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The maximizing of water use efficiency (WUE) and radiation use efficiency (RUE) is vital
to improving crop production in dryland farming systems. However, the fundamental
question as to the association of WUE with RUE and its underlying mechanism under
limited-water availability remains contentious. Here, a two-year field trial for maize
designed with five progressive soil drying regimes applied at two different growth stages
(three-leaf stage and seven-leaf stage) was conducted during the 2013–2014 growing
seasons. Both environmental variables and maize growth traits at the leaf and canopy
levels were measured during the soil drying process. The results showed that leaf
WUE increased with irrigation reduction at the early stage, while it decreased with
irrigation reduction at the later stage. Leaf RUE thoroughly decreased with irrigation
reduction during the progressive soil drying process. Aboveground biomass (AGB), leaf
area index (LAI), a fraction of absorbed photosynthetically active radiation (fAPAR), and
light extinction coefficient (k) of the maize canopy were significantly decreased by water
deficits regardless of the growth stages when soil drying applied. The interrelationships
between WUE and RUE were linear across the leaf and canopy scales under different
soil drying patterns. Specifically, a positive linear relationship between WUE and RUE
are unexpectedly found when soil drying was applied at the three-leaf stage, while
it turned out to be negative when soil drying was applied at the seven-leaf stage.
Moreover, the interaction between canopy WUE and RUE was more regulated by
fAPAR than LAI under soil drying. Our findings suggest that more attention must
be paid to fAPAR in evaluating the effect of drought on crops and may bring new
insights into the interrelationships of water and radiation use processes in dryland
agricultural ecosystems.

Keywords: fAPAR, leaf area index (LAI), maize, progressive soil drying, RUE, WUE

Abbreviations: ASWC, available soil water content; AGB, aboveground biomass; DAS, days after sowing; ET,
evapotranspiration; fAPAR, fraction of absorbed photosynthetically active radiation; IPAR, the cumulative amount PAR
intercepted by the canopy; LAI, leaf area index; NCP, North China Plain; PAR, photosynthetically active radiation; RUE,
radiation use efficiency; RUEAGB, radiation use efficiency of AGB; RUEleaf, leaf radiation use efficiency; SFM, soil fresh mass;
SDM, soil dry mass; WP, wilting point; FC, field capacity; SWC, soil water content; SWS, soil water storage; VPD, vapor
pressure deficit; WUE, water use efficiency; WUEAGB, water use efficiency of AGB; WUEleaf, leaf water use efficiency.

Frontiers in Plant Science | www.frontiersin.org 1 December 2021 | Volume 12 | Article 794409

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.794409
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.794409
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.794409&domain=pdf&date_stamp=2021-12-10
https://www.frontiersin.org/articles/10.3389/fpls.2021.794409/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-794409 December 10, 2021 Time: 12:1 # 2

Zhou et al. WUE and RUE Response to Drought

INTRODUCTION

Maize (Zea mays L.), one of the world’s top three cultivated kinds
of cereal along with wheat and rice (FAO, 2020), is typically
cultivated in semi-arid and semi-humid areas in China. Even
though maize is a C4 plant with higher temperature adaptation
and lower water consumption than wheat and rice (Sanchez et al.,
2014), its growth and productivity are more vulnerable to climate
change than other staple crops (Tao et al., 2008). Therefore,
it is not surprising that a worldwide significant decrease in
maize yield trend can be attributed to the climate anomalies and
extremes, especially seasonal drought and heat stress (Tao and
Zhang, 2010; Lobell et al., 2011; Zampieri et al., 2019). North
China Plain (NCP) is a drought-prone region, and also one
of the foremost dryland agricultural production areas in China
(Fang et al., 2021). Past and present climate trends and variability
in NCP were characterized as increased air temperature and
decreased precipitation (Ming et al., 2015). To make matters
worse, the situation is expected to be further intensified under
projected future climate, accompanied by a decrease in solar
radiation (Liu et al., 2013; Huang et al., 2017). Adapting maize
growth to the changing climate environments (decreasing solar
radiation, decreasing precipitation, increasing temperature, etc.)
will be an important innovation to increase total biomass and
then grain yield (Yang et al., 2019; Kan et al., 2020). Therefore,
it is particularly urgent and desirable to evaluate the relative
potential of resource use efficiency and then enhance them for
the sustainability of agricultural development in this drought-
prone region.

Water use efficiency (WUE), defined as the ratio of carbon
gain to water loss, is an important physiological indicator in
assessing the interactions between the carbon and water cycles
(Farquhar and Richards, 1984; Beer et al., 2009). Previous
studies have enhanced the understanding that moderate drought
has a stimulatory effect on crop WUE [e.g., durum wheat
(Bhattarai et al., 2020), maize (Kang et al., 1998), and sweet
sorghum (Dercas and Liakatas, 2006)]. However, the degree
and duration of drought also play an important role in
affecting WUE (Ma et al., 2019), as well as crop species and
developmental stages. The underlying mechanism of progressive
soil drying on WUE and its connection with other resource
use efficiency remains unclear. Like soil water, solar radiation
is the ultimate energy source for crop development and
production (Monteith et al., 1977; Wild et al., 2005), but
it also can cause stress to plants and modulate response to
water deficit (Roeber et al., 2020). Radiation use efficiency
(RUE), an important determinant of carbon sequestration by
terrestrial ecosystems, indicates the efficiency of a plant to
convert absorbed photosynthetically active radiation (PAR) of
400–700 nm wavelength into biomass (Monteith, 1972). In
dryland agriculture, crop productivity is directly related to
the efficiency to convert resources into biological materials,
especially water and solar radiation. Therefore, improving
our understanding of how to quantify the interaction of
WUE and RUE and how they affect crop productivity is
necessary for optimizing dryland agricultural management
practice (Ding et al., 2021).

A large body of literature has emphasized the effects of water
deficit only on WUE or RUE either at the leaf or canopy level
(Steduto and Albrizio, 2005; Yi et al., 2010; VanLoocke et al., 2012;
Marwein et al., 2016; Song et al., 2018; Hatfield and Dold, 2019;
Cai et al., 2020; Yu et al., 2020). High WUE was proved to be
related to low RUE under probable drought (Dercas and Liakatas,
2006). In contrast, WUE and RUE are directly proportional under
optimal growth conditions (Ullah et al., 2019; Kukal and Irmak,
2020). However, little is known about the interrelationships
of radiation and water use processes at both leaf and canopy
levels in agricultural ecosystems. In addition, the connection
between WUE and RUE response to progressive soil drying at
different growth stages remains unclear. WUE and RUE are
inversely related to canopy conductance (gc) (Sadras et al., 1991;
Hernández et al., 2021), which may be suitable to distinguish
and communicate the WUE and RUE relations (Kukal and
Irmak, 2020). In addition, changes in canopy structure [e.g.,
leaf angle, plant height, leaf area index (LAI)] reflect both in
light transmittance, and reflectance under water stress conditions
(Holmes and Keiller, 2002; Onoda et al., 2014). The variation of
crop evapotranspiration is greatly affected by environmental and
vegetation factors, which are directly or indirectly mediated by
changes in biotic factors, such as LAI (Zhou et al., 2019). LAI is
a primary descriptor of vegetation function and structure, and is
functionally related to the exchange of water and energy between
vegetation and the atmosphere (Running, 1984; Liu et al., 2016).
What’s more, the fraction of absorbed photosynthetically active
radiation (fAPAR) by the canopy is a key variable not only
in assessing the production of the vegetation, but also in the
efficiency of light usage (Gitelson et al., 2014). However, it’s still
not very clear about how the interrelationship between WUE
and RUE are mediated by LAI and fAPAR and their relative
influence pathway.

Here, we used an experiment-based approach to explore the
link between WUE and RUE and its underlying mechanism
under soil drying at different developmental stages. Specifically,
the objectives were to address the following questions: (i) How
does WUE and RUE respond to soil drying? (ii) How does WUE
commutate with RUE at both leaf and canopy scales? (iii) Does
the association between WUE and RUE change with different
progressive soil drying patterns and growth stages? (iv) What
are the direct and indirect pathways by which LAI and fAPAR
mediate the association of WUE with RUE under limited-water
availability?

MATERIALS AND METHODS

Experiment Site
The field experiment was conducted in two growing seasons
(from June to October 2013 and 2014) at the Gucheng
Agro-meteorological Field Scientific Experiment Base (39◦08′N,
115◦40′E and 15.2 m a.s.l.) in Baoding, Hebei Province, China.
The site is a typical maize production region located on NCP,
with a warm temperate continental monsoon climate. The
mean annual temperature (1981–2010), annual precipitation,
and average sunshine duration are 12.2◦C, 515.5 mm, and
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FIGURE 1 | Daily mean air temperature (T, ◦C), precipitation (P, mm), photosynthetically active radiation (PAR, MJ m−2) at the study site in 2013 (A) and 2014 (B)
growing seasons.

2264 h yr−1, respectively. The variations in the daily mean air
temperature (T), PAR, and precipitation (P) for the growing
seasons in 2013 and 2014 are shown in Figure 1. The soil type is
classified as sandy loam, with total potassium, total phosphorus,
and total nitrogen contents of 17.26 g kg−1, 1.02 g kg−1, and
0.98 g kg−1, respectively (Fang et al., 2013). The mean pH and
soil bulk density within a depth of 50 cm are 8.19 and 1.37 g
cm−3 (Wang Q. et al., 2018). The average field capacity is 22.7%
(g g−1) and the wilting point is 5.0% (g g−1). Double cropping
with two crop harvestings (wheat–maize rotation) in a year is
conventional farming practice in this region. The principal crops
are winter wheat (Triticum aestivum), maize (Zea mays), potato
(Solanum tuberosum), peanut (Arachis hypogaea), and soybean
(Glycine max).

Experimental Design and Farm
Management
The study was carried out in the field with a randomized
complete block design. The area of each plot was 8 m2 (4 m
long, 2 m wide). To block out the natural precipitation, a large
electric-powered waterproof shelter was used to cover the plots
when it was rainy, otherwise, it was moved away to keep the
experimental plots fully exposed to the ambient conditions. In
addition, cement walls with a depth of 3.0 m were installed
between each plot to avoid horizontal water exchange across
plots. The selected cultivar was zhengdan-958, which is a drought-
tolerant variety that has been widely planted on the NCP over

the last two decades. Approximately 1 month before seeding,
the soil moisture of each plot from 0 to 100 cm at 10 cm
interval was measured and calculated, and then each plot was
irrigated to reach the same water condition. A controlled-
release fertilizer called diammonium phosphate (DAP), with N
and P2O5 accounting for 16 and 45% of the total mass, was
conventionally applied before sowing at a rate of 320 kg·hm−2.
Maize seeds were sown on June 27, 2013, and June 24, 2014,
during the two growing seasons. The plant density was set to
52 plants per plot (65000 plants hm−2). Prior to the imposed
prolonged drought, all plots were well irrigated to encourage
seedling emergence. The irrigation amounts were designed based
on the mean precipitation (150 mm) in July from 1981 to
2010. In 2013, five irrigation amounts were conducted at the
beginning of the seven-leaf stage (July 24, 27 days after sowing
(DAS)), 80 mm (T1, equal to 53.3% of 150 mm precipitation
in July), 60 mm (T2, 40%), 40 mm (T3, 26.7%), 25 mm (T4,
16.7%), and 15 mm (T5, 10%). In 2014, another five irrigation
treatments were carried out at the beginning of the three-leaf
stage (July 2, 8 DAS), 150 mm (W1, 100%), 120 mm (W2,
80%), 90 mm (W3, 60%), 60 mm (W4, 40%), and 30 mm
(W5, 20%) (Zhou et al., 2021). Each treatment was designed
with three replicate plots. All irrigations were recorded by a
water meter. After the irrigation, no more irrigation water or
precipitation was applied during the remaining growing seasons.
The maize crops were harvested on October 8, 2013, and October
9, 2014, respectively.
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Measurements of Environmental
Variables and Maize Growth Traits
Available Soil Water Content and Soil Water Storage
During the two growing seasons, the soil water content was
measured using the oven-drying method with an interval of
7–14 days. As more than 95% root biomass of maize was expected
to grow within the 0–30 cm soil layers (Wang S. et al., 2018), and
it was laborious to take soil samples under drought conditions,
the sampling depth was set up to 50 cm. Soil samples were
collected at a 10-cm interval, and soil cores were randomly
chosen from the middle area of two rows of maize plants in
the center of each plot. The gravimetric water content of each
soil layer was measured by taking weights before and after
drying the soil at 105◦C to a constant weight. The average
soil water content was determined by the mean value of three
different sampling positions for each treatment. There were 8
measurements performed throughout the 2013 and 2014 growing
seasons. The available soil water content (ASWC, %) of each layer
and soil water storage (SWS, mm) was calculated according to
the following equations (Haghverdi et al., 2015; Cosentino et al.,
2016):

SWC = (SFM − SDM)/SDM (1)

ASWC = (SWC −WP)/(FC −WP)× 100% (2)

SWS =
n∑
i

10× hi × ρi × SWCi (3)

where SWC (g g−1) is the soil water content on a mass basis; SFM
(g) and SDM (g) are the soil fresh and dry mass, respectively. FC
(g g−1) is the field capacity, and WP (g g−1) is the wilting point.
SWCi is the soil water content of the ith soil layer; hi (cm) is the
thickness of the ith soil layer; ρi (g cm−3) is the soil bulk density
of the ith soil layer, and n is the number of soil layers measured.

Evapotranspiration (ET, mm) which includes soil water
evaporation and crop transpiration for different growth periods
of maize was calculated based on the water balance equation as
follows:

ET = I + P + K − D− R+1SWS (4)

where I (mm) is the irrigation amount, P (mm) is precipitation,
which is blocked out by the shelter since sowing (here P = 0), K
(mm) is the groundwater influx into the root zone, D (mm) is the
drainage, and R (mm) is surface runoff. In this experiment, K, D,
and R were negligible. Therefore, the soil–water balance equation
is reduced as (Guan et al., 2015):

ET = I +1SWS (5)

1SWS = SWSstart − SWSend (6)

where SWSstart (mm) and SWSend (mm) are SWS at the start and
end of the growth period at interest, respectively.

Measurement of Leaf Gas Exchange Parameters
Leaf gas exchange parameters were measured by using a
portable photosynthesis system (Li-6400XT; Li-Cor, Lincoln, NE,
United States) with a fluorescence leaf chamber (Li-6400-40).
Three to five healthy and representative maize plants (at least
0.5 m from the plot edge) were selected in each treatment with the
same sampling interval as the soil water content measurement.
In detail, the measurements were conducted on 33 DAS and 16
DAS in 2013 and 2014 growing seasons, respectively. Therefore,
there were 6 and 7 measurements during experimental periods
in 2013 and 2014, respectively. Measurements were conducted in
the middle area of the newly fully expanded leaves in the morning
(9:30–11:30) on clear days. The environmental conditions in the
leaf chamber were controlled with a reference CO2 concentration
of 380–410 µmol·mol−1 and an airflow rate of 500 µmol·s−1.
The air temperature, relative air humidity, and photosynthetic
photon flux density were maintained under ambient conditions.
The net photosynthetic rate (Pn), transpiration rate (Tr), and
leaf photosynthetically active radiation (PARleaf ) were recorded.
Water use efficiency (WUEleaf) and radiation use efficiency
(RUEleaf) at the leaf level was determined by the following
equations (Farquhar and Richards, 1984; Yang et al., 2018):

WUEleaf = Pn/Tr (7)

RUEleaf = Pn/PARleaf (8)

Leaf Area Index and Aboveground Biomass
Three healthy maize plants were randomly selected from each
treatment and destructively harvested with the same sampling
interval as leaf gas exchange measurement. The aboveground
plant organs were clearly separated and quickly weighed to avoid
excessive water loss. Aboveground biomass (AGB) included all
the leaves, leaf sheath, shoot, tassel, and ear. The plant leaf area
was determined by the Montgomery method (Stewart and Dwyer,
1999), with the maximum length (L, cm) and width (W, cm) of
each leaf measured by a ruler. All fresh plant organs were oven
dried at a temperature of 105◦C for 1 h and were kept at 80◦C
until a constant dry mass was obtained (Sun et al., 2019). The
leaf area (LA, cm2) of each maize plant, LAI (m2 m−2), and AGB
(g m−2) at the canopy level were calculated as follows:

LA =
n∑
i

(0.75× Li ×Wi) (9)

LAI =
m∑
j

(LAj)/m× d/10000 (10)

AGB =
m∑
j

AGBj × d/m (11)

where n is the total number of leaves per maize plant, m is the
number of repetitions, d is the plant density (plants m−2), and
AGBj is the total aboveground biomass of the selected plant (g
plant−1).
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Measurement of Photosynthetically Active Radiation,
Fraction of Absorbed Photosynthetically Active
Radiation, and the Cumulative Amount PAR
Intercepted by the Canopy
Photosynthetically active radiation was measured by a line
quantum sensor with 64 photodiodes (SunScan, Delta T Devices
Ltd., Cambridge, United Kingdom) at 11:30–14:00 on clear
days. The measured solar radiation included the incoming PAR
above the canopy (PARin), PAR reflected by the canopy and
soil (PARout), PAR transmitted through the canopy (PARtran),
and PAR reflected by the soil (PARsoil). PARin and PARout were
measured using the quantum sensor placed horizontally 1.0 m
above the maize canopy surface pointing toward the sky and
ground, respectively; PARtran was measured with line quantum
sensors placed at about 5 cm above the ground, pointing upward;
and PARsoil was measured with line quantum sensors placed
about 12 cm above the ground, pointing downward (Gitelson
et al., 2014). Each kind of PAR was obtained with the mean
value of three different measurement directions. The fAPAR was
determined by the following formula, which excluded the noise
of the bare soil background (Gallo and Daughtry, 1984):

fAPAR = ((PARin − PARout)− (PARtran − PARsoil)) /PARin
(12)

Then, daily LAI values were calculated by a cubic spline
interpolation between measured points of LAI, assuming a linear

relationship between subsequent sampling dates (Cosentino
et al., 2016). Daily intercepted PAR was calculated using Beer’s
law, with a simple assumption of constant k estimated by Eq. 13
throughout the growing season (Ceotto and Castelli, 2002). As
the remaining radiation flux after passing through a leaf area
declines exponentially, which can be expressed by the Lambert-
Beer model (Monsi and Saeki, 2005; Cosentino et al., 2016).

fAPAR = 1− exp(−k× LAI) (13)

where k is the extinction coefficient.
The cumulative amount of PAR intercepted by the maize

canopy (IPAR) during the growth period was calculated as follows
(Yang et al., 2004):

IPAR =
n∑

i=1

0.5× Rn × fAPARi (14)

where 0.5 is the fraction of PAR relative to total incident solar
radiation (Rn), and fAPARi is the daily fAPAR of the ith day.

Measurement of Meteorological Variables
During the 2013–2014 growing seasons, the main meteorological
parameters, such as the mean daily air temperature (T, ◦C), daily
PAR, and daily precipitation (P, mm) were measured by a weather
station located nearly 20 m from the experimental field.

FIGURE 2 | Time series of SWS in the different soil layers under different progressive soil drying treatments during 2013 (A–E) and 2014 (F–J) growing seasons. The
growth period prior to treatment is indicated by the horizontal white bar named “NC,” while the period during treatment is represented by the horizontal gray bar
named “progressive soil drying”. “∗∗∗”, “∗∗”, and “∗” denote significant differences between treatments at the 0.001, 0.01, and 0.05 levels, respectively, while “ns”
indicates no significant differences. The error bars indicate the standard errors of the replications.

Frontiers in Plant Science | www.frontiersin.org 5 December 2021 | Volume 12 | Article 794409

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-794409 December 10, 2021 Time: 12:1 # 6

Zhou et al. WUE and RUE Response to Drought

STATISTICS

Canopy water use efficiency (WUEAGB, g m−2 mm−1) and
radiation use efficiency (RUEAGB, g MJ−1) were calculated as
the slope of the linear regression between AGB and cumulative
ET and IPAR, respectively, during the experimental period.
Canopy conductance (gc) is defined as the ratio of RUEAGB to
WUEAGB (Sadras et al., 1991). The effects of the progressive
soil drying treatments on WUEleaf, RUEleaf, fAPAR, LAI, and
AGB were evaluated by repeated measures analysis of variance
(RM-ANOVA). The least significant difference (LSD) test was
applied to examine differences between treatments according to
Duncan’s test. The relationship between WUE and RUE was
evaluated by simple linear regression at both leaf and canopy
levels. The standardized major axis (SMA) was employed to
determine the WUE and RUE relationships among different
treatments by using the “smatr” package in R 4.0.2 (R Core
Team). The structural equation model (SEM) was employed
using AMOS 21.0 (Amos Development Co., Greene, ME,
United States) to analyze the direct and indirect pathway by
that LAI and fAPAR influence AGB then WUE and RUE
under progressive soil drying. In all cases, differences were
deemed to be significant if p < 0.05. All the figures were

plotted in Origin 9.1 (Origin Lab Corporation, Northampton,
MA, United States).

RESULTS

Soil Water Storage Dynamic Variations
Under Various Progressive Soil Drying
Treatments
Soil water storage in different soil layers decreased significantly
and exhibited a similar trend with DAS in two growing
seasons (Figure 2). In 2013, prior to the treatment period
(16–27 DAS), the SWS values of five soil layers showed no
significant difference among treatments (T1–T5) based on SM-
ANOVA (Figures 2A–E). The SWS values in each soil layer
showed significant differences among the T1–T5 treatments
after treatments began until 42 DAS. Since then, no obvious
differences were observed between the T1 and T5 treatments
at different soil layers, except for 0–10 cm in 59 DAS and 20–
30 cm in 85 DAS. Moreover, SWS in the upper soil layers
(0–10, 10–20, and 20–30 cm) showed even more significant
differences than those in the lower layers (30–40, 40–50 cm).

FIGURE 3 | Changes in WUEleaf and RUEleaf under different progressive soil drying treatments during the 2013 (A,C) and 2014 (B,D) growing seasons. “∗∗∗”, “∗∗”,
and “∗” denote significant differences between treatments at the 0.001, 0.01, and 0.05 levels, respectively, while “ns” indicates no significant differences. Error bars
denote the standard errors of the replications.
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FIGURE 4 | Response of WUEleaf and RUEleaf to ASWC under different progressive soil drying treatments in 2013 (A,C) and 2014 (B,D). The gray areas are the 95%
confidence bands of the linear fitting. Error bars denote the standard errors of the replications.

In 2014, since irrigation treatments were applied (8 DAS), the
average duration of significant differences in the SWSs of
the W1–W5 treatments for different soil layers were longer
(approximately 1 month) than those of the T1–T5 treatments in
2013 (Figures 2F–J).

Water Use Efficiency and Radiation Use
Efficiency Response to Progressive Soil
Drying at the Leaf Level
Leaf water use efficiency and RUEleaf under different progressive
soil drying treatments displayed a similar trend of first
increasing, then gradually decreasing, and finally increasing again
(Figures 3A,B,D), which was not obvious for RUEleaf in the T1–
T5 treatments (Figure 3C). At the early stage, progressive soil
drying stress increased WUEleaf, but depressed it at the later stage
(Figures 3A,B). However, progressive soil drying stress had a
negative effect on RUEleaf throughout the experimental period
(Figures 3C,D). Even though progressive soil drying treatments
began at different growth stages, the sensitivity of the WUEleaf
response to ASWC in 2013 (slope = –0.037) was not significantly
different for that in 2014 (slope = –0.035), while the sensitivity
of RUEleaf to ASWC showed an obvious difference between
2013 (slope = 0.00017) and 2014 (slope = 0.00040) growing
seasons (Figure 4).

Aboveground Biomass, Leaf Area Index,
and Fraction of Absorbed
Photosynthetically Active Radiation
Response to Progressive Soil Drying
Progressive soil drying significantly decreased AGB, LAI,
and fAPAR based on RM-ANOVA (Figure 5). In 2013,
water deficit had a significant negative effect on biomass
accumulation (Figure 5A). The dynamic characteristics of LAI
and fAPAR shared a similar trend (Figures 5C,E). LAI values
of T2–T5 treatments reached maximum values approximately
18 days later than fAPAR, except for T1. In 2014, the
rates of increment in AGB among the W1–W5 treatments
were much slower than those of the T1–T5 treatments,
especially after 59 DAS (Figure 5B). There were obvious
maximum values for LAI and fAPAR at 59 DAS, followed
by a subsequent declining trend with progressive soil drying
(Figures 5D,F).

The relationships between fAPAR and LAI under different
irrigation treatments were well represented by a non-linear
Eq. 13 (Figure 6). Progressive soil drying had significant adverse
effects on k derived from the asymptotic equation, especially
in 2014 (Table 1). Moreover, the k values under different
progressive soil drying treatments generally decreased with the
irrigation reductions.
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FIGURE 5 | Changes in AGB, fAPAR, and LAI under different progressive soil drying treatments during the 2013 (A,C,E) and 2014 (B,D,F) growing seasons. “∗∗∗”,
“∗∗”, and “∗” denote significant differences between treatments at the 0.001, 0.01, and 0.05 levels, respectively, while “ns” indicates no significant differences. The
error bars indicate the standard errors of the replications.

As indicated by SMA analysis, the estimated SMA slopes of the
linear relationship between AGB and cumulative ET remained
stable in both 2013 and 2014, while the SMA elevations were
significantly affected by progressive soil drying (Figures 7A,B).
In contrast, progressive soil drying significantly affected the
estimated SMA slope of the linear relationship between AGB and
cumulative IPAR in both 2 years, and significantly affected the
elevation only in 2014 (Figures 7C,D).

The Association of Water Use Efficiency
With Radiation Use Efficiency Across the
Leaf and Canopy Levels
The linear relationships between WUE and RUE were opposite
in 2013 compared with those in 2014, even if not statistically
significant in 2013 (p > 0.05) (Figure 8). In detail, the slope
(RUEleaf vs. WUEleaf) was negative for the pooled data of

the T1–T5 treatments in 2013, while it was positive for the
W1–W5 treatments in 2014 (Figures 8A,B). Moreover, the
relationship between WUEAGB and RUEAGB was significantly
negative (R2 = 0.81, p < 0.01) in 2013, while it was significantly
positive (R2 = 0.65, p< 0.01) in 2014 (Figures 8C,D). In addition,
the absolute value of the linear slope (RUEAGB vs. WUEAGB) in
2013 was nearly 3.8 times larger than that in 2014.

Effects of Leaf Area Index and Fraction
of Absorbed Photosynthetically Active
Radiation on the Association Between
Water Use Efficiency and Radiation Use
Efficiency
Water use efficiency of AGB shared a quadratic relationship with
maximum fAPAR and LAI (Figures 9A,B), while it was a linear
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FIGURE 6 | Relationships between periodic measurements of LAI and fAPAR under different progressive soil drying treatments during the 2013 (A) and 2014 (B)
growing seasons. The colorful fitting line was formed as Eq. 13. The error bars indicate the standard errors of the replications.

relationship for RUEAGB (Figures 9C,D). Moreover, WUEAGB
and RUEAGB were more linked with fAPAR than LAI as the R2

explained. Maize seasonal gc ranged between 0.07 and 0.27 mm
MJ−1. A quadratic relationship was also fitted between gc and
maximum fAPAR (R2 = 0.80, p < 0.001) and LAI (R2 = 0.45,
p < 0.01) across irrigation treatments, respectively; where gc
were more strongly linked with maximum fAPAR relative to
maximum LAI (Figures 9E,F).

Moreover, SEM analysis showed that the ET, fAPAR, IPAR,
and LAI explained 98% and 92% of the variation of AGB in
2013 and 2014, respectively (Figure 10). In 2013, the primary
latent variable that affected AGB was IPAR (total standardized
path coefficient: 0.95), whereas it was ET (0.37) and IPAR (0.52)
in 2014. Although fAPAR did not directly affect AGB, LAI only
had a weak direct effect on AGB in both growing seasons. ET
affected AGB via fAPAR with a path coefficient of 0.40 and−0.18
in 2013 and 2014, respectively, while they were 0.04 and 0.06
through LAI. Besides, the effect of LAI on AGB through fAPAR
was 0.33, which was larger than that the direct effect of LAI on
AGB (0.05) in 2013 (Figure 10A). Overall, the models showed
that the influences of ET and IPAR on AGB were more mediated
by fAPAR than LAI under progressive soil drying.

DISCUSSION

Effects of Progressive Soil Drying on the
Dynamic Variations of Water Use
Efficiency and Radiation Use Efficiency
Understanding the dynamic variations of WUE and RUE and
their underlying mechanisms can improve our ability to predict
the effects of climate change on carbon and water cycles. In
fact, the temporal variations in WUE and RUE are affected by
various climatic factors (Yu et al., 2008) and genetic variables
(Furbank et al., 2019), including common environmental stresses

(e.g., drought, heat, salt, and solar dimming) and physiological,
developmental, and phenological variations in plants (Turner
et al., 2003; Leakey et al., 2019). Furthermore, previous studies
revealed that the seasonal variation in WUEleaf was closely
coupled with leaf stoichiometry (Du et al., 2020), and also
driven by air temperature, vapor pressure deficit (VPD), and
solar radiation (Jiang et al., 2020). Our results indicated that
progressive water deficit slightly changed the seasonal variations
of WUEleaf, which were characterized by obvious fluctuations
(Figures 3A,B). This finding was similar to a study for grape
(Medrano et al., 2015). At the canopy level, diurnal WUE peaked
in the early morning, while RUE topped at sunset, seasonal WUE
and RUE reached a maximum value in summer (Gao et al.,
2018). However, our results suggested that the dynamic variations
of RUEleaf showed different changing patterns in the 2013 and
2014 growing seasons (Figures 3C,D). In 2013, RUEleaf decreased
with DAS, whereas the RUEleaf had significant fluctuations in
2014, which might be contributed to the differences in the degree
and duration of soil drying. The values of RUE for maize in
the later growth stage were often lower than those of the early
growth stage (Otegui et al., 1995), which were also found in the
2013 growing season (Figure 3C), as the progressive loss of leaf
photosynthetic capacity with soil drying and increasing leaf age
(Earl and Tollenaar, 1999).

Effects of Progressive Soil Drying on
Aboveground Biomass, Leaf Area Index,
and Fraction of Absorbed
Photosynthetically Active Radiation
Drought stress significantly reduces crop production through its
adverse effects on root water absorption, nutrient uptake, leaf
net assimilation, and subsequently on dry matter accumulation
(like AGB) and distribution (Ullah et al., 2019). The light
interception capacity of a crop is mainly determined by the
LAI and fAPAR (Hikosaka et al., 2016). Smaller leaf area
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TABLE 1 | Estimated k under different progressive soil drying treatments during the 2013 (T1–T5 treatments) and 2014 (W1–W5 treatments) growing seasons.

Year Parameter Progressive soil drying treatment

2013 T1 T2 T3 T4 T5

k 0.61 ± 0.07 0.65 ± 0.05 0.59 ± 0.07 0.57 ± 0.06 0.58 ± 0.04

R2 0.70 0.82 0.72 0.74 0.89

2014 W1 W2 W3 W4 W5

k 0.56 ± 0.02 0.49 ± 0.03 0.47 ± 0.04 0.44 ± 0.06 0.35 ± 0.04

R2 0.98 0.96 0.87 0.56 0.77

FIGURE 7 | Response of AGB to cumulative ET and IPAR under different progressive soil drying treatments during the 2013 (A,C) and 2014 (B,D) growing seasons.
“∗∗” and “∗” denote significant differences between treatments at the 0.01 and 0.05 levels, respectively, while “ns” indicates no significant differences. The error bars
indicate the standard errors of the replications.

and biomass lead to a smaller LAI and fAPAR, which is not
beneficial for light interception (Baret et al., 2013; Mantilla-
Perez and Salas Fernandez, 2017). In addition, leaf rolling is
a mechanism developed by plants to mitigate the impact of
environmental stresses, especially under severe stress conditions
(Baret et al., 2018). Our study indicated that progressive soil
drying significantly decreased AGB, LAI, and fAPAR (Figure 5),
and accelerated leaf senescence (Figures 5E,F). Moreover, the
adverse effects of progressive soil drying applied at the three-
leaf stage on k were more significant than those at the seven-leaf

stage (Figure 6 and Table 1). In general, WUEAGB increased
with irrigation reduction (T1–T5 treatments) in 2013 when soil
drying began at the seven-leaf stage, whereas WUEAGB decreased
with irrigation reduction (W1–W5 treatments) in 2014 when soil
drying began at the three-leaf stage (Figures 7A,B). The results
suggest that moderate water stress increased WUEAGB, while
severe water stress decreased WUEAGB. The main reason is that
drought affected leaf development and expansion as soil drying.
Consequently, the RUE values of different irrigation treatments
were significantly reduced by water deficits (Figures 7C,D). The
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FIGURE 8 | Relationships between WUE and RUE at leaf and canopy levels in 2013 (A,C) and 2014 (B,D) growing seasons. The gray areas are the 95% confidence
bands of the linear fitting. The error bars denote the standard errors of the replications.

theoretical RUE of maize under optimal conditions is about
3.84 ± 0.08 g MJ−1 (Lindquist et al., 2005), which is much
higher than our results which were severely decreased by soil
drying. Recent breeding efforts have no evident effect on crop
water use but have significant improvements on crop biomass
production and partitioning (Curin et al., 2020). The maize
ideotypes planted under the future climate of the NCP should
have a longer reproductive growing period, faster potential grain
filling rate, higher maximum grain numbers, and higher RUE
(Xiao et al., 2020). Therefore, there is still a great potential to
breed new maize varieties with both high WUE and RUE and
improve field management for future climate.

Influencing Factors on the Interaction
Between Water Use Efficiency and
Radiation Use Efficiency
The relationship between WUE and RUE may exhibit various
patterns at different spatial-temporal scales and environmental
backgrounds (Liu et al., 2019). At the leaf level, low transpiration
induced by stomatal closure leads to increased WUE as water loss
exceeds photosynthesis (Kang et al., 1998). Low photosynthesis
tends to decrease RUE, causing WUE to be negatively correlated
with RUE (Tarvainen et al., 2015). Our results also confirmed that

leaf WUE and RUE were negatively correlated when progressive
soil drying was applied at the seven-leaf stage (Figure 8A).
However, when photosynthetic downregulation was caused by
non-stomatal limitation during serious water stress (Song et al.,
2020), leaf WUE dropped as photosynthesis decreased more
than transpiration. As a result, the relationship between leaf
WUE and RUE was positively correlated (Figure 8B). However,
the critical value of the soil or plant water content where
arouses the relationship between WUE and RUE to shift remains
unknown and needs to be quantified in future study. The similar
relationships between WUE and RUE were also found at canopy
level, and even stronger than those at leaf level (Figures 8C,D).
At the canopy level, high WUE of sweet sorghum tends to be
related to low RUE under probable drought in sweet sorghum
(a C4 plant similar to maize) (Dercas and Liakatas, 2006),
which was also confirmed in our study (Figure 8C). A trade-
off may occur between the use efficiency of two resources when
there are differences in the relative costs of the resources, with
an increase in the use efficiency of an “expensive” resource
and a decrease in a “cheaper” resource (Bloom et al., 1985).
Soil water is an “expensive” resource, while radiation is a
“cheaper” resource under water-deficit conditions. The trade-off
was confirmed in the interrelationship between canopy WUE and
RUE when progressive soil drying treatments were applied at
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FIGURE 9 | Water use efficency (A,B), radiation use efficiency (C,D) of AGB, and canopy conductance (E,F) response to maximum LAI and fAPAR during 2013 and
2014 growing seasons.

FIGURE 10 | Structural equation models for the direct and indirect pathway of ET, fAPAR, LAI, and IPAR on AGB in 2013 (A) and 2014 (B). Numbers on arrows are
standardized path coefficients, blue arrows are positive and red are negative, solid arrows indicate significant standardized path coefficients (p < 0.05) (significance
levels are *p < 0.05, **p < 0.01, and ***p < 0.001), dashed arrows indicate non-significant standardized path coefficients (p > 0.05). R2 values close to the
rectangles indicate the variance explained by the model. ET, actual evapotranspiration; fAPAR, the fraction of absorbed photosynthetically active radiation; IPAR,
intercepted photosynthetically active radiation; LAI, leaf area index; AGB, aboveground biomass.

the seven-leaf stage (Figures 8A,C). However, the relationship
between WUE and RUE turned out to be synergistic when
progressive soil drying treatments were applied at the three-leaf
stage (Figures 8B,D).

Leaf area index plays an important mediating role
in the relationship among climate, soil variables, and
evapotranspiration (Zhou et al., 2019). Meanwhile, fAPAR
is a key variable not only in assessing vegetation productivity
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but also in light use efficiency (Gitelson et al., 2014). Accurately
quantifying LAI and fAPAR is important for characterizing the
dynamics of carbon and energy exchanges between vegetation
and the atmosphere (Serbin et al., 2013). Our results indicated
that fAPAR was more related to canopy conductance (gc,
representing transpired water per unit of IPAR) than LAI
(Figure 9). Even though LAI and fAPAR are deemed to be closely
related (Zhou et al., 2002; Monsi and Saeki, 2005), their direct
and indirect effects on AGB were significantly different according
to an SEM analysis (Figure 10). fAPAR played a stronger role
in mediating the influence of soil drying on AGB than LAI.
Therefore, our results suggest that the association between WUE
and RUE was more regulated by fAPAR than LAI, which would be
important for WUE- and RUE-based models of crop production,
especially under water-limited conditions.

Source of Limitation
The two-year field experiment provided us with an opportunity
to investigate the interrelationships between WUE and RUE and
their underlying mechanisms across leaf and canopy scales under
soil drying. Nevertheless, some limitations would still exist in the
implication and generalization of the results, even though data
was collected from standardized experimental measurements
and after strict data quality control and analysis. Neglecting the
differences in meteorological conditions between 2013 and 2014
growing seasons may be a source of uncertainties. As the three-
leaf and seven-leaf stage of maize was only evaluated in a single
growing season, which might not capture the effects of the year
and its interaction with a development stage. Furthermore, only
one maize genotype was adopted in this study, the evaluation
of the cultivar variations was not conducted. Therefore, future
studies can address the effects of meteorological conditions and
genotypes on the interaction between WUE and RUE and their
underlying mechanisms.

CONCLUSION

To understand the interrelationship between WUE and RUE and
their underlying mechanisms across the leaf and canopy levels
under the soil drying process, a field experiment with different
irrigation regimes on maize was designed and conducted during
two growing seasons (2013–2014) on North China Plain.
The results indicated that leaf WUE increased with irrigation
reduction at an early stage, while decreased with irrigation
reduction at a later stage. Leaf RUE decreased with irrigation

reduction during the progressive soil drying process. Maize
canopy traits (e.g., AGB, LAI, fAPAR, and k) were significantly
decreased by water deficit regardless of the growth stage when soil
drying was applied. The relationships between WUE and RUE
were linear across the leaf and canopy scales under different soil
drying patterns. However, the interrelationship between canopy
WUE and RUE unexpectedly appeared to be positive when
soil drying was applied at the three-leaf stage, while negative
when soil drying was applied at the seven-leaf stage. Canopy
conductance (gc) was more related to fAPAR than LAI. The
effects of ET and IPAR on AGB were achieved via fAPAR more
than LAI. Our finding demonstrated that the association between
canopy WUE and RUE was more regulated by fAPAR than LAI
under soil drying.
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