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Background: In view of the existence of light shadow, branches occlusion, and leaves
overlapping conditions in the real natural environment, problems such as slow detection
speed, low detection accuracy, high missed detection rate, and poor robustness in plant
diseases and pests detection technology arise.

Results: Based on YOLOv3-tiny network architecture, to reduce layer-by-layer loss
of information during network transmission, and to learn from the idea of inverse-
residual block, this study proposes a YOLOv3-tiny-IRB algorithm to optimize its
feature extraction network, improve the gradient disappearance phenomenon during
network deepening, avoid feature information loss, and realize network multilayer feature
multiplexing and fusion. The network is trained by the methods of expanding datasets
and multiscale strategies to obtain the optimal weight model.

Conclusion: The experimental results show that when the method is tested on the self-
built tomato diseases and pests dataset, and while ensuring the detection speed (206
frame rate per second), the mean Average precision (mAP) under three conditions: (a)
deep separation, (b) debris occlusion, and (c) leaves overlapping are 98.3, 92.1, and
90.2%, respectively. Compared with the current mainstream object detection methods,
the proposed method improves the detection accuracy of tomato diseases and pests
under conditions of occlusion and overlapping in real natural environment.

Keywords: YOLOv3-tiny, inverse-residual block, field images, multi-scale, occlusion and overlapping, robust

INTRODUCTION

Tomato is one of the most popular crops planted in China, and it has an irreplaceable position in
vegetables, fruits, medicinal, and other aspects, with a huge planting volume and demand (Li, 2012).
Taking Shouguang City, Shandong Province as an example, Shouguang City’s tomatoes are mainly
produced in Luocheng Street, with about 12,000 household greenhouse planters and 20,000 winter-
warm greenhouses, with an annual trading volume of 360 million kilograms, and an annual trading
volume of 730 million yuan. The products are exported to Russia, North Korea, Myanmar, and
other countries. This town is an important tomato production and sales base in Shandong Province
and enjoys the reputation of “small town with tomato characteristics.” According to statistics, a
common 100-m greenhouse has a revenue of at least RMB 100,000, and vegetable farmers have
realized the “income-increasing dream” through tomatoes.
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Traditionally speaking, tomatoes belong to seasonal fruits and
vegetables, but the market has a great demand for tomatoes in
each season. To meet the market demand and improve economic
benefits, most farmers use greenhouse planting to overcome
the influence of season, temperature, and other environmental
factors, and achieve tomato planting and production for more
than three seasons in 1 year. From the previous field research
and feedback from farmers, we know that the whole growth cycle
of tomatoes has strict requirements on the growth environment,
planting methods, pest control, and other aspects, and the
requirements on the external environment of tomatoes at all
growth stages of the whole growth cycle are also of high standards
and are different. In recent years, the impact of diseases and pests
on tomato cultivation has been aggravated. The main reason is
that the optimized planting structure and complete water and
fertilizer supply conditions are not only conducive for tomato
growth, but also provide convenience for the occurrence of
diseases and pests. At the same time, the unscientific and non-
standard use of pesticides also cause the increasing resistance of
pathogens. Also, the differences of tomato varieties and cross-
hazards are the causes of the growing severity of tomato diseases
and pests (Wang et al., 2018). Therefore, the cost, time, and labor
consumption of high-quality tomato cultivation are relatively
high. However, most of the peasant households have not received
professional knowledge, and they do not know the symptoms of
diseases, pests, and other causative factors.

During tomato planting, the information of diseases and
pests, the demand of crop growth environment, and the control
measures mostly depend on the communication between peasant
households and the previous planting experience. It is difficult
to grasp the diseases and pests that may occur in a certain
planting stage under certain conditions. It is also difficult to
accurately determine the types of diseases and pests and their
control methods. These practical problems have a great impact
on tomato production.

The investigation revealed that the major diseases of tomato
included 34 infestation diseases and 39 physiological diseases,
and the disease characteristics were mainly focused on the color
and morphology of the lesions. To make the research typical and
better feasible, in this work, 12 common diseases including early
blight, late blight, yellow leaf curl virus, gray leaf, coal pollution,
gray mold, leaf mold, navel rot, leaf curl disease, mosaic, leaf
miner, and greenhouse whitefly were selected for research.

The traditional method of identifying tomato diseases and
pests is usually manual identification, that is, growers make
subjective judgment based on planting experience or text
data, or image comparison through the network, books, etc.,
or ask pathologists to analyze and identify tomato diseases
and pests. Traditional manual diseases and pests identification
takes a lot of time and effort, and is often accompanied by
very high subjectivity. Subjective evaluation is susceptible to
personal factors and external factors (such as light, occlusion,
and overlapping). It is inefficient and has large errors,
which can easily lead to the wrong diagnosis and wrong
medication of tomato diseases and pests. Severe conditions
can also cause pollution to water sources, soil, and so on.
In addition, due to the scattered agricultural production in

China and the lack of relevant agricultural experts, there
are some limitations in the support provided by tomato
pathologists in the professional pathological analysis and decision
methods. Therefore, the manual identification of diseases and
pests cannot meet the requirements of high-efficiency tomato
production in the development of modern agriculture, an so the
automatic and accurate detection of tomato diseases and pests is
urgently needed.

Traditional plant disease detection relies on a large amount
of manual design, where the model generalization performance
is poor and the detection accuracy cannot meet the practical
demand. Thanks to the rapid development of deep learning,
Girshick et al. (2013) proposed that Region-CNN (R-CNN)
and the precision of detection was substantially improved.
Subsequent researchers have made improvements from a number
of perspectives based on R-CNN. Fast R-CNN (Girshick, 2015)
was proposed, and the detection efficiency is improved by sharing
the multitask loss function and convolution weights. Faster
R-CNN (Ren et al., 2017) integrates region nominations with
convolutional neural networks and truly implements an end-
to-end target detection framework. Mask R-CNN (He et al.,
2017) introduced region of interest (ROI) align to replace
ROI pooling and enable segmentation and detection of images.
Region-based Fully Convolutional Networks (R-FCN) (Dai et al.,
2016) introduced fully convolutional operation and the detection
effect is improved greatly. FPN (Lin et al., 2017) and CascadeR-
CNN (Cai and Vasconcelos, 2017) have achieved an extremely
high detection accuracy and approximate the resolving power
of humans. The above detection framework all contain both
regional nominations and detection networks, and they are called
two-stage methods. Other researchers have proposed region free
nomination stage that unifies classification and detection tasks,
and they are called one-stage methods. For example, YOLO
(Redmon et al., 2016), RetinaNet (Lin et al., 2018), RefineDet
(Zhang et al., 2017) are typical one-stage methods, and the
real-time performance is greatly improved.

With the deep integration of modern information technology
such as Internet of Things, Cloud Computing, and Artificial
Intelligence with agriculture, smart agriculture has become
a major trend in the development of modern agriculture
in the world through the implementation of whole industry
supply chain with real-time information perception, quantitative
decision-making, intelligent production control, and precise
personality management, and has made important progress in
the field of crop harvesting (Xu et al., 2020). In the field of
crop diseases and pests identification, Intelligent Agriculture
relies on the Internet of Things system built by fixed monitoring
cameras, mobile equipment, robots, smartphones, and other
terminals. The classification and detection of network based
on deep learning method is studied on the basis of real-time
collection and acquisition of a large number of high-quality
image dataset of crop diseases and pests, which can provide
accurate, low-cost, high-efficiency, reliable, and real-time results
for broad agricultural producers. It has gradually become the
focus of research at home and abroad. Computer vision provides
a very effective means for automatic detection of crop diseases
and pests, and some progress has been made (Ouhami et al.,
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2020). Under natural scenes, the tomato diseases and pest objects
are often covered by light and shade, and the branches and
leaves are covered or in an overlapping state. The identification
and localization of the tomato diseases and pests objects under
the influence of shading and overlapping is a difficult problem
that must be solved.

With the rapid development of smart agriculture, the
technology of using cameras to determine whether plants appear
in images are infected with diseases and pests has been applied
in the field of smart agriculture, which plays an increasingly
important role in plant protection. This technique of using
computer vision and machine learning to determine whether a
particular plant in a camera is affected by diseases or pests is called
plant diseases and pests identification, as shown in Figure 1.

Plant diseases and pests identification not only has a very
urgent application need, but also has a very important research
value. In recent years, plant diseases and pest identification has
attracted wide attention from academia and agriculture, and
become a research hotspot in the field of computer vision. After
more than 10 years of development, a large number of plant
diseases and pests identification models have been proposed at
home and abroad, and very high accuracy has been achieved
under the limited simulation conditions (Singh et al., 2018;
Geetharamani and Arun Pandian, 2019; Shekhawat and Sinha,
2020), and even surpasses the ability of human vision.

In recent years, some progress has been made in the
research of plant diseases and pest identification under natural
scenes. Fuentes et al. (2019) proposed an improved Faster
R-CNN algorithm, which can effectively detect and locate plant
abnormalities. The average accuracy of 92.5% was achieved in
the built tomato plant abnormality description dataset. However,
the real-time performance of the algorithm was not strong.
Anagnostis et al. (2020) took images of walnut anthrax in
orchards under various light conditions. A total of 4,491 images
of leaves with and without anthrax were collected. The images
of leaves infected with anthrax reached 2,356, slightly more than
the images of healthy leaves. The classification accuracy of walnut
anthrax was as high as 98.719% using convolutional neural
network. Prabhakar et al. (2020) used ResNet101 to measure
the severity of early blight of tomato leaves and the accuracy
reached 94.6%. But their methods can only judge whether the
disease was infected or not and cannot locate the disease. They
mainly aim at the target recognition of a small number of images
taken in close range, which is difficult to apply in practice. Zhao
and Qu (2019a,b) used YOLOv2 algorithm to detect healthy and
diseased tomatoes, and the mean Average precision (mAP) was
as high as 91%. However, the method did not take into account
the small and dense multiobject occlusion and overlap problem
in natural environment. Liu and Wang (2020a,b) proposed an
improved YOLO V3 algorithm for tomato diseases and pests
detection with high accuracy and speed, but this method can only
effectively detect tomato diseases and pests targets in the case of
slight leaf overlap, and there is no satisfactory detection result
in the case of large area occlusion. There are often uncertainty
issues such as posture, background, and occlusion of leaves in
the detection of plant diseases, which can greatly affect the
detection accuracy. So, increasing the object detection accuracy

has always been paid great attention to Liu et al. (2020) proposed
an improved tomato detection model based on YOLOv3 aiming
at complex environmental conditions, such as light change,
branching, leaf blockage, and tomato overlap, which integrated
a dense architecture for feature reuse, but the model was only
used for tomato fruit positioning and could not be used for
tomato diseases and pests detection. All the above literatures
utilize the excellent learning ability, flexibility, and adaptability
of convolutional neural network to solve the problems of time-
consuming, laborious, and low accuracy in plant diseases and
pests detection under complex background. However, in the
above studies, the leaves of plant diseases and pests are mostly
sparse and complete, and the characteristics of diseases and pests
are obvious. In this work, the images of tomato diseases and pests
are collected under different light conditions in the real natural
environment, and there are even sunlight shadows or sundries,
such as branches and trunks, or the leaves overlap densely. These
factors are obstacles in the detection of tomato diseases and pests.
To effectively carry out real-time detection for multiple objects,
an improved object detection model based on YOLOv3 needs to
be proposed for issues such as small objects and occluded objects
prone to being missed or inaccurate detection frame positioning.

In the real natural environment, the study of plant diseases and
pests identification has its particularity. In the real agricultural
Internet of Things video monitoring, there are various shooting
equipments, the image quality of plant diseases and pests objects
is poor, the resolution is low, and there are also obvious
changes in perspective and light (Barbedo, 2018). Therefore,
compared with general image recognition, plant diseases and
pests identification still faces the following problems: (1) In
different monitoring and shooting equipment, the distance
between plants and shooting equipment is different, resulting
in different resolution, light, and perspective of plant diseases
and pests image under different shooting equipment horizons,
and different visual characteristics of the same plant diseases
and pests image will produce obvious changes; (2) Different
degree of occlusion caused by background and other factors
leads to a large number of occlusion problems, which lead
to poor identification of plant diseases and pests; (3) Due to
the changes of leaf posture and shooting equipment angle, the
differences of visual characteristics between different images of
plant diseases and pests may be small in different shooting
devices. In addition, some specific problems have not been paid
enough attention to. For example, large-scale and fast retrieval
problems, insufficient data problems, complex and crossmodal
problems of plant diseases and pests occurrence in the actual
agricultural environment, make the problem of plant diseases
and pests identification more difficult than the general case-based
image retrieval.

Investigation on the field environment of tomato greenhouse
base showed that tomato plants grew densely, and light
shading, branch and leaf occlusion, and overlap accounted
for about 21.2%. Thus, tomato diseases and pests detection
under conditions of occlusion and overlapping become the
key and difficult point of the research. To solve the problem
of rapid and high-precision detection of tomato diseases and
pests in real natural environment, this work proposes a method
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FIGURE 1 | An example illustrating plant diseases and pests identification.

to enhance the learning of foreground region features by
occluding overlapping object foreground region samples, chooses
YOLOv3-Tiny model based on regression method, and proposes
a YOLOv3-tiny-IRB network structure with inverse residual
blocks. Depth-wise convolution is used to reduce the model
parameters, and an inverse residual module is constructed
to extract high-dimensional features, and a linear activation
function is used to reduce the loss of information caused by
the channel combination process. The improved object detection
network is trained by fusing data amplification and multiscale
training strategies. The detection effect of the method in this
study is significantly improved under two kinds of interference
scenarios, i.e., sundries occlusion and blade overlap.

EXPERIMENTAL DATA

Dataset Acquisition
The experimental tomato planting base is located in Shouguang
City, Shandong Province. By Using smartphone, digital camera,
and other monitoring equipment with various resolutions, 15,000
images of early tomato diseases and pests during the growth and
development period were collected. The weather during image
acquisition includes sunny and cloudy days, and the acquisition
period is 8:00-18:00, which covers possible lighting conditions
such as sunshine, backlight, and sidelight. Greenhouse tomato
leaves are photographed in multiple orientations so that the main
features of the diseases and pests can be shot, such as texture,
color, shape, etc. Each image is formatted as JPG. Images were
cropped to 224× 224 pixel size.

Five thousand images containing the following three
representative scenarios were screened from 15,000 tomato
diseases and pests images.

(a) Leaves sparse and complete. The objects are relatively
clear and easy to identify.

(b) Branches or sunlight shade or other debris occlusion.
It is possible that there are situations in which diseases

TABLE 1 | The number of each species of diseases and pests.

Species Number

Early blight 401

Late blight 416

Gray leaf spot 425

Brown spot 431

Coal pollution 408

Gray mold 421

Leaf mold 419

Powdery mildew 402

Leaf curl 418

Mosaic 413

Leaf miner 411

Greenhouse whitefly 435

Total 5000

and pests are too small, adherent, mutually obscured,
or obscured by the shoot and leaves, increasing the
difficulty of detection.

(c) Leaves overlapping densely. Overlapping bounding
boxes may be erroneously discarded, leading to missed
observations with a larger probability.

The number of each species of diseases and pests is shown in
Table 1.

From 5,000 representative tomato diseases and pests images,
3,500 were randomly selected as original training images
(containing 21,038 tomato diseases and pests objects), and the
remaining 1,500 were selected as test images (containing 9,067
tomato diseases and pests objects).

Image Enhancement
The image enhancement of training samples can improve the
quality and diversity of samples, which is conducive to the
improvement of CNN detection accuracy (Ding and Taylor,
2016). Under natural light of greenhouse planting base, especially
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FIGURE 2 | The process of sample labeling.
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FIGURE 3 | The process of dataset preparation.

TABLE 2 | Datasets and sample size.

Datasets Data processing
method

Sample
size

Number of annotation

Bounding box
annotation

Foreground
area annotation

A No 3500 21038 2987

B Image enhancement 3500 21038 2987

C Data amplification 29016 173304 24158

when the light is very strong, due to the mutual occlusion of
tomato plant leaves or backlight photography, the leaf surface
produces shadows, which makes the image characteristics of
tomato diseases and pests very different from those under normal
light. Especially, some relatively small objects are not obvious
in the image, affecting the quality of tomato diseases and pests
image. The quality of training samples can affect the detection
effect of the model, and so the contrast of the image needs to be
adjusted to improve the detection effect of the detection model.
In this study, adaptive histogram equalization (Algorithms, 2015)
was used to enhance tomato diseases and pests images, improve
the gray dynamic range of images, effectively improve the
contrast of images, and enrich the details of images, which is
equivalent to adjusting the image brightness and reducing the
impact of light on image quality.

Sample Labeling
To improve the detection accuracy of tomato diseases and
pests, various appearances and shapes of the objects were fully
considered in the sample labeling process in this study. Manual
labeling, interactive labeling, and Matlab programming were used
for labeling. The process of sample labeling is shown in Figure 2.

(1) LabelImg, an open source annotation tool, was used to
annotate the bounding boxes of 21,038 tomato diseases and pests
objects in 3,500 original training images (no annotation was made

when the object was covered by more than 70% of the area). Using
this software, images in the dataset can be annotated as ∗.xml and
∗.txt files. The annotated file saves information such as class, size,
and location of each object in the image. Also, LabelImg (TzuTa,
2017) was used to annotate 9,067 tomato diseases and pests object
bounding box in 1,500 test images (no annotation was made
when the object was covered by more than 70%). Considering
that the test dataset is used to evaluate the detection accuracy
of the model, the test dataset does not need to mark the object
foreground area.

(2) The edge closure curves of overlapping leaves were
automatically generated by using the quick selection tool of
Photoshop software. However, for leaves with uneven surface
color and illumination, it is difficult to automatically generate
accurate edges, and the edge contours of leaves need to be
manually marked.

(3) Using Matlab programming, the bounding box
information and edge information of the leaves were read,
and the pixels of the area outside the edge contour curve in the
bounding box of the object were set to 0.

(4) In view of the difficulties caused by occlusion or overlap
in tomato diseases and pests detection, a method of enhancing
the learning of convolutional features of tomato diseases and
pests foreground regions by annotating the foreground regions
of training samples is proposed. Firstly, by manual annotation
method, the pixels of the object background area were set to
zero to obtain the object foreground area samples, and the
object foreground area samples were trained to reduce the
interference of non-foreground features in the bounding box, so
as to enhance the learning of foreground features by the network
and obtain the tomato diseases and pests detection network.
When labeling samples, the pixels of the object background
area in the labeling bounding box were set to 0, whereas the
pixels of the foreground area remain unchanged. Thus, when
convolution feature extraction is performed, the influence of
unrelated information features on the feature extraction of
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tomato diseases and pests can be reduced. At the same time,
to retain the color, shape, and texture of the edge of tomato
diseases and pests, the object foreground area in the bounding
box included a certain area (5–10 pixels) around the object
contour to enhance the model’s learning of the characteristics of
the foreground area including, the object edge.

Data Amplification
The training sample was expanded in this study. Considering
that most of the tomato diseases and pests on the leaves of the
tomato plant are naturally suspended, while some of them are
inclined at multiple angles due to the occlusion of branches or
other leaves, this study conducted horizontal mirror inversion
and rotation operations on the training samples. The rotated
image is intercepted in the center. After rotating, the object near
the edge in the image will be discarded if it is incomplete or
completely lost.

Dataset Preparation
The process of dataset preparation is shown in Figure 3.

Datasets and sample size are shown is Table 2. In datasets
A and B, the number of bounding boxes for tomato diseases
and pests was 21,038, and the target foreground area (2,987) was
marked for occlusion and overlapping tomato diseases and pests
leaves. In dataset C, the number of annotations for the bounding
box of tomato diseases and pests was 1,73,304, and the number of
annotations for the foreground area was 24,158.

Considering that the test set is used to evaluate the detection
accuracy of the model, the original image annotated by the
bounding box is used as the test set.

METHOD OF IMPROVING YOLOv3-TINY

Principle of YOLOv3-Tiny
YOLO detection (Redmon et al., 2015) has developed three
generations, and many networks for specific scenes have been
derived. YOLO first uses the idea of regression to classify
image objects, and the detection speed reaches 45 frames/s. The
disadvantage is that the detection accuracy of small objects is
not high. YOLOv2 (Redmon and Farhadi, 2017) have optimized
the model structure of YOLO and improved the detection speed,
but the detection accuracy was not improved. YOLOv3 (Redmon
and Farhadi, 2018) uses deep residual network to extract image
features, as the minimum feature map for feature extraction is
too large, the detection speed is reduced and the detection effect
for medium or large size objects is not good.

YOLOv3-tiny (Redmon, 2018) compresses the original
network version without residual layer, and only two YOLO
output layers with different scales are used, which improves the
detection speed and accuracy of small object detection. Since
tomato diseases and pests image objects are mostly small objects,
and the detection speed requirements are high, it is suitable for
the basic network of this detection. It uses end-to-end object
detection, while ensuring accuracy, and it can greatly improve the
detection speed.

Input

Point Conv 1×1, 

BN, ReLU

Depthwise 3×3, 

BN, ReLU

Point Conv 1×1, 

BN

Add

FIGURE 4 | The structure of the inverse-residual block.

TABLE 3 | Inverse-residual block parameters.

Input Operation Output

h×w× k 1 × 1 point conv, ReLU h×w× 2k

h×w× 2k 3 × 3/s depthwise conv, ReLU h/s×w/s× 2k

h/s×w/s× 2k 1 × 1 point conv, Linear h/s×w/s× 2k

Existing Problems of YOLOv3-Tiny
In the feature extraction process of YOLOv3-Tiny model, the
number of network layers in the backbone network is small, the
extracted feature information is less effective, and the extraction
effect is poor. Therefore, each region in the extracted feature map
should be given different weights to better perform classification
task. In addition, the original model cannot make full use of the
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IRB 416×416×16/2

YOLOv3-tiny-IRB Detection

Conv 13×13×24

Conv 416×416×16 Input 416×416×3

IRB 208×208×32

IRB 208×208×32/2

IRB 104×104×64

IRB 104×104×64/2

IRB 52×52×128

IRB 52×52×128/2

IRB 26×26×256

IRB 26×26×256/2

IRB 13×13×512

IRB 13×13×512/2

IRB 13×13×1024

Conv 26×26×24 Conv 52×52×24

Conv 13×13×256 Conv 13×13×512

Conv 13×13×128

Conv 26×26×128

Upsampling

Conv 26×26×384

Fusion

Conv 26×26×256

Conv 26×26×128

Conv 26×26×64

Conv 52×52×64

Upsampling

Conv 52×52×192

Fusion

Conv 52×52×64 Conv 52×52×128 Scale1

Scale2

Scale3

FIGURE 5 | The improved YOLOv3-tiny network model (YOLOv3-tiny-IRB).

TABLE 4 | Size and computation amount of different network models.

Network models Model size/M Floating point calculation
amount/GFLOPs

YOLOv3 246.5 65.7

YOLOv3-tiny 34.7 5.56

YOLOv3-tiny-IRB 35.2 5.80

feature information output from the shallow layer of the network,
resulting in poor fine-grained detection ability of the model.

The Improved YOLOv3-Tiny Network
(YOLOv3-Tiny-IRB)
In view of the above problems, this work improves the original
network and optimizes YOLOv3-Tiny to make it more suitable
for tomato diseases and pests object detection task based on field
images with multiscale occlusion. In order to solve the problem
that the storage and computation of conventional convolution
parameters multiply with the deepening of network layers,
resulting in the increase of model size and difficult application
in hardware platforms with limited computing resources, this
work introduces the idea of residual blocks in Resnet (He et al.,
2016). Instead of conventional convolution, depth-wise separable

FIGURE 6 | Bounding box prediction.

convolution is applied to construct inverse-residual block,
which transforms the “spatial cross-channel” features learning
process into two parts: spatial feature learning and channel
combination. Specifically, one is that depth-wise separable
convolution performs spatial convolution independently on each
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TABLE 5 | Experimental hardware environment configuration.

Hardware name Model Number

Main board ASUS WS X299 SAGE 1

CPU INTEL I7-9800X 1

Memory Kingston 16G DDR4 2

Graphics card GEFORCE GTX1080Ti 2

Solid-state hard disk Kingston 256G 1

Hard Disk Western Number 1T 1

input channel; the other is that point where convolution maps
the output results of depth-wise separable convolution to a new
channel space. The structure of the inverse-residual block is
shown in Figure 4.

According to Figure 4, firstly, the input step size Stride = 1, the
number of channels is adjusted by 1 × 1 convolution kernel, and
the results are obtained by batch normalization (BN) algorithm
and rectified linear unit (ReLU) activation function in turn;
secondly, the network features are extracted by 3× 3 convolution
kernel, and pass through the ReLU function of BN algorithm;
thirdly, the number of channels is adjusted by 1 × 1 convolution
kernel to get the output through BN algorithm. Finally the
output is added to the input before entering the structure. The
structure of inverse-residual block is different from the residual
in ResNet. ResNet first reduces dimension, then convolutes,
and finally increases dimension, whereas inverse-residual block
first increases dimension, then convolutes, and finally reduces
dimension. The 1 × 1 convolution dimension enhancement is
used to increase the expressive ability of the model. When the
channel information is processed with the ReLU function, the
channel will inevitably lose information. When there are enough
channels, the lost information of one channel may still remain
in other channels, so it is necessary to increase the dimension
of the features first. The input of the inverse-residual block
structure already contains all of the necessary information, so
the ReLU activation layer is not added after the final 1 × 1
convolution to prevent information loss. After the dimension is
increased, the information is more abundant. At this time, the
ReLU function is added to increase the sparsity of the network.
After dimension reduction, the necessary information can be
maintained without loss.

The calculation of inverse-residual block in this study is shown
in Table 3.

In Table 3, h and w are the height and width of the feature
map, respectively, k is the number of channels of the feature map,
t is the multiple of the number of expanded channels, and s is
the step size. According to Table 2, both point convolution and
depth-wise convolution of the extended channel in the inverse-
residual structure of this study apply ReLU non-linear activation
function. When the point convolution layer for the number of
combined channels uses ReLU activation function, the negative
values will be changed to 0, thus losing part of the information,
and the linear activation function is used to solve the information
loss problem in the process of combined channels.

The improved YOLOv3-tiny network is denoted as YOLOv3-
tiny-IRB, and the network structure is shown in Figure 5, where

the IRB (Sandler et al., 2018) is an Inverse Residual Block and the
dotted box is the part of network feature extraction.

According to Figure 5, in the feature extraction network,
the feature extraction quantity is improved by increasing the
convolution layer, and the convolution with step size of 2 is used
to replace the maximum pooling layer in the original network
for downsampling. The inverse residual block constructed by
depth-wise separable convolution is used instead of traditional
convolution. The improved network is composed of 12 inverse-
residual blocks, which extract high-dimensional features through
inverse-residual blocks, expand feature map channels, and then
carry out channel dimension reduction to obtain feature maps
to make up for the deficiency of the algorithm in occlusion
object detection and improve the accuracy of the algorithm.
While increasing feature extraction, the model size and parameter
calculation amount are effectively reduced. At the same time,
there is downward transmission among scales, and the scale
diversity caused by different degree of occlusion and depth
of visual field decides to add an upper sampling layer on
the basis of the two-scale prediction objects of the original
network, which forms a three-scale prediction of 52 × 52,
26 × 26, 13 × 13. Fusion of different size features is
conducive to the different object sizes in occlusion scenarios,
preventing overfitting and further improving the accuracy of
object detection.

Table 4 lists the size and computation amount required to
process an image of YOLOv3, YOLOv3-tiny, and the network
model improved in this work. It can be seen that the network
model improved in this study is only 0.5M larger than YOLOv3-
tiny, and the amount of computation required to process an
image increases by 0.24GFLOPs, which is much smaller than
that of YOLOv3 model. It has great advantages in model
size and calculation amount. It meets the real-time detection
requirements of the embedded system.

Anchor Parameter Optimization
When studying object detection, appropriate anchor value can
improve the detection accuracy and speed. The anchor value in
the original YOLO algorithm is calculated by K-means clustering
method, which is more accurate than manual calculation.
However, for the dataset of tomato diseases and pests in this
work, the anchor value obtained by the original algorithm using
COCO and VOC datasets with too large instance size is too
large, so it is necessary to recalculate the appropriate anchor
value according to the actual data. In tomato diseases and pests
detection, clustering is to maximize the IOU value of the ratio
of anchor box to ground truth, so IOU is used as the objective
function to determine the distance, and its formula is as follows:

d(box, centroid) = 1− IOUbox
centroid (1)

Therefore, we set the center of centroid as the cluster center in
each instance label, and BOX as the bounding box. The smaller
the IOU, the larger the distance.

According to the label information of all the examples in the
study, new anchor values are obtained, which are: (10, 12), (22,
24), (30, 32), (69, 86), (83, 105), (119, 192), (168, 264), (223, 296),
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FIGURE 7 | Training flow of tomato diseases and pests object detection network.

TABLE 6 | The pseudocode of training YOLOv3-tiny-IRB.

Input: Training data

Initialize: W,b

for each batch sample X do
for l← 1 to L do
if l = Convolutional Layer then
∼l
Z ← BN(Z l)

Al
← σ

(
∼l
Z +b

)
else if l = Pooling Layer then
Al
← pool(A1−1)

end if
end for

J← 1
m
∑m

i=1 L(yi,
∼ i
y )

for l← L to 1 do
θl
← {wl,bl, γl, βl

}

V l
dθ
← λ · V l

dθ
+ (1− λ) ∂J

∂θl

θl
← θl

− α · V l
dθ

end for

end for

Return W,b, γ, β

(311, 358). Three groups of smaller anchor boxes are assigned to
larger size feature maps for predictive use; three groups of middle
size anchor boxes are assigned to medium size feature maps for
predictive use. In addition, three groups of anchor boxes with
larger area are allocated to smaller size feature map prediction.

Each grid uses the method of directly predicting relative
position to calculate three prediction boxes, as shown in Figure 6.

The relevant formulas in Figure 6 are as follows:

bx = σ (tx)+ cx (2)

by = σ
(
ty
)
+ cy (3)

bw = pwetw (4)

bh = pheth (5)

In the above-mentioned formulas, cx and cy represents the
upper-left coordinates of each grid. Here, pw and ph represent the

width and height of mapping from the anchor to the feature map,
respectively, and tx, ty, tw, th are the goals of model learning.

NETWORK TRAINING

Experimental Running Environment
The experimental hardware environment of this study is shown
in Table 5. On this basis, the software environment is built:
Ubuntu 16.04, Python, OPPENCV, CUDA, etc. The framework
uses Caffe and darknet-53 framework.

Model Training Process
The training process of tomato diseases and pests object
detection network is shown in Figure 7. After the original
image in the training set is equalized by adaptive histogram, the
training samples are manually annotated, including bounding
box annotation and foreground area annotation; the annotated
samples are expanded; and the multiscale training strategy is
used for training.

The pseudocode of training YOLOv3-tiny-IRB is shown in
Table 6. The number of network layers is L, the weight of the
network is W,b. BN represents batch normalization operation.
Also γ and β are the parameters, and they should be updated
iteratively in the back propagation process, and λ and α represent
momentum value and learning rate, respectively.

In the training phase, an asynchronous random gradient with
a momentum term of 0.9 was used, the initial learning rate
of the weights was 0.001, and the attenuation coefficient was
set to 0.0005. In view of the differences in object scales of
tomato diseases and pests in complex natural scenarios, and since
individual object scales are of small size, the network training
mainly adopts two strategies. One is to increase the input scale
and fine-tune the network at 512 × 512 resolution to adapt to
higher input resolution in detection. This strategy can improve
the detection accuracy, but also reduce the detection speed. The
second strategy is multiscale training. In the training iteration,
the network runs every 10 batches from the set multiscale set
{384, 416...672} and continue training by replacing one scale
randomly again. This strategy makes the model have better
detection effect at different input resolution to adapt to multiscale
object detection of tomato diseases and pests. The loss descent
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FIGURE 8 | The loss and accuracy curve during training process.

TABLE 7 | Detection results of different algorithms.

Model name mAP (%) F1 score Detection speed (FPS)

DPM 73.2 0.792 0.3

Faster R-CNN 86.6 0.881 4

Mask R-CNN 87.1 0.889 3.6

SSD 85.3 0.862 55

YOLOv3 88.8 0.897 62

YOLOv3-tiny 88.1 0.893 220

YOLOv3-tiny-IRB 93.1 0.922 206

TABLE 8 | Detection results on different training sets.

Training set mAP (%) F1 score

A 90.3 0.901

B 92.6 0.913

C 93.1 0.922

curve versus the prediction accuracy curve of training set during
training process is shown in Figure 8.

According to Figure 8, the accuracy curve is rising steadily
whereas the loss curve is decreasing. The accuracy curve
gradually, leveled off after 80,000 iterations, and the model at
1,00,000 iterations were selected for this study.

EXPERIMENTAL RESULTS AND
COMPARATIVE ANALYSIS

The object detection network of tomato pests and diseases was
trained with training sets A, B, and C (see Table 1), respectively,
and the performance of object detection of tomato diseases and
pests in the scene of occlusion and leaf overlap was analyzed, and

TABLE 9 | Detection results by training set with foreground region.

Group Sample
numbers

Annotation numbers mAP (%) F1 score

Bounding
box

Foreground
region

a 3500 21038 0 88.6 0.899

b 3500 18051 2987 91.7 0.908

c 29016 173304 0 92.8 0.912

d 29016 149116 24158 94.2 0.936

compared with the performance of the detection models such as
Faster RCNN (Ren et al., 2017), YOLO and Adaboost. Around
1,500 images (9,067 tomato diseases and pests objects) were input
into the trained network for location regression. When the IOU
(intersection and convergence ratio) of the object bounding box
predicted by the model and the manually labeled bounding box is
more than 0.7, the detection is considered correct, otherwise it is
wrong and the test results are obtained.

Precision (P), recall (R), F1 value, and detection speed were
selected as evaluation criteria. Sample S is divided into four types
according to the combination of the true category of sample S and
the predicted category of model: True positive (TP) represents the
number of correctly classified positive samples, FP represents the
number of incorrectly classified positive samples, false negative
(FN) represents the number of incorrectly classified negative
samples (FN), and true negative (TN) represents the number of
correctly classified negative samples.

Precision (P) represents the proportion of samples that are
truly positive in all samples that are predicted to be positive, and
the formula is

P =
TP

TP + FP
(6)
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FIGURE 9 | The detection effect diagram of YOLOv3-tiny-IRB [(A) deep separation; (B) debris occlusion; (C) leaves overlapping].

Recall R© represents the proportion of samples that are
predicted to be positive of the truly positive samples. The formula
is

R =
FP

FP + TN
(7)

The F1 value is a measure function of balancing precision P
and recall R, and the calculation formula is

F1 =
2PR
P + R

(8)

In object detection, in each category the P–R curve can
be drawn according to precision P and recall R. The average
accuracy AP value of single category detection is the area between
P–R curve and coordinate axis, and the calculation formula is as
follows:

AP =
∫ 1

0
P(R)dR (9)

The average of AP values of all categories is mAP, and the
formula is

mAP =
1
c

∑
AP (10)

In the above-mentioned formula C is the number of categories
contained in the dataset.

Frame rate per second (FPS) is a common indicator of speed,
which is the number of images that can be processed per second.

Performance Comparison of Several
Different Algorithms
The dataset after data processing was used as training set.
Deformable Parts Model (DPM) (Sun et al., 2014), Faster R-CNN,
Mask R-CNN, single shot multibox detector (SSD) (Liu et al.,
2016), YOLOv3, YOLOv3-tiny and YOLOv3-tiny-IRB are taken
as a basic network for training and testing respectively.

The test results of different algorithms on the test set are shown
in Table 7.

It can be seen that the detection accuracy of YOLOv3-tiny-IRB
in this work is much higher than other models. The accuracies
of Faster R-CNN, Mask R-CNN, SSD, YOLOv3, YOLOv3-
tiny, and YOLOv3-tiny-IRB, which use CNN for convolution

feature extraction, are significantly higher than that of DPM
algorithm using HOG feature. Traditional object detection
algorithm relies on manual designed features, which uses sliding
window to select candidate boxes, resulting in severe window
redundancy problem and poor generalization performance of
feature extraction methods. As a result, the detection accuracy
is low and the algorithm steps are numerous, which leads
to the slow detection speed and poor real-time performance.
Since CNN can simultaneously extract color, texture and shape
features, it is superior to traditional methods, and so the
performance of CNN detection method is superior.

According to Table 6, the detection speed of DPM
detection method in the traditional mainstream machine learning
algorithm is the slowest. Faster R-CNN and Mask R-CNN
algorithm generates more than 2,000 object candidate region
by region, generating a network in the detection process, and
then classifies candidate regions by CNN, whereas YOLO series
algorithms directly process the whole image by CNN, which
reduces the computational complexity, so the detection speed is
faster than Faster R-CNN and Mask R-CNN. YOLOv3-tiny is
faster than YOLOv3 detection, but there are only two levels of
detection and no fusion of small objects, so there is no way to
identify objects of different scales well.

Compared with the original YOLOv3 and YOLOv3-tiny, the
mAP improved by 4.3 and 5.0%, respectively. The introduction
of the inverse-residual module improved the ability of network to
extract features and increased the participation of finer feature
maps in location regression and classification, thus facilitating
the improvement of the detection accuracy of YOLOv3-tiny-
IRB. Meanwhile, the inverse-residual block had little effect on the
detection speed, and the speed reached 206 frames/s. Therefore,
it maintains a good real-time performance while improving the
detection accuracy. Overall, YOLOv3-tiny-IRB can achieve trade-
off of accuracy and speed, so that the model can be deployed on a
large scale in hardware platforms such as embedded devices and
mobile terminals to meet the actual needs.

Detection Results of Amplified Datasets
Based on YOLOv3-tiny-IRB network, the comparison test
before and after data amplification was carried out. As can be
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TABLE 10 | Detection result comparison.

Object detection scenarios mAP (%) F1

(a) Deep separation 98.3 0.971

(b) Debris occlusion 92.1 0.915

(c) Leaves overlapping 90.2 0.901

seen from Table 8, compared with the original image dataset
(Training set A), the mAP and F1 score of the model of the
enhanced dataset (Training set B) were increased by 2.3 and
0.012%, respectively. After data amplification (Training set C),
The mAP and F1 score of the model were improved by 2.8
and 0.021%, respectively compared with the preamplification
(Training set A). The results showed that image enhancement,
mirror, rotation, and other processing methods could further
improve the detection accuracy.

Detection Results Using Object
Foreground Training Samples
To verify the effect of foreground region training samples on
detection accuracy, a comparative experiment was conducted.
The 3,500 training samples in the original image were
divided into two groups: group A training set contained only
21,038 bounding box annotations for all samples, group B
contained 2,987 foreground region annotations for occluding
and overlapping samples, and 18,051 bounding box annotations
for uncovered samples. The training set of group C contains
1,73,304 bounding box annotations, and group D contains
24,158 foreground region annotations, and 1,49,146 bounding
box annotations. YOLOv3-tiny-IRB is trained with these four
training sets, and the test results on the test set are shown in
Table 9. It can be seen that the object foreground region of
the tomato diseases and pests training sample is annotated with
YOLOv3-tiny-IRB network training. The detection accuracy is
obviously improved and the difficulty of occlusion and overlap
detection is overcome by reducing the interference of the
features of the non-foreground region in the boundary frame.
After data amplification, the detection accuracy of the model
obtained by using the training set marked by the foreground
region is significantly improved compared with the model
without foreground region labeling, and the mAP and F1
score of all objects in the test set are improved by 1.4% and
0.024, respectively.

Detection Results Under Conditions of
Occlusion and Overlapping
Under the different object detection scenarios of (a) deep
separation, (b) debris occlusion, and (c) leaves overlapping,
YOLOv3-tiny-IRB trained with dataset C can achieve good
detection performance, as shown in Figure 9 and Table 10. It can
be seen that the network model designed in this work can detect
tomato diseases and pests under a certain degree of occlusion
interference and dense overlap of leaves. For the detection
of leaves overlapping scenario, YOLOv3-tiny-IRB still reaches

TABLE 11 | Detection results of each species of diseases and pests.

Species Precision (%) Recall (%) F1 score

Early blight 93.9 86.5 0.922

Late blight 92.4 85.8 0.901

Gray leaf spot 93.5 86.4 0.912

Brown spot 92.7 84.2 0.910

Coal pollution 93.9 86.1 0.926

Gray mold 94.5 86.9 0.928

Leaf mold 94.8 87.1 0.925

Powdery mildew 92.8 84.3 0.917

Leaf curl 93.2 87.2 0.919

Mosaic 91.1 82.6 0.920

Leaf miner 90.2 82.7 0.904

Greenhouse whitefly 90.1 83.3 0.903

Total 93.9 86.5 0.922

90.2% of mAP, but its detection accuracy is significantly lower
than that under deep separation and debris occlusion scenarios.

Detection Results of Each Species of
Diseases and Pests
To discuss detection results of each species of diseases and pests,
this study compared the performance of 12 tomato diseases and
pests using the improved model. In the original data, there are
certain similar symptoms of the disease with similar colors. Pests
are easy to discern but are densely distributed, making it more
difficult to be fully detected. The detection results of each species
of diseases and pests are shown in Table 11.

The results showed that the improved model performed
excellent in detection accuracy. Detection of twelve different
types of diseases and pests all achieved good results, with all
F1 scores reaching more than 0.9, and the detection time also
reached the requirement of real-time performance. Therefore, the
improved model has good generalization ability and can adapt
to the needs of rapid detection of tomato pest and disease under
natural environmental conditions.

CONCLUSION AND FUTURE
DIRECTIONS

The experimental results show that the proposed YOLOv3-
tiny-IRB algorithm takes into account the simultaneous
improvement of detection accuracy and speed, and improves
the real-time detection of multiscale objects of occlusion or
overlapping tomato diseases and pests in complex natural
environment. The research of real-time detection algorithm
in complex scenarios can better serve the needs of early
warning of plant diseases and pests in smart agriculture.
This work not only improves the performance of YOLOv3-
tiny network in occlusion or overlapping tomato diseases
and pests, but also provides a new method for other object
detection, such as fruit harvesting robot, field rabbit, and field
bird recognition.
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At present, there are many kinds of plant diseases and pests.
How to identify more kinds of plant diseases and pests through
feature extraction and network structure adjustment and improve
the accuracy and efficiency of identification is the direction of
follow-up research.
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