AUTHOR=An Nannan , Lu Nan , Fu Bojie , Chen Weiliang , Keyimu Maierdang , Wang Mengyu TITLE=Evidence of Differences in Covariation Among Root Traits Across Plant Growth Forms, Mycorrhizal Types, and Biomes JOURNAL=Frontiers in Plant Science VOLUME=12 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2021.785589 DOI=10.3389/fpls.2021.785589 ISSN=1664-462X ABSTRACT=
Fine roots play an important role in plant ecological strategies, adaptation to environmental constraints, and ecosystem functions. Covariation among root traits influence the physiological and ecological processes of plants and ecosystems. Root trait covariation in multiple dimensions at the global scale has been broadly discussed. How fine-root traits covary at the regional scale and whether the covariation is generalizable across plant growth forms, mycorrhizal types, and biomes are largely unknown. Here, we collected six key traits – namely root diameter (RD), specific root length (SRL), root tissue density (RTD), root C content (RCC), root N content (RNC), and root C:N ratio (RCN) – of first- and second-order roots of 306 species from 94 sampling sites across China. We examined the covariation in root traits among different plant growth forms, mycorrhizal types, and biomes using the phylogenetic principal component analysis (pPCA). Three independent dimensions of the covariation in root traits were identified, accounting for 39.0, 26.1, and 20.2% of the total variation, respectively. The first dimension was represented by SRL, RNC, RTD, and RCN, which was in line with the root economics spectrum (RES). The second dimension described a negative relationship between RD and SRL, and the third dimension was represented by RCC. These three main principal components were mainly influenced by biome and mycorrhizal type. Herbaceous and ectomycorrhizal species showed a more consistent pattern with the RES, in which RD, RTD, and RCN were negatively correlated with SRL and RNC within the first axis compared with woody and arbuscular mycorrhizal species, respectively. Our results highlight the roles of plant growth form, mycorrhizal type, and biome in shaping root trait covariation, suggesting that root trait relationships in specific regions may not be generalized from global-scale analyses.