
fpls-12-789630 December 22, 2021 Time: 12:22 # 1

ORIGINAL RESEARCH
published: 03 January 2022

doi: 10.3389/fpls.2021.789630

Edited by:
Peng Chen,

Anhui University, China

Reviewed by:
Guangming Zhang,

University of Texas Health Science
Center at Houston, United States

Lisha Zhu,
University of Chicago, United States

Xin Gao,
Suzhou Institute of Biomedical

Engineering and Technology, Chinese
Academy of Sciences (CAS), China

*Correspondence:
Zhiwei Ji

Zhiwei.Ji@njau.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Sustainable and Intelligent
Phytoprotection,

a section of the journal
Frontiers in Plant Science

Received: 05 October 2021
Accepted: 03 November 2021

Published: 03 January 2022

Citation:
Xia F, Xie X, Wang Z, Jin S, Yan K

and Ji Z (2022) A Novel
Computational Framework

for Precision Diagnosis and Subtype
Discovery of Plant With Lesion.

Front. Plant Sci. 12:789630.
doi: 10.3389/fpls.2021.789630

A Novel Computational Framework
for Precision Diagnosis and Subtype
Discovery of Plant With Lesion
Fei Xia1†, Xiaojun Xie1,2†, Zongqin Wang1, Shichao Jin3,4, Ke Yan5 and Zhiwei Ji1,2*

1 College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China, 2 Center for Data Science and Intelligent
Computing, Nanjing Agricultural University, Nanjing, China, 3 Plant Phenomics Research Centre, Academy for Advanced
Interdisciplinary Studies, Regional Technique Innovation Center for Wheat Production, Key Laboratory of Crop Physiology
and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China, 4 Collaborative
Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Jiangsu Key Laboratory
for Information Agriculture, Nanjing Agricultural University, Nanjing, China, 5 Department of Building, School of Design
and Environment, National University of Singapore, Singapore, Singapore

Plants are often attacked by various pathogens during their growth, which may
cause environmental pollution, food shortages, or economic losses in a certain area.
Integration of high throughput phenomics data and computer vision (CV) provides a
great opportunity to realize plant disease diagnosis in the early stage and uncover the
subtype or stage patterns in the disease progression. In this study, we proposed a
novel computational framework for plant disease identification and subtype discovery
through a deep-embedding image-clustering strategy, Weighted Distance Metric and
the t-stochastic neighbor embedding algorithm (WDM-tSNE). To verify the effectiveness,
we applied our method on four public datasets of images. The results demonstrated
that the newly developed tool is capable of identifying the plant disease and further
uncover the underlying subtypes associated with pathogenic resistance. In summary,
the current framework provides great clustering performance for the root or leave images
of diseased plants with pronounced disease spots or symptoms.

Keywords: plant, disease diagnosis, subtype discovery, deep learning, t-SNE, image clustering

INTRODUCTION

Plants are often attacked by various pathogens (e.g., bacteria, viruses, fungi, etc.) during
their growth and development (Suzuki et al., 2014), resulting in abnormal physiological and
morphological changes in plants. In severe cases, it may disrupt its normal growth and development
and even cause large-scale disasters, such as leaf spot disease (Ozguven and Adem, 2019), powdery
mildew (Lin et al., 2019), brown spot and blast diseases (Phadikar and Goswami, 2016), and gray
mold (Fahrentrapp et al., 2019). The prior symptoms of these diseases include leaf discoloration,
tissue deformation or necrosis, and root atrophy, etc. Plant diseases, especially crop diseases, may
cause social problems such as economic losses or food shortages in a certain area (Wilkinson
et al., 2011). Therefore, early diagnosis of plant diseases, especially the precise prediction of
plant disease severity and drug resistance (Bock et al., 2020), will help formulate effective control
strategies, thereby effectively prevent the spread of diseases and reduce economic losses (Liang
et al., 2019). To solve the above problems, many researchers made great efforts on the diagnosis
of plant diseases by exploring the relationship between pathogen infection and plant disease
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symptoms (Bass et al., 2019; Vishnoi et al., 2021). However,
these studies cannot provide real-time disease diagnosis and
even evolution trajectory inference and will cause delays
or misjudgments in decision-making. In recent years, plant
phenomics (Tardieu et al., 2017; Pasala and Pandey, 2020) was
generated, which can automatically and non-destructively obtain
high-throughput plant phenotyping images (Lee et al., 2018; Li
et al., 2020), which makes computer-aided rapid diagnosis and
real-time monitoring of plant diseases possible.

Computationally, phenomics-based plant disease diagnosis
can be grouped into two categories, one is semantic feature-based
models, and the other is non-sematic feature-based models (e.g.,
deep learning [DL] models). The first category (conventional
image processing) is characterized by the features of color
(Gaikwad and Musande, 2017), texture (Hossain et al., 2019;
Ismail et al., 2020), and shape (Chouhan et al., 2020) extracted
from the lesion area of the phenotypic images to achieve disease
diagnosis and prediction. For example, Zhang et al. (2017)
segmented the lesions from the leaf images and extracted the
shape and color features for disease recognition in cucumber.
Moreover, some researchers realized the automatic diagnosis of
plant diseases through a classifier built with texture features
(Hossain et al., 2019; Ismail et al., 2020). In addition, computer
vision (CV) and machine learning were applied to quantify
root traits in real time for precision plant breeding (Rahaman
et al., 2019; Falk et al., 2020). However, the variation of plant
phenomics and the dependence of prior knowledge always limit
the generalization of this type of method to different plant
diseases. In recent years, DL has been widely used in image
classification and clustering (Hu et al., 2020; Saleem et al., 2020).
The representative characterizations of DL-based models include
powerful capabilities for feature extraction, low dependence on
domain knowledge, and high predictive accuracy (Too et al.,
2019; Lee et al., 2020). In the past few years, DL was used to
analyze the phenomics of plant disease. Various convolutional
neural network (CNN) models were developed as the image
multi-class classifiers to distinguish different plant leaf diseases
from high-throughput phenomics (Brahimi et al., 2018; Zhang
et al., 2019). Furthermore, DL is also very effective for grading
the severity of plants with the same disease (Verma et al., 2020).
Liang et al. (2019) combined ResNet50 (Wen et al., 2020) model
and Shufflenet-V2 (Ghosh et al., 2020) to build a PD2SE-Net
network model, which realized the classification of plant diseases
and the prediction of disease severity. Yu et al. (2006) applied
VGG16 model on diseased leaf images for grading the severity
of apple black rot (Wang et al., 2017). Although DL models are
widely studied for plant disease diagnosis, they still face obvious
challenges, such as poor generalization, unexplainable features,
and high dependence on abundant training samples.

In this study, we proposed a novel image clustering method
for both plant disease classification and subtype discovery. Firstly,
all the original plant images were preprocessed to amplify the
sample size. Secondly, we established a deep CNN to extract the
features of phenotypic images. Finally, we designed a clustering
strategy by integrating a Weighted Distance Metric (WDM) and
the t-stochastic neighbor embedding algorithm, named “WDM-
tSNE.” To validate the effectiveness, we applied the proposed
method on a batch of public plant image datasets, namely,

Modified National Institute of Standards and Technology
(MNIST) (Deng, 2012), Aphanomyces Root Rot (ARR) in lentil
(Marzougui et al., 2019), cherry powdery mildew, strawberry
leaf scorch disease, and three types of tomato disease from
PlantVillage dataset (Mohanty et al., 2016). The experimental
results show that our method obtained high performance on
plant disease classification and subtype discovery. In particular,
the WDM-tSNE strategy provides better clustering accuracy than
the standard tSNE.

RELATED WORK

In this section, we briefly review the related work of plant disease
diagnosis on semantic feature-based models, and non-sematic
feature-based models.

Semantic Feature-Based Models
The general idea of this kind of method includes four steps: (1)
image preprocessing; (2) lesion segmentation; (3) image features
are defined and extracted for describing the pathology signatures
of the lesion regions; and (4) the image samples are classified
by using a machine-learning model (Vishnoi et al., 2021).
Considering the fact that the accuracy of lesion segmentation
directly affects the sample classification, many researchers used
various image-segmentation strategies to achieve the extraction
of the target regions, such as threshold-based segmentation
methods (Tete and Kamlu, 2017), edge detection algorithms
(Wang et al., 2018), and spatial clustering methods (Guan et al.,
2017). After obtaining the lesion regions, researchers often define
the color, texture, or shape features to characterize the disease
state of each sample. Gaikwad and coworkers applied K-means to
segment the lesion regions in the wheat leaf images and extracted
the color features, such as color histogram (Stricker, 1994), color
moments (Poonam and Jadhav, 2015), and the texture features
[e.g., gray-Level co-occurrence matrix [GLCM] (Gadelmawla,
2004)] to construct a support-vector machine (SVM) model
for the classification of wheat diseases (Gaikwad and Musande,
2017). Ali et al. (2017) applied Delta E (1E) segmentation to
process the leave images of diseased potatoes and extract color
and texture features based on red, green, and blue (RGB), hue,
saturation, value (HSV), and local binary patterns (LBP) to
implement the classification of early blight and late blight (Ismail
et al., 2020). Ayyub and Manjramkar (2019) successfully classified
the apple fruit diseases via a multi-class model by integrating
improved sum and difference histogram (ISADH), completed
local binary pattern (CLBP), and other color and texture features.

In general, this kind of method may obtain human-
interpretable features and thus provide good performance on
some plant diseases. However, three drawbacks exist. First, the
calculation procedure of these methods is complicated. Second,
these methods are highly dependent on expert knowledge. Third,
they do not work well for real-time detection.

Non-sematic Feature-Based Models
In recent years, DL has promoted the development of CV,
thereby providing new ideas for image analysis and automatic
diagnosis of plant diseases. In particular, the CNN model has
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FIGURE 1 | The flowchart of the proposed framework. ReLU, Rectified Linear Unit.

FIGURE 2 | CNN-based network for feature extraction. ReLU, Rectified Linear Unit; CNN, convolutional neural network.

been widely studied by researchers because of its powerful image
processing and feature extraction capabilities and without the
prior knowledge of domain experts (Syed-Ab-Rahman et al.,
2021). At present, most of the existing works applied CNN,
combined with transfer learning (Too et al., 2019) to implement
plant disease diagnosis. Zhang et al. (2018) used two improved
CNN models, GoogleNet and Cifar10, to classify nine types of
corn diseases and obtain high accuracy. To reduce the number
of parameters, Rahman et al. (2020) constructed a two-stage
light CNN framework Simple-CNN to identify rice diseases with
high accuracy. Moreover, other researchers made great efforts to
develop novel computational models for predicting the severity
of plant disease. For example, José et al. (2020) used five types
of CNN models (AlexNet, GoogleNet, VGG16, ResNet50, and
MobileNetV2) to estimate the severity of coffee leaf biotic stress.
In addition, deep learning was also widely used to identify the
diseases of fruit, root, and stem. Tan et al. (2016) presented a
CNN model to recognize lesion images of diseased apples, such
as scab skin, black rot, scar skin, and ring spot (Wenxue Tan,
2020). Nikhitha et al. (2019) used the Inception v3 model to
detect the grades of infections in fruits (e.g., apple, banana, and
cherry, etc.) based on color, size, and shape of the fruit (Nikhitha
et al., 2019). Tusubira et al. (2020) achieved the automated
scoring for root necrosis of diseased cassava by using deep
CNN with semantic segmentation, which is done by classifying

the necrotized and non-necrotized pixels of cassava root cross-
sections without any additional feature engineering. Compared
with the first category, DL models achieve higher recognition
accuracy. However, we identify three limitations. First, they
require large amounts of labeled data; second, they are overly
sensitive to changes in the image; and third, the non-semantic
features are hard to be explained.

To address the above limitations, we proposed an efficient
pipeline for both disease diagnosis and severity estimation of
plants with the lesion. A DL model combined with a novel
clustering strategy contributes to higher prediction accuracy and
lower computational cost.

MATERIALS AND METHODS

The proposed computational framework includes three
steps (Figure 1) and will be explained in detail in the
following subsections.

Image Preprocessing
Before extracting features, each image needs to be preprocessed,
such as image enhancement and image segmentation.
Image augmentation is to increase the diversity of samples
(Halevy et al., 2009). we use horizontal flip (Connor Shorten,
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FIGURE 3 | The representative leaf images with diseases from PlantVillage. (A) Leaf scorch of strawberry; (B) cherry powdery mildew; (C) three types of leaf
diseases on tomatoes: a bacterial spot of tomato, tomato leaf mold, and tomato yellow leaf curl virus (TYLCV).

2019) and affine transformation (Shen et al., 2019) on each image
to enhance the size and quality of training datasets so that better
DL models can be built. The purpose of image segmentation
is to obtain areas related to plant tissues (root or leaf) from
the original images. Therefore, the irrelevant region needs to
be removed. In this study, we detected the relevant area by
traversing all the pixels in each image and obtained the smallest
circumscribed rectangle (Yu et al., 2006) of the outer contour
of a plant tissue.

Feature Extraction
We developed a CNN model to extract the features from the plant
images with the disease. The whole CNN model includes three
layers: convolution layers, the spatial pyramid pooling (SPP)
layer, and fully connected layer. The extracted high-dimensional
features were further used to cluster the images with different
severity levels. Figure 2 shows the details of the feature extraction
process using the lentil images as an example.

Creating the Feature Maps
As shown in Figure 2, the first step is to create the feature
maps from each input image by using a series of convolutional,
non-linear, and pooling. The convolutional layers can learn
the low-level features, such as edges and curves, which
provide the CNN with the important property of "translation
invariance" (Kayhan and van Gemert, 2020). That makes it
unnecessary to focus on the location of the disease on the
plant roots or leaves and let alone to divide up the area
of the spot. Convolution is done by applying filters to the
input image data, which decreases its size (Yamashita et al.,

2018). An additional operation called the Rectified Linear
Unit (ReLU) (Atila and Sengür, 2021) was used after every
convolution operation to generate a non-linear relationship
between input and output. Finally, The pooling layer is used
for secondary feature extraction, retaining the main features,
reducing parameters, saving computing resources, preventing
over-fitting, and improving model generalization (Suarez-
Paniagua and Segura-Bedmar, 2018). Here, we define a spatial
neighborhood with a 2 × 2 window and take the largest element
from the rectified feature map within that window. Max pooling
not only reduces the dimensionality of each feature map but
also retains the most important information. Comparing with
the typical VGG16 model (Qassim et al., 2018), the network
structure of our model retains all the convolutional and pooling
layers and the activation method, but removes three fully
connected layers.

Let us say we have a plant image, and its size is 224 × 224.
The representative array of this image will be 224 × 224 × 3
(3 refers to the channels of RGB). After the first operation of
convolution, we obtained the feature maps as an array with
224 × 224 ×64. Passing this array through four convolutional
layers, we finally obtained 512 feature maps with 14 × 14. The
final output feature map (14 × 14 × 512) will be converted into
one-dimensional vector.

Considering the fact that a CNN model may take time to train
on large datasets, transfer learning (Pan and Yang, 2010) was
considered in our study to re-use the model weights from pre-
trained ImageNet (Krizhevsky et al., 2012) tasks. Here, we directly
use the five convolutional layers from the entire architecture of
the pre-trained the VGG16 model on ImageNet datasets.
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FIGURE 4 | Aphanomyces root rot disease severity scale.

Converting the Feature Maps to a Fixed Length
Feature Vector
In this step, we convert all the two-dimensional feature maps to a
single long continuous linear vector because the fully connected

layer expects to receive one-dimensional inputs (Gu et al., 2018).
Here, we introduce SPP (He et al., 2015) layer to remove the
limitation of the fixed size of the images. The SPP layer was placed
after the last convolutional layer and aggregated multi-scale
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FIGURE 5 | The plots for the MNIST dataset based on six dimensionality reduction approaches, including (A) Isomap, (B) LLE, (C) PCA, (D) MDS, (E) t-SNE, and
(F) WDM-tSNE. MNIST, Modified National Institute of Standards and Technology; ISOMAP, Isometric Mapping; PCA, Principal Component Analysis; LLE, Locally
Linear Embedding; MDS, Multidimensional Scaling; t-SNE, t-Distributed Stochastic Neighbor Embedding; WDM-tSNE, Weighted Distance Metric and the
t-stochastic neighbor embedding algorithm.
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FIGURE 6 | The plots for the (A) balanced or (B–C) unbalanced datasets of strawberry leaf scorch based on (i) t-SNE and (ii) WDM-tSNE. WDM-tSNE, Weighted
Distance Metric and the t-stochastic neighbor embedding algorithm.
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TABLE 1 | The performance of WDM-tSNE on the multiple datasets of strawberry.

Balanced dataset Unbalanced dataset with
more healthy leaves

Unbalanced dataset with
more scorch leaves

t-SNE WDM-tSNE t-SNE WDM-tSNE t-SNE WDM-tSNE

Silhouette coefficient 0.723 0.729 0.755 0.788 0.725 0.799

Calinski-Harabasz 2014.769 2106.024 1026.573 1353.780 734.780 1391.950

Davies-Bouldin Index 0.4070 0.399 0.271 0.233 0.302 0.218

WDM-tSNE, Weighted Distance Metric and the t-stochastic neighbor embedding algorithm.

features. As shown in Figure 2, each feature map (14 × 14) is
divided into a lattice of n × n (n = 1,2,4) and each lattice is
pooled, resulting in 21 features. This also means that the 512
feature maps of an original image are finally represented as a one-
dimensional vector with a length of 10,752 (21× 512). The output
of the fully connected layer is 4,096, which means each image
matrix will be converted to a feature vector with length 4,096 for
clustering calculation.

Image Clustering
As mentioned above, each original image was finally represented
as a 4,096 × 1 vector after the feature extraction process. The
clustering of a group of original images is thus equivalent to
a clustering task on a set of data points with a dimension of
4,096. Considering the fact that t-SNE is an efficient algorithm
based on manifold learning for unsupervised clustering (Van
der Maaten and Hinton, 2008), we designed an improved t-SNE
algorithm for image clustering to classify plant diseases and
graded the severity of a disease. The standard t-SNE algorithm
assumes that the samples are distributed on a statistical manifold
and converts the Euclidean distance between the samples into
conditional probabilities to characterize the similarity between
the samples (Talwalkar et al., 2008). However, the variables
in the high-dimensional space often present complex non-
linear relationships, and the Euclidean distance does not well
reflect the real distribution of the samples, thus affecting its
projection to the low-dimensional space. Within a manifold
space, the Euclidean distance metrics can only represent the real
distance between samples in a very small neighborhood subspace
(Zhang et al., 2011).

Taken above together, we think that only the data points in the
local neighborhood are applicable to the Euclidean distance, and
they should be given greater weight in the conditional probability
transformation. In this study, we adopted a WDM strategy to
improve the t-SNE algorithm (WDM-tSNE) so that the similarity
between samples can be better reflected after they are projected
to a low-dimensional space. The details of WDM-tSNE are
described as follows:

Firstly, we construct the distance matrix D of all the samples,
where the element dij represents the distance between any two
points Xi and Xj [Eq. (1)]:

dij =
∑n

k=0
(Xik − Xjk)

2 (1)

All the non-zero elements dij (i 6= j) are sorted in ascending order,
and the distance value that ranks approximately 10% is selected

as the threshold of the neighborhood relationship, denoted asθ.
If dij ≤ θ, Xi and Xj have a neighbor relationship and weighting
their distance will make them closer in the low-dimensional
space. Therefore, we define a WDM strategy to adjust the distance
coefficient l between any pair of samples Xi and Xj:

l =


dij − dmin + c

dmax − dmin
1, otherwise

, if dij ≤ θ (2)

Under the Gaussian distribution centered on the point Xi, the
conditional probability Pj|i is used to measure the similarity
between Xi and Xj. In other words, Pj|imeans the probability
that Xi chooses Xj as its neighbor. We thus construct conditional
probability Pj|i for Xi and Xj, and the probability distribution is
defined as Eq. (3):

Pj|i =
exp(−l ∗ ||Xi − Xj||

2/2σ2
i )∑

k6=i exp(−l ∗ ||Xi − Xk||2/2σ2
i )

(3)

From Eq. (3), we have Pi|i = 0. Assuming that the points Yi and
Yj in the low-dimensional space are projected from Xi andXj, the
similarity between the points Yi and Yj can be defined as:

Qj|i =
exp(−||Yi − Yj||

2)∑
k 6=i exp(−||Yi − Yk||2)

(4)

According to the above description, we expect that if two
points are similar in the high-dimensional space, they should
be closer after being projected to the low-dimensional space.
Here, we use Kullback-Leibler divergence (Van der Maaten and
Hinton, 2008) to measure the difference between the above two
conditional probability distributions and define the following
objective function as Eq. (5):

C =
∑

i

KL(P || Qi) =
∑

i

∑
j

Pj|i log
pj|i

Qj|i
(5)

However, the KL divergence (Kullback-Leibler divergence) is
asymmetric [KL(P||Q) 6= KL(Q||P)] (Afgani et al., 2008), which
will cause the gradient calculation to be complicated. To optimize
the KL divergence in SNE, t-SNE adopts symmetric SNE, that is,
assuming Pj|i = Pi|j and Qj|i = Qi|j. The conditional probability
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FIGURE 7 | The plots for the (A) balanced and (B–C) unbalanced datasets of the cherry leaf with powdery mildew based on (i) t-SNE and (ii) WDM-tSNE.
WDM-tSNE, Weighted Distance Metric and the t-stochastic neighbor embedding algorithm.
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TABLE 2 | The performance of WDM-tSNE on the multiple datasets of cherry.

Balanced dataset Unbalanced dataset with
more healthy leaves

Unbalanced dataset with
more scorch leaves

t-SNE WDM-tSNE t-SNE WDM-tSNE t-SNE WDM-tSNE

Silhouette coefficient 0.496 0.494 0.362 0.369 0.354 0.361

Calinski-Harabasz 511.877 540.454 81.172 103.808 119.424 131.842

Davies-Bouldin Index 0.773 0.764 0.969 0.841 0.836 0.829

WDM-tSNE, Weighted Distance Metric and the t-stochastic neighbor embedding algorithm.

FIGURE 8 | The plots for the balanced datasets of three tomato leaf diseases based on (A) t-SNE and (B) WDM-tSNE. WDM-tSNE, Weighted Distance Metric and
the t-stochastic neighbor embedding algorithm.

pj|i can be replaced with the joint probability pij:

pij =
exp(−l ∗ ||Xi − Xj||

2/2σ2)∑
k6=S exp(−l ∗ ||Xk − XS||2/2σ2)

(6)

If Xi is an abnormal point, all the dij will be very large and
may impact the calculation of Pij. Therefore, we define the joint
probability distribution Pij as:

Pij =
pj|i + pi|j

2n
(7)

To make the points in the same cluster in the low-dimensional
space more closer and the points in different clusters are more
distant (Van der Maaten and Hinton, 2008), the long-tailed
t-distribution is used instead of the Gaussian distribution. The
joint probability of two points in the low-dimensional space can
be defined as:

Qij =
(1+ ||yi − yj||

−1)∑
k 6=S(1+ ||yk − ys||2)−2 (8)

TABLE 3 | The performance of WDM-tSNE on the dataset of tomato disease.

Balanced dataset

t-SNE WDM-tSNE

Silhouette coefficient 0.263 0.273

Calinski-Harabasz 25.538 40.427

Davies-Bouldin Index 1.615 1.279

WDM-tSNE, Weighted Distance Metric and the t-stochastic neighbor
embedding algorithm.

Therefore, Eq. (5) can be written as Eq. (9):

C = KL(P||Q) =
∑

i

∑
j
Pij log

pij
Qij

(9)

The formula (9) can be optimized by using the gradient descent
strategy shown in formula (10):

δc
δyi
= 4

∑
j
(Pij − Qij) (Yi − Yj) (1+ ||Yi − Yj||

2)−1 (10)

Finally, all the point pairs of Xi and Xj in the high-dimensional
space are projected to the two-dimensional space as Yi and Yj.
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FIGURE 9 | The plots for the balanced dataset of ARR based on six dimensionality reduction approaches, including (A) Isomap, (B) LLE, (C) PCA, (D) MDS, (E)
t-SNE, and (F) WDM-tSNE. The samples with 11 rates were plotted. ARR, Aphanomyces Root Rot.
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FIGURE 10 | The plots for the (A) balanced and (B–C) unbalanced datasets of ARR are based on (i) t-SNE and (ii) WDM-tSNE. WDM-tSNE, Aphanomyces Root
Rot; Weighted Distance Metric and the t-stochastic neighbor embedding algorithm; ARR, Aphanomyces Root Rot.
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The visualization of all the points Y can show the clustering effect
of image samples.

Experimental Protocol
In this section, we introduced the experimental protocol
designed for the validation of the proposed approach, such
as data collection, simulation design, evaluation metric, and
parameter optimization.

Data Collection
The MNIST database (Modified National Institute of Standards
and Technology database) (Baldominos et al., 2019), a large
database of handwritten digits, was used for data collection,
which is not only used for training various image processing
systems but also for testing machine-learning algorithms (Pastor-
López et al., 2021). Currently, the MNIST database contains
60,000 training images and 10,000 testing images. In this study,
we selected a data-subset Scikit-learn containing 1,797 8 × 8
digital images to test our proposed approach for image clustering.

PlantVillage (Barbedo, 2019) is a large, open-access image
database. Currently, it stores 54,306 leaf images, associate with
26 plant diseases of 14 species (Albert et al., 2017; Brahimi et al.,
2017; Ferentinos, 2018). This dataset is widely employed to test
the performance of machine-learning models (Wang et al., 2017).
In this study, we mainly focused on the following image sets
from PlantVillage: (1) three types of leaf diseases on tomatoes
(Figure 3C), such as bacterial spot of tomato (Adhikari et al.,
2020), tomato leaf mold (Rivas and Thomas, 2005), and tomato
yellow leaf curl virus (TYLCV) (Prasad et al., 2020); (2) cherry
powdery mildew (Gupta et al., 2017; Figure 3B); (3) leaf scorch
of strawberry (Dhanvantari, 1967; Figure 3A).

Aphanomyces Root Rot Image Dataset (Marzougui et al., 2019)
contains up to 6,460 lentil images with root rot. ARR is a soil-
borne disease that severely reduces lentil production. Based on
the percentage of the brown discoloration area of the root and the
softness of the hypocotyl (McGee et al., 2012), Marzougui et al.
(2019) labeled the relative severity of all the root images using
0–5 disease scoring scale (McGee et al., 2012). For example, A
score of 0 means that there are no obvious symptoms and good
resistance to root rot; 1.5 means that the root has 15–25% of
partial discoloration lesions; 3.5 means that the entire root has
completely turned brown, and the hypocotyl has some symptoms.
Eleven representative images with scores from 0 to 5 are shown
in Figure 4. Furthermore, Marzougui et al. (2020) proposed
three subtypes of ARR based on the visual score to evaluate the
Rot severity: (1) resistant subtype with score 0–1.5; (2) partially
resistant with score 2–3; (3) susceptible subtype with score 3.5–5.
In this study, we selected 950 representative images of ARR for
experimental simulation.

Simulation Design
Firstly, 1,797 digital images from MNIST were used to test
the proposed method. Furthermore, we also compared the
WDM-tSNE with the other five clustering strategies on MNIST.
Secondly, a binary clustering test was further implemented on 400
strawberry and 400 cherry images to identify the diseased samples
from the control. Thirdly, 300 tomato images were selected

to test the clustering performance of our approach on three
different diseases. Finally, we selected 950 ARR images to explore
potential subtypes for the lentil invaded by Aphanomyces. We
manually constructed balanced datasets and unbalanced datasets
to evaluate if our approach is steady. The sample size for each
dataset is presented in Supplementary File 1.

Clustering Performance Evaluation
In this study, we defined three types of metrics to assess
the clustering performance. (1) Silhouette Coefficient (SC)
(Dinh et al., 2019); (2) Calinski-Harabasz Index (CHI)
(Łukasik et al., 2016); (3) Davies-Bouldin Index (DBI)
(Vergani and Binaghi, 2018).

Silhouette Coefficient was firstly proposed by Rousseeuw
(1987), which considered both the degree of cohesion and
separation to measure the clustering performance. The SC value
of sample j can be calculated by Eq. (11):

SCj =
Cj − Sj

max{Cj, Sj}
(11)

where Cj and Sj represent the degree of cohesion and separation,
respectively. We can clearly see that good clustering means
smaller Cj and larger Sj .

Calinski-Harabasz Index is defined as the ratio of the between-
clusters dispersion mean and the within-cluster dispersion.
A larger CHI means that the clusters themselves are tighter and
the cluster-clusters are more dispersed [Eq. (12)]:

CH =

[∑K
k−1 nk||ck − c||2

K − 1

]
/

[∑K
k−1

∑nk
i−1 ||di − ck||

2

N − K

]
(12)

In Eq. (12), N and K are the number of samples and clusters,
respectively. The variables nk and ck are the no. of points and
centroid of the h-th cluster respectively, c is the global centroid.

Davies-Bouldin Index measures the average similarity
between clusters [Eq. (13)].

DB =
1
k

k∑
i=1

max
i6=j

Rij (13)

In Eq. (13), Rij denotes the similarity between each cluster Ci and
its most similar one Cj:

Rij =
si + sj

dij
(14)

si denotes the average distance between each point of cluster i. dij
denotes the distance between cluster centroids i and j.

Parameter Optimization
All the simulations were performed using Python with
TensorFlow on Ubuntu 14.04 platform. The hardware setups are
2.30?GHz CPU and 4.00 GB RAM. CNN model is composed of
13 convolutional layers, and each layer uses a stacked 3× 3 small
convolution kernel to replace the large-size convolution kernel.
After each convolutional layer, a 2 × 2 max pooling is used. In
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TABLE 4 | The performance of WDM-tSNE on the multiple datasets of lentil.

Balanced dataset Unbalanced dataset with
severe discoloration lesions

Unbalanced dataset with
slight discoloration lesions

t-SNE WDM-tSNE t-SNE WDM-tSNE t-SNE WDM-tSNE

Silhouette coefficient 0.214 0.232 0.192 0.207 0.189 0.225

Calinski-Harabasz 130.182 165.652 163.077 182.195 161.421 237.701

Davies-Bouldin Index 1.279 1.147 1.799 1.667 1.402 1.235

WDM-tSNE, Weighted Distance Metric and the t-stochastic neighbor embedding algorithm.

the WDM-tSNE model, the gradient descent strategy is used to
optimize the cost function C [Formula (9)], and the momentum
term α(t) is introduced to reduce the number of iterations (T).
When the value of the cost function reaches 95% of the previous
time, it indicates that the best result has been obtained, and the
iteration is stopped. If T < 250, we set α(t) = 0.5; otherwise,
α(t) = 0.8. The initial learning rate is set to 100, which is updated
by the adaptive learning algorithm after each iteration.

RESULTS

Validation on Modified National Institute
of Standards and Technology Dataset
As a golden-standard image dataset, MNIST was firstly tested by
our method. A total 1,797 digital images were imported to the
CNN module and converted to a 1,797× 64 matrix. Moreover, all
the 1,797 samples in a 64-D space were then projected to 2D space
by six dimensionality reduction approaches, namely, ISOMAP
(Isometric Mapping), PCA (Principal Component Analysis), LLE
(Locally Linear Embedding), MDS (Multidimensional Scaling),
t-SNE (t-Distributed Stochastic Neighbor Embedding), and the
proposed WDM-tSNE (Figure 5). From Figure 5, we found that
LLE and PCA obtained the worst performance of dimensionality
reduction as the 10 types of digital images in 2D space cannot
be separated at all. ISOMAP and MDS work better rather than
the first two, but the boundaries of inter-clusters are still blurred.
In contrast, t-SNE and WDM-tSNE are significantly better than
the previous four methods. Particularly, multiple evaluation
metrics indicates that the WDM-tSNE strategy obtained higher
clustering accuracy on MNIST superior to the standard t-SNE
(Supplementary Table 1). For the geometric distribution of the
samples in 2D space, WDM-tSNE can obtain better partitions of
clusters (Supplementary Table 1).

The Proposed Model Works Well for
Disease Diagnosis
We then applied our method on 400 strawberry images with
leaf scorch. Figure 6 shows that the scorched leaf images can
be easily identified from the healthy samples. Both balanced and
unbalanced datasets revealed that the clustering performance
is steady. Table 1 indicates that WDM-tSNE provides better
clustering performance rather than t-SNE. Similarly, we also
tested our approach on 400 cherry leaf images with powdery
mildew. WCD-tSNE not only makes the samples in the same

cluster more concentrated, but also guarantees the distance
between different clusters is as far away as possible (Figure 7).
Compared with t-SNE, WDM-tSNE has a better clustering effect
(Table 2). In addition to the binary-clustering, we also tested the
multi-clustering situation on the leaf images of diseased tomato.
Figure 8 reveals that three distinct leaf diseases on tomatoes can
be clearly identified (Table 3). Taken above together, we suggest
that the proposed framework is an effective tool for identifying
plant disease with high accuracy.

The Proposed Model Works Well for
Subtype Discovery
Different from the experiments shown above, we further applied
our model on 950 lentil root images infected by Aphanomyces
euteiches to identify the underlying subtypes associate with
Aphanomyces resistance. Firstly, 550 representative images
(balanced dataset) of ARR with 11 rates of severity were projected
to 2D space through six machine-learning approaches (Figure 9).
Figures 9E,F shows that both t-SNE and WDM-tSNE can
uncover the disease trajectory of all the samples from mild to
severe. Secondly, we selected 550 images (50 samples for each
rate) to test if WDM-tSNE has the ability to reveal the underlying
subtypes of the plant samples with the same disease. Figure 10
shows that three clusters are obviously detected from balanced
and unbalanced datasets. The clustering performance of WDM-
tSNE is superior to t-SNE (Table 4). In the balanced dataset with
550 samples, 231 were predicted as a mild subtype with an average
score of 1.93, 205 were predicted as a partially moderate subtype
(average score: 2.45), and 114 were marked as a severe subtype
(average score: 3.74) (Figure 11). Figure 11 also suggests that the
samples with serious symptoms can be easily detected (cluster 3).
However, the visual score based on the percentage of discolored
lesions on the entire root system defined by Marzougui et al. may
cause bias when dividing mild and moderate samples. Therefore,
the data annotations based on expert knowledge are also one of
the factors that affect the accuracy of the algorithm.

DISCUSSION

Plant diseases are not only a threat to food security on a global
scale, but also cause disastrous consequences for smallholder
farmers whose livelihoods depend on healthy crops (Mohanty
et al., 2016). Identifying a disease correctly when it first appears
is a crucial step for efficient disease management. Various efforts
have been developed to prevent the loss of the plant due to
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FIGURE 11 | The predicted three subtypes of ARR: (A) mild; (B) moderate; (C) severe. The numbers denote how many samples are assigned to one of the
subtypes. ARR, Aphanomyces Root Rot.

diseases. For computer-vision-based plant diseases detection,
conventional image processing or manual design of features

plus classifiers are often used (Tsaftaris et al., 2016). This
kind of method usually makes use of the different properties
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of plant disease to design the imaging scheme and chooses
appropriate light sources and shooting angles, which is helpful
to obtain images with uniform illumination. In the real complex
natural environment, plant diseases detection is faced with many
challenges, such as the small differences between the lesion area
and the background, low contrast, large variations in the scale
of the lesion area and various types, and a lot of noise in the
lesion image (Liu and Wang, 2021). In addition, over-depend
on expert knowledge to manually design the features of diseased
plant often limits the generalization. In recent years, DL methods
are widely used in various CV tasks for plant disease diagnosis.
The most challenges of DL-based strategies include small sample
size problem, fine-grained identification of small-size lesions in
the early stage, and the performance under the influence of
illumination and occlusion (Liu and Wang, 2021).

In this study, we proposed a computational framework
for both plant disease identification and severity estimation
(Figure 1). Firstly, we designed a CNN network structure as a
feature extractor to obtain the image features of lesion regions
of a diseased plant. The input original images are not required
with a fixed size, which avoid the impacts of image distortion or
geometric distortion on feature extraction. Secondly, a dimension
reduction strategy, WDM-tSNE, was developed for the imaging
clustering tasks by improving the t-SNE with WDM. WDM-tSNE
successfully realized the efficient clustering of high-dimensional
samples in low-dimensional space.

To validate the effectiveness, we applied the proposed model
on a bunch of plant image datasets. The experimental results
revealed that our method not only identifies multiple distinct
diseases of the same plant but also estimates the severity of
the same disease. Figures 5, 6 indicate that our model is able
to distinguish multiple diseases in a low-dimensional space.
Figures 7, 8 show that the diseased samples can be easily
identified from the health samples. From Figure 9, we concluded
that the proposed method can be used for subtype discovery or
severity estimation from the same disease (ARR). The 10-fold
cross-validation on the ARR dataset revealed that our model is
robust (Supplementary Table 2). Furthermore, we applied our
model on three small-scale datasets for cherry, strawberry, and
tomato. The sample size of each class is only 50. Our analyses
show that our model works well on small-scale image datasets
(Supplementary Figure 1 and Supplementary Table 3).

Considering the fact that the class imbalance may impact
the clustering performance, we constructed multiple balanced
and unbalanced datasets for ARR (lentil), cherry, and strawberry
(Supplementary File 1). Regardless of binary-class or multi-class,
WDM-tSNE shows better clustering performance than t-SNE
(Tables 1–4). It indicates that the sample variation does not affect
the performance of our method.

The proposed WDM-tSNE outperformed other approaches.
After extracting the features from images through the CNN
module, we compared the clustering performance of WDM-tSNE
with the other five dimension-reduction algorithms. Figures 5, 9
proved that WDM-tSNE is not only significantly better than
ISOMAP, LLE, PCA, and MDS, but also prior to tSNE.

Recent advances in genomics technologies have greatly
accelerated the progress in plant science (Varshney et al.,

2021). There are some studies to link phenotypic data
to genomic data for discovering the responsible genes or
mutations that contributed to plant disease progression (Bolger
et al., 2019). Particularly, the systems biology approaches
developed by integrating multi-omics data will allow us to
identify potential targets and predict new therapeutic strategies
(Di Silvestre et al., 2018).

There are several limitations of our current method. Firstly,
the features extracted from the plant images by the CNN
module are non-semantic, thus, it is hard to interpretable
for disease diagnosis and management. Secondly, the current
approach only focused on a single disease for each cluster
of the image but did not pay attention to the images of
plants suffering from multiple diseases. Thirdly, we have not
applied the current model on the high-throughput phenotypic
images obtained from real natural environments. Finally, we
cannot guarantee the clustering performance on the image
samples of diseased plants whose severity is manually labeled by
different experts.

CONCLUSION

This paper proposes a novel computational framework for plant
disease identification and subtype discovery from phenomics
data. Our proposed method has achieved high accuracy and
good generalization ability in all four public datasets than
other deep embedding clustering of images, e.g., t-SNE,
ISOMAP, etc.

Specifically, our method does not depend on prior knowledge.
Moreover, the size of input images is also unlimited. As a novel
embedding strategy, WDM-tSNE provides the perfect clustering
performance rather than other methods. The samples in 2D
space present great distributions after space embedding, which
is significant to reveal the underlying patterns and trajectory
of plant disease.

In the future, we will further explore the association between
the environmental parameters (climate, hydrology, and soil, etc.)
and plant disease evolution.
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