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Cannabis sativa L. is an annual, short-day plant, such that long-day lighting promotes

vegetative growth while short-day lighting induces flowering. To date, there has been

no substantial investigation on how the switch between these photoperiods influences

yield of C. sativa despite the tight correlation that plant size and floral biomass have

with the timing of photoperiod switches in indoor growing facilities worldwide. Moreover,

there are only casual predictions around how the timing of the photoperiodic switch

may affect the production of secondary metabolites, like cannabinoids. Here we use

a meta-analytic approach to determine when growers should switch photoperiods to

optimize C. sativa floral biomass and cannabinoid content. To this end, we searched

through ISI Web of Science for peer-reviewed publications of C. sativa that reported

experimental photoperiod durations and results containing cannabinoid concentrations

and/or floral biomass, then from 26 studies, we estimated the relationship between

photoperiod and yield using quantile regression. Floral biomass was maximized when the

long daylength photoperiod was minimized (i.e., 14 days), while THC and CBD potency

wasmaximized under long day length photoperiod for∼42 and 49–50 days, respectively.

Our work reveals a yield trade-off in C. sativa between cannabinoid concentration and

floral biomass where more time spent under long-day lighting maximizes cannabinoid

content and less time spent under long-day lighting maximizes floral biomass. Growers

should carefully consider the length of long-day lighting exposure as it can be used as a

tool to maximize desired yield outcomes.

Keywords: photoperiod, crop yield, life history, resource allocation, quantile regression, cannabinoids, floral

biomass, Cannabis sativa

INTRODUCTION

To maximize agricultural productivity, growers can manipulate, and optimize environmental
conditions, and thus the timing of development, to shift allocation patterns toward desired yield
outputs (Loomis et al., 1971; Stearns, 1992; Weiner, 2003, 2004). Crops grown indoors are unique
in that their environmental conditions, like light quality and quantity and temperature, can
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be strictly controlled, compared to traditional outdoor farms
where productivity is often limited by climatic conditions (Mills,
2012; Arnold, 2013; Banerjee andAdenaeuer, 2014; Barbosa et al.,
2015). Photoperiodic crops, plants that align their development
with the amount and timing of light they receive (Thomas
and Vince-Prue, 1996; Jackson, 2009), require a specific lighting
schedule to flower and thus produce harvestable materials. While
long-day plants require increased amounts of day light to trigger
reproductive growth, short-day plants demand decreased day
light to shift resource allocation from vegetative to reproductive
growth (Thomas and Vince-Prue, 1996; Jackson, 2009). Here
we explore how an economically important, short-day crop,
Cannabis sativa L., varies in yield when variation in the timing
of photoperiod shifts occur.

Originally from Asia, C. sativa grows vigorously outdoors
in a variety of latitudes and climates around the world
(Long et al., 2017; McPartland et al., 2018, 2019). However,
in countries where the plant is a controlled substance, C.
sativa growers are often restricted to indoor cultivation for
a variety of reasons including: climatic conditions may not
suitable for all-year, outdoor growing (e.g., Canada), regulations
that restrict outdoor cultivation (e.g., Greece, New Zealand,
United Kingdom), or a combination of these reasons (Misuse of
Drugs (Amendments) (Cannabis Licence Fees) (England, Wales
and Scotland) Regulations, 2018; Brown and Blackburn, 1987;
Misuse of Drugs (Medicinal Cannabis) Amendment Bill, 2018;
Folina et al., 2019). Various countries mandate indoor cultivation
of C. sativa which requires time, space, and energy to do so. In
Canada alone, ∼2 million square meters of space is licensed for
indoor C. sativa cultivation (Government of Canada, 2021) that
helps fuel this $2.2 billion industry (Statistics Canada, 2019). In
the United States, the amount of electricity used to cultivate C.
sativa is an estimated $6 billion dollars with lighting being the
primary source of that cost (Mills, 2012; Arnold, 2013). Thus,
optimizing the timing of development is key to minimizing costs
in this burgeoning industry.

While C. sativa is often cultivated for its phytocannabinoids
(i.e., secondary metabolites primarily concentrated in floral
tissue that provide various medicinal and intoxicating effects),
the plant can also be a source of oilseeds and fibers in its
primary stems (Small and Marcus, 2002). The majority of the
plant, particularly the upper surface of leaves and flowers, are
coated with trichomes (Happyana et al., 2013; Spitzer-Rimon
et al., 2019) that produce cannabinoid precursors and ultimately
cannabinoids (De Backer et al., 2012; Burgel et al., 2020).
Unpollinated pistillate flowers (i.e., sensimilla) are the portion
of the plant harvested for recreational and biopharmaceutical
use as these inflorescences contain up to 10 times more
cannabinoids in them than vegetative tissue (Bernstein et al.,
2019). Phytocannabinoid yield is driven by both the floral
biomass produced by a plant, as well as the concentration of
two important cannabinoids: delta-9-tetrahydracannabinol acid
(THCA) and cannabidiolic acid (CBDA) (ElSohly and Slade,
2005). While cannabigerolic acid (CBGA) accumulates during

Abbreviations: THCA, tetrahydrocannabinolic acid; CBDA, cannabidiolic acid;
CBGA, cannabigerolic acid; THC, Tetrahydrocannabinol; CBD, cannabidiol.

the vegetative phase growth in C. sativa and is the biosynthetic
precursor to THCA, CBDA, and other cannabinoids (Taura et al.,
1995, 1996; De Backer et al., 2012; Burgel et al., 2020), THCA
and CBDA are the most commercially valued and therefore most
focused on. While THCA and CBDA are the cannabinoids that
accumulate in plant tissue, only when these compounds are
heated do they become psychoactive 19−-tetrahydrocannabinol
(THC) and cannabidiol (CBD), respectively (Doorenbos et al.,
1971; De Backer et al., 2012; Chandra et al., 2017a). While the
concentration of cannabinoids in C. sativa is largely influenced
by environmental and horticultural factors (Knight et al., 2010;
Potter and Duncombe, 2012; Caplan et al., 2017; Magagnini et al.,
2018; Backer et al., 2019), genetics also plays a large role in the
diverse chemotypic outcomes of the plant (de Meijer et al., 2003;
Hillig andMahlberg, 2004; Lynch et al., 2016;Welling et al., 2016;
Campbell et al., 2020).

The life-cycle of industrial C. sativa can be divided into
four stages: (1) germination/cloning, (2) vegetative growth, (3)
flowering and seed formation, then, (4) senescence (Mediavilla
et al., 2001). During vegetative growth, plants are exposed to
at least 18 h of long-day lighting (Clarke, 1981) to promote
stem and leaf growth (Mediavilla et al., 2001). To induce floral
development and the conversion of CBGA to either THCA
or CBDA, the daylength is shortened to ∼12 h or less. Thus,
the scheduling of photoperiod switch (i.e., the timing of when
the photoperiod switches from long to short days) will drive
the size and number of flowers as well as the abundance of
cannabinoids to influence yield (Borthwick and Scully, 1954;
Bocsa and Karus, 1998; Potter, 2014). Various studies show that
cannabinoids accumulate in leaf and floral matter of drug-type C.
sativa between growth periods differently over time. Specifically,
while vegetative biomass (i.e., leaves, stems) slowly accumulates
small amounts of cannabinoids over a plant’s lifespan (Pacifico
et al., 2008; Aizpurua-Olaizola et al., 2016; Richins et al.,
2018), cannabinoid concentration in inflorescences increase
more intensely with more days spent in flowering growth (King
et al., 2004; Pijlman et al., 2005; De Backer et al., 2012; Aizpurua-
Olaizola et al., 2016; ElSohly et al., 2016; Richins et al., 2018;
Yang et al., 2020). In contrast, plants maintained in vegetative
lighting conditions continue to increase in vegetative biomass
and rarely flower (Borthwick and Scully, 1954; Moher et al.,
2021). As a result, indoor cannabis cultivators must carefully plan
out the timing of photoperiodic switches to meet the day length
demands of these photoperiod-sensitive plants. While scholarly
articles and the gray literature outline ideal lengths of time C.
sativa plants should spend in vegetative and flowering growth
periods, photoperiod durations vary between sources with no
unclear explanations as to how different photoperiod lengths
influence yield outcomes (Cervantes, 2006; Chandra et al., 2017b;
Goggins and Hennings, 2020). Given that C. sativa has two
valuable yield outputs, if cannabinoid production is not tightly
correlated with floral biomass allocation, lighting manipulations
that maximize floral biomass may not necessarily maximize
chemical yield and vice versa. To our knowledge, the industry
lacks information from controlled experiments to determine
the number of days a plant should spend in long-day lighting
to maximize yield. Using evidence-informed best practices in
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cannabis cultivation allows growers to minimize costs and
resources whilemaximizing indoor crop yield. Here we addressed
this gap in the literature to define photoperiod duration practices
that maximizing cannabinoid and floral yield in C. sativa.

Our analysis aimed to define how Cannabis sativa L. yield
varies under different photoperiodic switch practices when
cultivated indoors. To that end, we asked: How long do growers
place C. sativa plants under long-day lighting? Is the optimal
time spent under long-day lighting different for maximal floral
biomass production vs. maximal cannabinoid concentration in
inflorescences? What is the optimal length of time a C. sativa
plant should spend in long-day lighting, such that producers
maximize both components of yield and yet minimize time
spent in this growth stage? By using a meta-analysis approach to
address these questions, we can review the photoperiod practices
used by a broad range of C. sativa cultivators and find trends
in the yield outcomes they achieved. We argue that time spent
in vegetative growth (controlled by long-day photoperiod) is
positively correlated with cannabinoid content, but negatively
correlated with floral biomass, as long-day lighting periods favor
development of vegetative cannabinoids but delay reproductive
floral development.

MATERIALS AND METHODS

Review Protocol
We used several data sources to gather quantitative evidence
from the literature on the impact of the timing of when farmers
switched from long to short day photoperiods on the (1)
harvested biomass and (2) concentration of cannabinoid content
of C. sativa. To find relevant articles, we searched the following
search on ISI Web of Science database on February 2, 2021:
“Cannabis yield photoperiod,” “Cannabis lighting,” “Cannabis
flowering,” “Cannabis day length,” “Cannabis photoperiod,”
“Photoperiodic hemp” (Supplementary Table S1). We also
screened articles from our lab group and reference lists from
published articles for relevant publications.

To be included in our dataset, we reviewed each article
against inclusion criteria. Our inclusion criteria required that
studies of C. sativa report: (1) harvested yield as floral biomass
and/or cannabinoid concentration; (2) the number of days spent
under long day length lighting during the vegetative growth
stage; (3) the timing of a definitive switch between long day
(≥18 h of light) to short-day lighting (≤12 h of light) conditions
for C. sativa (rather than a gradual change in photoperiod
as might occur outdoors). To screen for this information,
we skimmed through abstracts for keywords, and if papers
appeared to contain information from our inclusion criteria,
we set them aside for further review. From the smaller subset
of papers, we then thoroughly read through the methods and
results sections to identify whether papers included the data
we needed. Studies that involved C. sativa cultivation under
outdoor, natural daylight environments were excluded from
this analysis as they lacked distinct photoperiod stages which
violated inclusion criteria 1 and 3. Additionally, studies that
reported lighting durations as a range of days (rather than a
single date) were excluded. A summary of our screening process

is provided in Supplementary Figure S1. We collected these
pieces of information from each paper, as well as sample size
and estimates of errors around the mean if available. Where
an author measured yield under experimentally manipulated
environmental conditions (e.g., addition of UV light), only yield
under the least manipulated condition was considered (i.e.,
generally designated as controls in a study).

Data Extraction
Although we considered a sizable collection of articles (n= 1,009
studies, Supplementary Table S1), 26 studies met our criteria
for inclusion. We extracted the mean, statistical error (usually
standard error or deviation), and sample size values for each
yield variable under lighting conditions from tables, text, or
from graphs using ImageJ software (NIH, imagej.nih.gov/ij/)
(Supplementary Datasheet S1). If multiple cultivars were used
within the control condition, we treated each cultivar as
independent for analysis. We then collated each yield measure
across control conditions with the number of days the plants
were kept under long-day lighting conditions. All reported floral
biomass measurements were converted to and expressed as
grams of dry inflorescences per plant, while all cannabinoid
measurements were expressed as percent cannabinoids in dried
inflorescence. If major cannabinoids were separated into THC
and THCA, or CBD and CBDA, we recorded the sum of these
cannabinoids as the total THC and CBD yield, respectively.
Although we collected information on cannabinoids other than
THC and CBD, there was not enough published data for a
robust analysis of minor cannabinoids. To identify outliers in our
long-day lighting duration and yield measures, we did Rosner’s
test (Rosner, 1983) using the “EnvStats” package (Millard, 2013)
in R (version 1.3.1093). Three data points were removed from
long-day lighting duration, two data points were removed from
floral biomass, and 15 were removed from CBD concentration.
Notably, the 15 CBD datapoints were all above 1% CBD;
therefore, the dataset analyzed for CBD concentrations reflect
values that range from 0 to 1%.

Regression Analysis
To determine the relationship between the number of days
of long-day lighting and the various yield components, we
performed three regression analyses: simple linear regression,
linear quantile regression, and non-linear quantile regression.
Quantile regression is a statistical method for estimating the
correlative relationship between variables based upon conditional
medians (Koenker and Bassett, 1978).While simple, least-square,
linear regression techniques use the mean to create a model
that minimizes sums of squared residuals, quantile regression
creates models using conditional medians to minimize sums of
squared residuals instead (Koenker and Geling, 2001). In other
words, linear regression uses the conditional mean of a dataset
to create a predictive model, a quantile regression at the 50th
quantile uses values surrounding the median of the dataset for
its modeling. Quantile regression is particularly robust in its use
on non-parametric datasets that exhibit heterogeneous variance
(Koenker and Bassett, 1978; Cade and Noon, 2003). Life-history
relationships often differ across probability distributions and so
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FIGURE 1 | Graphs comparing trendlines for linear vs. quadratic quantile regression (After this figure in Mills and Waite, 2009). When comparing yield from plants

grown across a wide range of environments, we cannot expect that plants will exhibit the same average outcomes under different environmental conditions. Thus,

quantile regression allows us to model the worst performance (5th quantile = dashed line), average performance (50th quantile = dotted line), and the best

performance (95th quantile = solid line), given a particular environmental state for both (A) linear and (B) quadratic models.

quantile regression allows us to explore how relationships change
at different bounds of a dataset (Figure 1; Scharf et al., 1998;
Cade and Noon, 2003). Moreover, linear quantile regressions do
not always best describe the relationships between the response
and predictor variables, so non-linear quantile regressions can
be used instead (Figure 1; Cade and Noon, 2003; Mills and
Waite, 2009). Here, we compare the ability of simple linear,
linear quantile, and non-linear quantile regressions to describe
the relationship of when photoperiod switches from long- to
short-day periods with yield.

We did statistical analysis in R using the packages “stats” (R
Core Team, 2020) and “quantreg” (Koenker, 2021). To describe
the relationship of duration of long day length and yield outcome
(e.g., floral biomass, THC concentration, CBD concentration),
we first performed simple linear regression using the “lm()”
function. Then, we used the “rq()” and “nlrq()” functions to
perform linear and non-linear quantile regressions, respectively,
for each parameter at three quantiles (τ ): 0.50, 0.75, and 0.95;
because we wanted to identify the timing of photoperiod switch
that maximized yield outcomes, we chose to create predictive
models of three quantiles ranging from “average,” “medium-
high,” to “high” performing levels of yield across studies. For the
linear regression analyses, the following model was used:

φ(Di) = α + β1(Di)+ ε (1)

For the non-linear quantile regression analyses, the following
quadratic model was used:

φ(Di) = α + β1(Di)+ β2(Di)
2
+ ε (2)

Here, φ (Di) represents the predicted yield outcome (e.g., floral
biomass, % THC, % CBD) as a function of Di–the number of
days spent under long day length. The regression coefficients
are represented as β1,2...n, the y-intercept is represented by α,
while ε represents the residual error.While the linear models may
find an overall, constant trend in how yield measures respond to
varying days under long day length lighting, the quadratic model
can provide a more nuanced model to predict yield and identify
a definitive optimum number of days to maximize each yield
outcome. Specifically, we solved for the global optima from our
quadratic equations to identify optimal days until photoperiod
switch that maximize specific yield outcomes.

RESULTS

Patterns in Photoperiod Switches and
Yield Outcomes
Growers cultivated C. sativa under a variety of durations under
long daylength light conditions which resulted in diverse yield
outcomes (Table 1). Growers cultivated plants under long day
length lighting at a range of 13–180 days, with the mean, median,
and mode number of vegetative days being 37.1, 30, and 21 days,
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TABLE 1 | Characteristics of photoperiod regimens and yield outcomes (floral biomass, % THC, % CBD) for C. sativa across studies (26 unique studies, including outliers).

Variables Sample size (n) Average Median Mode Range

Duration of long day lighting (days) 29 37.1 ± 4.1 30.0 21.0 13.0–180

Floral biomass (g/plant) 31 43.1 ± 14.3 24.1 27.8 8.6–445.2

THC (%) 53 12.3 ± 1.0 14.4 15.9 0.1–26.1

CBD (%) 48 2.3 ± 0.7 0.4 0.0 0–18.8

While photoperiod switch statistics were calculated using each unique long day lighting duration within and between studies, statistics for physical and chemical yield were calculated

based on all individually reported cultivars. Standard errors (SE) are presented for each average value.

TABLE 2 | Linear quantile regression of the timing of photoperiod switches with floral biomass (n = 29), THC concentration (n = 50), and CBD concentration (n = 31).

Yield measure Simple linear regression Correlation coefficients (SE) at the 50th, 75th, and 95th quantiles

0.50 0.75 0.95

Floral biomass −0.3180 (0.0976) [0.2555]** −0.2681 (0.0996)* −0.4236 (0.1503)*** −0.5772 (0.1422)***

THC −0.0748 (0.0487) [0.0271] −0.0955 (0.1208) −0.0057 (0.0819) −0.1907 (0.0955)

CBD −0.0009 (0.0016) [−0.0248] −0.0016 (0.0046) 0.0042 (0.0042) −0.0007 (0.0041)

Correlation coefficients (β) are reported for each yield measure at quantiles (τ ): 0.50, 0.75, and 0.95 with their standard error in parentheses, as well as the adjusted R-squared in square

brackets for the simple linear regression model. To avoid alpha inflation, p-values were reported for each relationship using α = 0.017 using Bonferroni’s correction (Bonferroni, 1936);

bolded values represent significant relationships with asterisks denoting levels of significance (* <0.017, ** <0.005, *** <0.001).

respectively. Jin et al. (2020) kept plants in vegetative growth
for 180 days, an identified outlier, which was at least double the
vegetative duration of other studies.

The amount of harvestable floral biomass between growers
varied at a range of 8.6–445.2 g, with the mean, median, and
mode being similar at around 12–16 g (Table 1). Rosner’s test
identified the study conducted by Knight et al. (2010) as an
outlier, obtaining a yield of 445.2 g per plant, at least three
times greater than yields of any other study in this dataset.
THC concentrations ranged from 0.1 to 26.1%, while CBD
concentrations ranged from 0 to 18.8% (Table 1). The mean,
median, mode for % THC were similar at values between 12.3
and 15.9%, these values for % CBD were also similar at values
between 0 and 2.3% (Table 1).

Regression Models for Predicting and
Optimizing Yield
Only floral biomass was significantly, negatively correlated with
timing of photoperiod switch when using both simple linear
regression [Adj.R2 = 0.2555, β = −0.3180, F(1,27) = 10.61, p
< 0.005] and linear quantile regression at the 50th at the 50th,
75th, and 95th quantile (β = −0.2681, p < 0.017; β = −0.4246,
p < 0.001; β = −0.5772, p < 0.001), even after adjusting for
multiple hypothesis testing (Bonferroni corrected using α =

0.017; Bonferroni, 1936). Despite these significant relationships,
the explanatory power of these models is low (Tables 1, 2;
Figure 2); highlighting the limitation of linear model approaches
as a tool to predict complex yield outcomes. These results also
show how simple linear regression models can lead to different
results than quantile linear regression. While the linear models
were able to predict floral biomass, they were not able to find
significant relations for cannabinoid content, nor identify any
optimum number of vegetative days to maximize yield (Table 1,

Figure 2). Next, we turned to quadratic quantile regression for
additional analysis.

The quadratic model results presented here provide the first
robust estimate of the optimal timing of photoperiod switch for
C. sativa developed using the scientific method (rather than trial
and error). The relationships between photoperiod switch and
each yield estimate were similar across the three quantiles of the
quadratic models of the timing of photoperiod switch and each
estimate of yield (Table 3, Figure 3). While the quadratic model
had little predictive power for the relationship between the timing
of photoperiod switch and floral biomass, the quadratic quantile
models identified various significant relationships between long
day lighting and either THC or CBD. Specifically, significant,
concave down parabolic relationships were found for THC and
CBD at the 50th and 75th quantiles. This model outperformed
the linear and linear quantile regression models. When we search
for the local maxima, the optimal time to switch photoperiods
to maximize THC is ∼42 days based on the 50th and 75th
quantile model, while CBD is maximized at about 49 days based
on the 50th quantile model and 50 days based on the 75th
quantile model.

DISCUSSION

When Do Growers Switch Photoperiod to
Induce Flowering?
Our results uncovered a lack of consistency in photoperiod
switch practices and the underuse of photoperiod as a
yield optimization tool. While various academic cultivators
recommend a vegetative growth period of 14–21 days (Cantin,
2017; Chandra et al., 2017b), the gray literature recommends
that vegetative growth continue for 3–16 weeks (Cervantes,
2006; Goggins and Hennings, 2020; Haze, 2021). Notably, the
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FIGURE 2 | Scatter plots of linear quantile regression results for long and short daylength durations (days) with floral biomass (g/plant) and cannabinoid concentration

(% THC and % CBD). Lines represent simple linear regression (LR) (solid) and 50th (dotted-dashed), 75th (dotted), and 95th (dashed) linear quantile regressions. (A)

The relationship between long daylength duration and floral biomass (g/plant). (B) The relationship between long daylength duration and THC concentration (% THC).

(C) The relationship between long daylength duration and CBD concentration (% CBD).
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TABLE 3 | Non-linear (quadratic) quantile regression of the timing of photoperiod switches with floral biomass (n = 29), THC concentration (n = 50), and CBD

concentration (n = 31).

Yield measure Non-linear regression equations at the 50th, 75th, and 95th quantiles

0.50 0.75 0.95

Floral biomass −0.0028a – 0.0284b + 30.45 −0.0017a – 0.2935b + 44.83 −0.0048a – 0.2424b + 61.64

THC −0.0127a*** + 1.069b*** – 4.062 −0.0133a*** + 1.116b*** – 1.561 −0.0065a + 0.4638b + 15.42

CBD −0.0005a*** + 0.0490b*** – 0.6386 −0.00028a + 0.0281b* – 0.1931 −0.0002a + 0.0169b – 0.3445

Correlation coefficients (β) are reported for each term in the quadratic model for each yield measure at quantiles (τ ): 0.50, 0.75, and 0.95. We have retained 4–5 significant digits to offer

accurate quadratic models. To avoid alpha inflation, p-values were adjusted for each a and b term in the quadratic model at α = 0.017 using Bonferroni’s correction (Bonferroni, 1936);

bolded values represent significant relationships with asterisks denoting levels of significance (* <0.017, ** <0.005, *** <0.001).

reasoning behind academic and grower recommendations was
not justified in the sources. We predict growers may choose
long day lighting periods based on their personal preference
and qualitative judgements on plant maturity that maximize
plant size but minimizes cultivation time and resources. Also,
as increased vegetative size is correlated with floral biomass and
therefore total amount of cannabinoids harvested (de Meijer
et al., 2003; Potter, 2014; Bernstein et al., 2019; Danziger
and Bernstein, 2021), growers may choose a vegetative growth
duration that maximizes plant size and branching which may
consequently maximize total cannabinoid content. Alternatively,
there is also the possibility that growers place plants under long-
day lighting durations in response to recommendations offered
by seed producers (i.e., vegetative durations on seed labels, on
producer websites, communicating directly with producer). The
diversity in long day lighting durations and the lack of clear
reasoning as to why growers choose to switch photoperiods
illustrates how conflicting cannabis cultivation standards are due
to a lack of empirical studies on best practices.

Using Regression Models for Describing
the Relationship Between Lighting
Duration and Yield Outcomes
When using long day lighting to predict yield outcomes, floral
biomass is best described using linear regression models (either
simple or quantile) and cannabinoid content is best described
using a quadratic quantile regression model (Figures 2, 3;
Tables 1, 2). For each linear quantile regression, floral biomass
was significantly predicted by the duration of long day lighting
at all three quantiles which lends to the validity of these
models. Floral biomass was better described using a linear model
and not a quadratic model which was consistent with other
studies that have found similar results although using different
predictive factors (Toonen et al., 2006; Potter and Duncombe,
2012; Eaves et al., 2020; Yep et al., 2020; Rodriguez-Morrison
et al., 2021). In contrast, our quadratic models to describe
the relationships between cannabinoid potency and long day
lighting duration are novel insights relative to previous studies
describing the relationship between environmental conditions
and chemical yield in C. sativa with linear models (de Meijer
et al., 2003; Toonen et al., 2006; Westerhuis et al., 2009; Potter
and Duncombe, 2012; Burgel et al., 2020; Petit et al., 2020).
Plant yield does not always linearly respond to environmental
conditions (Holmgren et al., 2011; Paine et al., 2012; Archontoulis

and Miguez, 2015) and so fitting yield data to a linear model can
lead to weak predictive power. Recent studies have suggested that
the relationship between C. sativa development over time is non-
linear, specifically quadratic or sigmoidal (Vanhove et al., 2017;
Stack et al., 2021). Given our models came back significant and
the support for using non-linear models to fit ecological data
(Park et al., 2005; Mills and Waite, 2009; Konduri et al., 2020),
using quadratic model to describe cannabinoid potency and
long day lighting is useful to this investigation. This highlights
how important using non-linear models to model ecological
trends are to uncovering relationships between environmental
conditions and plant outcomes, especially so in C. sativa where
linear models are still prevalent. As a result, we do not endorse
using linear simple or quantile regression models to predict yield
from the date when photoperiod was switched.

Optimizing Floral Biomass and
Cannabinoid Potency Using Best
Photoperiodic Switch Practices
The optimal duration of long day lighting exposure to maximize
floral biomass compared to THC and CBD concentration in
C. sativa are different. Specifically, floral biomass and long day
light duration shows a negative linear relationship suggesting that
shorter vegetative growth periods are preferable for maximizing
yield. In contrast, THC and CBD show a negative quadratic
relationship with long day length durations in which cannabinoid
potency only increases so much before yield beings to decrease
with increasing days to photoperiod switch. This trend in
cannabinoid development is consistent with what we currently
know about cannabinoid biosynthesis—C. sativa plants need
time to make CBGA that later converts to THCA and CBDA
but after a certain point, cannabinoid concentration begins to
decrease (Aizpurua-Olaizola et al., 2016; Burgel et al., 2020). We
hypothesize that this trend is due to THCA and CBDA possibly
being diluted in a larger amount of plant biomass when longer
vegetative periods are used to grow C. sativa. Alternatively, major
cannabinoids have been observed to degrade into cannabinol as
C. sativa ages (Ross and ElSohly, 1997; Jaidee et al., 2021).

Given that floral biomass and cannabinoid yield are
maximized at different long day lighting practices, this reveals a
conflict or trade-off where best growing practices to maximize
one component of yield will not necessarily optimize additional
components of yield. This tradeoff may be explained by the
lifespan of annual plants; given that annuals have a limited
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FIGURE 3 | Scatter plots of non-linear quantile regression results for long day length durations (days) with floral biomass (g/plant) and cannabinoid concentration (%

THC and % CBD). Lines represent 50th (dotted-dashed), 75th (dotted), and 95th (dashed) quantile regressions. (A) The relationship between long day length duration

and floral biomass (g/plant). (B) The relationship between long day length duration and THC concentration (% THC). (C) The relationship between long day length

duration and CBD concentration (% CBD).
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time to grow and reproduce before they die at the end
of the growing season, they must adjust how they partition
resources to vegetative vs. reproduction processes under different
environmental conditions (Cohen, 1976; Bazzaz et al., 1987;
Lundgren and Des Marais, 2020). Specifically, when growing in
stressful environments with a potentially reduced growing season
or poor growing conditions (e.g., delayed sowing date or seedling
emergence, or light conditions for photoperiodic plants), plants
can allocate resources earlier or more intensely to reproduction
to maximize their success before the end of the season (Zhou
et al., 2005; Franks et al., 2007; Hansen et al., 2013; Mason et al.,
2017). In contrast, plants growing in conditions that allow for
a long growing season will relatively allocate more resources
to vegetative processes and less to reproductive processes.
Alternatively, the trade-off we observed may be explained
using several plant defense hypotheses which all imply that
allocating resources to defense mechanisms, although necessary
for survival, are costly and divert resources away from other
traits like reproduction (Loomis, 1932; Rhoades, 1979; Herms
and Mattson, 1992; Mole, 1994; Stamp, 2003). Given that floral
biomass is a reproductive trait and cannabinoid production is a
defense trait, the resources that C. sativa plants allocate toward
one of these traits may be different under various environmental
conditions. Shorter vegetative growth periods may signal low
herbivory risk to plants and so they allocate less resources to
cannabinoid production and more to reproduction growth, with
the opposite being true for plants grown in longer vegetative
growth periods. These theories could explain the yield trade-
off observed here between cannabinoid concentration vs. floral
biomass in which C. sativa demonstrates a life-history strategy to
maximize cannabinoid content in longer vegetative periods and
maximize floral biomass in shorter vegetative periods. Growers
must then make the careful decision of choosing a vegetative
photoperiod duration that maximizes one yield measure or
optimizes each yield measure despite trade-offs in both.

Based on our findings, growers should keep plants in
vegetative growth for as few days as possible to strongly
establish the plant (the minimum number of days recorded
in our study was 13) to optimize biomass production. The
decreasing relationship between floral biomass and vegetative
growth duration illustrates how C. sativa can plastically
respond to particular environmental conditions; specifically,
how photoperiod can be used to maximize floral biomass. If
the goal is to maximize cannabinoid potency, this data shows
that growers should keep plants in the vegetative stage for
longer durations up until 50 days. The existing literature shows
that growers, on average and most commonly, cultivate plants
under long day lighting that fits within this window; however,
various growers maintain vegetative growth for beyond 50
days (Table 1, Supplementary Datasheet S1). Despite growers
potentially missing out on higher potential yield based on
our models, cannabinoid potencies overall for studies included
in our sample are consistent with C. sativa cultivated in
the last decade (Richins et al., 2018; Chandra et al., 2019;
ElSohly et al., 2021).

When choosing the yield outcome to optimize in C. sativa,
growers must consider that industrial yield priorities change
in response to the legal limits to carrying and consumption.
Canada, for instance, permits residents to carry up to 30 g
of dried C. sativa per day but does not regulate the
concentration of cannabinoids in the prescription (and this
weight-based approach seems to be the norm for the majority
of North America) (Cannabis Act, 2018; Lancione et al., 2020).
In such a system, cultivators would benefit from growing
plants using photoperiodic schedules that maximize biomass
yield, not cannabinoid yield. In contrast, professionals who
prescribe C. sativa prescribed for medicinal use often suggest
consumption based on cannabinoid concentration (i.e., mg
of THC or CBD per serving) compared to grams consumed
(Devinsky et al., 2018; Health Canada, 2018; MacCallum
and Russo, 2018; Stockings et al., 2018; Millar et al., 2019;
Laczkovics et al., 2021). Here, photoperiodic schedules that
optimize cannabinoid concentration is more valuable than
maximizing yield.

While this study reveals an interesting path forward for
maximizing yield in C. sativa, there are a couple features of
our analysis that limit our generalizations. First, our dataset
came from indoor lab facilities where C. sativa cultivation
was primarily completed by academic scientists. Research
horticultural practices may not parallel the practices of C.
sativa commercially or recreationally grown by horticulturalists.
Further, although we only included control condition plants
in this analysis, differences in horticultural and environmental
conditions could create extraneous variation in yield outcomes
between studies. Moreover, our study specifically looked at
the photoperiod schedules of indoor growers, thus our results
cannot be applied to predict how outdoor, natural seasonal
day length influences yield. We also removed outliers from
our dataset which decreased the range of long day lighting
conditions and yield outcomes we could include in our model;
therefore, our model is only applicable to yield outcomes and
long day length lighting durations within this particular range.
Most notably, our model for predicting CBD concentration is
only applicable to concentrations below 1% and we encourage
future researchers to explore how plants that produce high
concentrations of CBD respond to the timing of photoperiodic
switches. Lastly and most importantly, although this analysis
describes yield outcomes as solely a result of long day lighting
duration, we could not control for genetic differences between
cultivars that extraneously influenced our variables of interest.
Different cultivars can have different recommended number
of vegetative days and have varying limits on how much
biomass and cannabinoids they can produce due to genetics and
environmental conditions. As a result, cultivar differences are a
source of variability in our study and future work on this topic
should control for genotype. We encourage future growers to test
the hypotheses we have proposed, namely that shorter periods
of vegetative growth will maximize floral biomass and that
intermediate periods of vegetative growth maximize cannabinoid
concentrations in plants. This serves as a solid call-to-action, to
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explore how to consistently produce plant-based medicines using
photoperiod as one horticultural management tool.

CONCLUSION

In conclusion, our analysis predicts that floral biomass and
cannabinoid concentration of C. sativa can be maximized by
growing plants under different long day length lighting durations:
floral biomass is optimized when long day lighting duration
is minimized, THC concentration is optimized at 42 days of
long day lighting, and CBD in low CBD plants is optimized
a 49–50 days of long day lighting. As yield outcomes are
maximized at differing durations, growers must make careful
decisions onwhen to switch photoperiod to optimize themultiple
yield measures of C. sativa. Quantile regression is an easy and
useful way of modeling the relationship between environmental
conditions and crop yield that should be used more frequently
to predict C. sativa yield outcomes, especially so at differing
performance quantiles. There needs to be a continued effort
to define best practices in C. sativa cultivation not only to
minimize cultivation costs, but to consistently produce quality
plant product.
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