an increasing trend by 0.07% a−1. The
RHmin in all the 36 sites showed decreasing trends by −1.98
to −0.12% a−1. The VPD in only two sites showed decreasing
trends by −0.04 to −0.002 kPa a−1, while that in the other 34
sites showed increasing trends by 0.002–0.13 kPa a−1. The Ta in
seven sites showed decreasing trends by −0.07 to −0.01◦C a−1,
while that in the other 29 sites showed increasing trends by 0.02–
0.11◦C a−1. The Tamax in seven sites showed decreasing trends
by −0.09 to −0.01◦C a−1, while that in the other 29 sites showed
increasing trends by 0.00–0.18◦C a−1. The Tamin in seven sites
showed decreasing trends by −0.08 to −0.01◦C a−1, while that
in the other 29 sites showed increasing trends by 0.00–0.15◦C
a−1. The AccT in only two sites showed decreasing trends by
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−5.60 to −5.28◦C a−1, while that in the other 34 sites showed
increasing trends by 2.02–45.48◦C a−1. The GSP/AccT ratio in
14 sites showed decreasing trends by −0.01 to −0.0002 mm ◦C−1

a−1, while that in the other 22 sites showed increasing trends by
0.0001–0.02 mm ◦C−1 a−1.

Phenological Change and Aboveground
Net Primary Productivity Change
The change trends of phenology variables and ANPP are listed in
Supplementary Table 1. The SGS in 25 sites showed decreasing
trends by −2.53 to −0.05 day a−1, while that in the other 11
sites showed increasing trends by 0.10–1.54 day a−1. The EGS
in 16 sites showed decreasing trends by −1.83 to −0.07 day a−1,
while that in the other 20 sites showed increasing trends by 0.03–
1.62 day a−1. The LGS in 12 sites showed decreasing trends by
−2.23 to −0.06 day a−1, while that in the other 24 sites showed
increasing trends by 0.002–3.89 day a−1. The decreases in SGS
and, meanwhile, the increases in EGS resulted in the increases in
LGS in 13 sites. The decreased magnitudes of SGS were greater
than those of EGS, which caused the increases in LGS in the
other eight sites. The increased magnitudes of EGS were greater
than those of SGS, which resulted in the increases in LGS in
the other three sites. The increases in SGS and, meanwhile, the
decreases in EGS caused the decreases in LGS in four sites. The
increased magnitudes of SGS were greater than those of EGS,
which resulted in the decreases in LGS in the other four sites.
The decreased magnitudes of EGS were greater than those of SGS,
which caused the decreases in LGS in the other four sites.

The ANPP in 14 sites showed decreasing trends by −10.48
to −0.03 g m−2 a−1, while that in the other 22 sites showed
increasing trends by 0.01–8.62 g m−2 a−1.

Effects of Climate Change and
Phenological Change on Aboveground
Net Primary Productivity
The ANPP increased exponentially with Ea, RH, RHmin, GSP,
GSP/AccT and LGS, but decreased exponentially with VPD and
SGS (Figures 2, 3). The ANPP showed a significant quadratic
correlation with Ta, Tamax, and Tamin (Figure 2). The Ea, RH,
RHmin, GSP, VPD, GSP/AccT, Ta, Tamax, Tamin, SGS, and LGS
explained significantly 21, 37, 30, 39, 23, 10, 13, 12, 9, 20, and
9% variation of ANPP, respectively (Figures 2, 3). Moreover, the
correlation coefficients of ANPP with AccT (p = 0.181) and EGS
(p = 0.068) were not significant. The varpart analysis showed that
climate variables and phenological variables exclusivity explained
37 and 3% variation of ANPP, respectively, and they together
explained 15% variation of ANPP (Figure 4A); i.e., the variations
of ANPP were more explained by climate variables rather than
phenology variables.

The changes of ANPP were dominated by SGS at three sites, by
LGS at three sites, by water availability at 17 sites, by temperature
variables at 11 sites, and by GSP/AccT ratio at two sites (Figure 5);
i.e., phenology changes predominated ANPP changes at only six
sites, while climate changes predominated ANPP changes at 30
sites. The slope_ANPP increased significantly with increasing
slope_Ea, slope_RH, slope_RHmin, slope_GSP, slope_GSP/AccT,

and slope_Tamin (Figure 6). However, slope_ANPP was not
linearly correlated with slope_VPD (p = 0.141), slope_Ta
(p = 0.262), slope_AccT (p = 0.709), slope_SGS (p = 0.213),
slope_EGS (p = 0.106), slope_LGS (p = 0.940), and slope_Tamax
(p = 0.622). Climate change exclusively explained about 0.4%
variation of slope_ANPP, but phenology change did not
exclusively explain the variation of slope_ANPP (Figure 4B).

DISCUSSION

Effects of Climate Change on
Aboveground Net Primary Productivity
There was the most likely optimum temperature for ANPP in
alpine grasslands (Figure 2), which was in line with several
previous studies (Wang et al., 2013). This finding implied that
climate warming may not always increase ANPP in alpine
regions. In fact, there were diverse responses of ANPP to
climate warming in alpine regions, with increases (Wang et al.,
2012; Ganjurjav et al., 2015), decreases (Klein et al., 2007;
Ganjurjav et al., 2016a), or no change (Natali et al., 2012). These
diverse effects of climate warming on ANPP were attributed to
the following mechanisms. First, ANPP was more sensitive to
warming in the colder environment in alpine regions (Rustad
et al., 2001). Second, Shi et al. (2014) ascribed the relatively
low effect of warming on ANPP to the that alpine plants had
a low optimal temperature, high-temperature adaptation, and
strong resilience to short-term temperature fluctuations. Third,
warming generally resulted in soil drying (Lu et al., 2013), and the
lower limit of soil moisture was 11.8% for alpine grassland growth
(Ma et al., 2004). Warming-induced soil drying can dampen the
effect of increased temperature on ANPP by reducing leaf area
and inducing stomatal closure (Broeckx et al., 2014). Fourth,
warming-induced decreases in species richness and diversity can
influence warming effects on ANPP because ANPP had some
relations with species diversity (Ma et al., 2010; Wang et al., 2013;
Wu et al., 2014). Fifth, warming can accelerate plant maturity and
actually shorten LGS (Li et al., 2004). The diverse correlations
between plant productivity and LGS in this study could result in
inconsistent responses of ANPP to warming.

Precipitation has increased by 0.67 mm a−1 during 1961–2010
on the Tibetan Plateau (Li X. Y. et al., 2016) and will continue
to increase in the 21st century (Ji and Kang, 2013). Increased
precipitation will most likely increase ANPP in alpine grasslands
on the Tibetan Plateau (Figure 2). Likewise, ANPP increased
significantly with increasing GSP in alpine grasslands on the
Northern Tibetan Plateau (Wu et al., 2014). ANPP increased
with increasing GSP across the widely distributed temperate
and alpine grasslands of China (Ma et al., 2010). A previous
meta-analysis found that increased precipitation increased ANPP,
while decreased precipitation reduced ANPP at a global scale
(Wu et al., 2011).

Water availability had stronger effects on ANPP than did
temperature (Figures 2, 6), which was consistent with several
previous studies (Wu et al., 2011; Fu and Shen, 2016a; Xu et al.,
2016). For example, rainfall fluctuation had a more profound
effect on the ANPP dynamics than temperature variation in
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FIGURE 2 | Relationships (A) between aboveground net primary production (ANPP) and growing season average actual vapor pressure (Ea), (B) between ANPP and
growing season average relative humidity (RH), (C) between ANPP and growing season minimum RH (RHmin), (D) between ANPP and growing season total
precipitation (GSP), (E) between ANPP and growing season average vapor pressure deficit (VPD), (F) between ANPP and the ratio of GSP to accumulated
temperature (GSP/AccT), (G) between ANPP and growing season average air temperature (Ta), (H) between ANPP and maximum air temperature (Tamax), and
(I) between ANPP and minimum air temperature (Tamin).
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FIGURE 3 | Relationships (A) between ANPP and start of growing season (SGS) and (B) between ANPP and length of growing season (LGS).

FIGURE 4 | Varpart analysis, showing (A) the exclusive and shared effects of climate variables [growing season precipitation (GSP), Ea, RH, minimum RH, vapor
pressure deficit, air temperature, minimum air temperature, maximum air temperature, accumulated ≥5◦C air temperature, ratio of GSP to accumulated ≥5 air
temperature], and phenological variables [LGS, SGS, and end of growing season (EGS)] on ANPP, (B) the exclusive and shared effects of climate change (linear
slopes of GSP, Ea, RH, minimum RH, vapor pressure deficit, air temperature, minimum air temperature, maximum air temperature, accumulated ≥5◦C air
temperature, ratio of GSP to accumulated ≥5◦C air temperature), and phenological change (linear slopes of LGS, SGS, and EGS) on the changes in ANPP.

FIGURE 5 | The spatial distribution of the dominant variables of ANPP.
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FIGURE 6 | Relationships (A) between linear slope of ANPP (slope_ANPP) and that of growing season average Ea (slope_Ea), (B) between slope_ANPP and that of
growing season average RH (slope_RH), (C) between slope_ANPP and that of growing season minimum RH (slope_RHmin), (D) between slope_ANPP and that of
growing season average precipitation (slope_GSP), (E) between slope_ANPP and that of the ratio of GSP to accumulated temperature (slope_GSP/AccT), and (F)
between slope_ANPP and that of minimum air temperature (slope_Tamin).

the Tibetan alpine grasslands (Shi et al., 2014). Growing-season
maximum normalized difference vegetation index had a closer
correlation with water availability than temperature across the
Tibetan Plateau during 2000–2012 (Shen et al., 2014).

Effects of Phenological Changes on
Aboveground Net Primary Productivity
The effect of SGS on ANPP was stronger than that of EGS
and LGS across all the years and sites (Figure 3). Likewise,

the effect of SGS on annual net ecosystem production
was stronger than that of LGS in alpine shrubland on
the Qinghai-Tibetan Plateau (Li H. Q. et al., 2016). SGS
had a higher correlation with net primary production
than did EGS in alpine ecosystems on the Tibetan Plateau
(Yang et al., 2015; Wang et al., 2017). SGS had a greater
correlation with gross primary production than did EGS in
temperate deciduous broadleaved forests in North America
(Zhao and Liu, 2012).
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Across all the years and sites, ANPP increased with prolonged
SGS and LGS (Figure 3). Likewise, ANPP increased with LGS
across a suite of high elevation meadows in the United States
and Asia (Berdanier and Klein, 2011). Both advanced SGS
and prolonged LGS showed a positive effect on gross primary
production across eight larch forests in East Asia (Takagi et al.,
2015). In the Northern Hemisphere, LGS was strongly correlated
with gross primary production and net primary production (Piao
et al., 2007). However, there were spatial variations in SGS, EGS,
and LGS changes during the past 14 years, which could also be
observed by several previous studies (Piao et al., 2007; Shen et al.,
2011; Song et al., 2011). The spatial variations in phenological
changes, in turn, may partially result in diverse relationships
between ANPP and these three phenological variables among
all the 36 sites. Previous studies also found that responses of
plant productivity to LGS were dependent on sites (Berdanier
and Klein, 2011). For example, a prolonged LGS increased
aboveground biomass under warming conditions in a tallgrass
prairie, United States (Wan et al., 2005). There was no increase
in alpine snowbed ANPP in response to experimental prolonged
LGS (Baptist et al., 2010). Although experimental warming
extended LGS, there was no increase in gross primary production
and species-level coverage in response to experimental warming
in a semiarid grassland (Xia and Wan, 2012). In addition,
both extended LGS and advanced SGS resulted in less net
ecosystem productivity in a subalpine forest in the Colorado
Rocky Mountains (Jia et al., 2010).

These diverse responses of plant productivity to plant
phenological change could be contributed to the following
mechanisms. First, prolonged LGS, advanced SGS, and delayed
EGS may lead to a greater temporal species overlap, reduce
phenological complementarity, and increase water and nutrient
competition among species (Xia and Wan, 2012; Dorji et al.,
2013). This may cause species loss, which, in turn, increased
complexity on the relationships between plant productivity
and plant phenology, considering the diverse correlations
between plant productivity and species diversity in alpine
regions (Wang et al., 2012, 2013; Wu et al., 2014). Second,
plant intrinsic developmental capacities (e.g., periodic species
and aperiodic species) varied among species (Baptist et al.,
2010). Third, advanced SGS may lead to potential detrimental
effects of early frosts, which, in turn, result in a reduction
in plant productivity (Baptist et al., 2010). Fourth, plant
photosynthetic CO2 uptake depended on snowmelt (Jia et al.,
2010). Advanced SGS may result in earlier snowmelt, which,
in turn, affected plant productivity (Jia et al., 2010). Fifth,
SGS showed a negative correlation with GSP and Ea, and
LGS showed a positive correlation with GSP and Ea in this
study. This indicated that advanced SGS and prolonged LGS
can increase water availability during the growing season.
Accumulated precipitation within phenological duration was
positively related to plant productivity (Xia and Wan, 2012).
Sixth, plant growth in alpine regions is generally nitrogen-
limited (Fu and Shen, 2016b). A delayed SGS and shortened
LGS had a greater positive effect on ANPP by increasing
soil fertility than did an advanced SGS and prolonged LGS
(Baptist et al., 2010).

Stronger Effect of Climate Change on
Aboveground Net Primary Productivity
Than That of Phenological Change
Our findings implied that climate variables (especially GSP)
rather than phenological variables (i.e., LGS and SGS)
predominated ANPP changes across all the alpine grassland sites
on the Tibetan Plateau. These results were in line with previous
studies on the response of plant productivity to climate and
phenological changes. For example, shortened growing seasons
did not affect both gross primary production and net primary
production under experimental warming, which was attributed
to the seasonal variation of precipitation in an alpine meadow
on the Tibetan Plateau (Zhu et al., 2017). The changes in gross
primary production and species-level coverage were positively
correlated to the accumulated precipitation within phenological
duration but not the length of phenological duration in a
semiarid grassland (Xia and Wan, 2012). Gross primary
production did not increase with longer LGS, but increased with
growing-season temperature sum in the northeastern Siberian
tundra (Parmentier et al., 2011).

CONCLUSION

In this study, we compared the effect of phenological variables
and climate variables on aboveground net primary production
in alpine grasslands on the Tibetan Plateau. LGS and SGS
explained 9 and 20% variation of ANPP, while GSP, RH, Ea,
VPD, and GSP/AccT explained 39, 37, 21, 23, and 10% variation
of ANPP, respectively. Moreover, the linear slope of ANPP
showed a positive relationship with that of GSP (R2 = 0.24), RH
(R2 = 0.12), Ea (R2 = 0.18), and GSP/AccT (R2 = 0.15) but did not
correlate to that of LGS and SGS. Therefore, precipitation change
predominated the variation of ANPP and responses of ANPP to
climate change were greater than those of phenological change.
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