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Plant breeding programs evaluate varieties in series of field trials across years and

locations, referred to as multi-environment trials (METs). These are an essential part

of variety evaluation with the key aim of the statistical analysis of these datasets to

accurately estimate the variety by environment (VE) effects. It has previously been thought

that the number of varieties in common between environments, referred to as “variety

connectivity,” was a key driver of the reliability of genetic variance parameter estimation

and that this in turn affected the reliability of predictions of VE effects. In this paper we

have provided the link between the objectives of this work and those in model-based

experimental design. We propose the use of the D-optimality criterion as a diagnostic to

capture the information available for the residual maximum likelihood (REML) estimation

of the genetic variance parameters. We demonstrate the methods for a dataset with

pedigree information as well as evaluating the performance of the diagnostic using

two simulation studies. This measure is shown to provide a superior diagnostic to the

traditional connectivity type measure in the sense of better forecasting the uncertainty of

genetic variance parameter estimates.

Keywords: multi-environment trials, linear mixed models, D-optimality, variety connectivity, simulation study

1. INTRODUCTION

The objective of plant breeding is to breed superior plant varieties for various traits of economic
importance. Selection of superior varieties is a result of the data analysis from a series of plant
variety trials at a number of locations and possibly over several years, which are known as Multi-
Environment Trials (METs). The breeding process is a progressive system involving the selection
of superior varieties for further rounds of testing, removal of poor performing varieties and the
inclusion of new varieties. This leads to datasets with varying levels of balance with respect to the
number of varieties in common between environments, ameasure known as “varietal connectivity.”
Unbalanced datasets are common when the MET spans multiple breeding stages and seasons.

Given that most MET datasets are unbalanced and exhibit variance heterogeneity (Cullis et al.,
2000; Chapman et al., 2003), it is critical that appropriate statistical methodology is used for
analysis. Various authors have recommended the use of factor analytic (Smith et al., 2001b) linear
mixed models (FALMM) to model the variety effects in different environments (VE effects),
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with a one-stage approach referred to as the gold standard of
analysis (Gogel et al., 2018). The FALMM approach has been
shown to provide a parsimonious and computationally stable
approximation to the fully saturated unstructured model (Kelly
et al., 2007). It is used in many plant breeding programs within
Australia and overseas due to its flexibility and ability to handle
unbalanced datasets. Additionally, it provides reliable predictions
of the VE effects which can then be summarised in an informative
manner using the selection tools of Smith and Cullis (2018) and
Smith et al. (2021b).

Not only is it important to use an appropriate method
of analysis for MET data, it is also crucial to construct a
suitable dataset. The latter has only recently been addressed
in the literature. Smith et al. (2021a) outlined an approach
for constructing MET datasets that optimises the information
available for selection decisions. This is based on new concepts
that characterise the structure of a breeding program, defining
groups of varieties that enter the initial testing stage of the
breeding program in the same year to have come from the
same “contemporary group” (CG). MET datasets are formed
by combining bands of data to trace the selection histories
of varieties within CG to maximise the amount of direct
information. For a given dataset the A-optimality criterion
from the model-based design literature is used to quantify
the information for any given selection decision. The criterion
is based on the A-value which is the average pairwise
variance of elementary variety contrasts. This is appropriate
for assessing variety effects because a small average pairwise
variance is synonymous with a low probability of making
incorrect selection decisions (Bueno Filho and Gilmour, 2003).
A-values are computed using a specified linear mixed model
(LMM), requiring the specification of the fixed and random
effects and values for the variance parameters. The Smith et al.
(2021a) approach assumes known variance parameters, whereas
in practise they are required to be estimated. Hence, the purpose
of this paper is to develop a diagnostic that measures the likely
reliability of genetic variance parameter estimates for a given
MET dataset. This could then be used in conjunction with
Smith et al. (2021a).

It had previously been thought that variety connectivity was
a key driver of the reliability of genetic variance parameter
estimation and that this in turn affected the reliability of
predictions of VE effects (Smith et al., 2001a, 2015; Ward et al.,
2019). To combat these concerns, problematic environments
were often removed from MET datasets if they appeared to
have insufficient numbers of varieties in common with other
environments. However, there has been little work to establish
whether variety connectivity is the most appropriate measure
to use for this purpose. Lisle (pers. comm) found that although
variety connectivity was influential, there appeared to be other
factors at play. Additionally, the number of varieties in common
between environments may not be relevant for analyzes in
which information on genetic relatedness is included since
“connectivity” in this case is a more general concept.

In this paper we address the issue in a formal manner by
considering the information for estimation of genetic variance
parameters. As in Smith et al. (2021a) we use model-based

experimental design concepts and assess information using a pre-
specified LMM. In this setting our interest lies in the reliability
of genetic variance parameter estimates across all environments,
and for individual environments. We therefore consider the D-
optimality criterion which measures the generalised variance of
parameter estimates (Butler, 2013; Russell, 2018). This measure
is typically used in the context of design searches for estimating
(fixed) treatment effects (Atkinson et al., 2007), whereas the
application to the problem of variance parameter estimation
is not common in the literature. However, Loeza-Serrano and
Donev (2014) and Nuga et al. (2017) considered D-optimality
to search for experimental designs for estimating variance
components. As in Smith et al. (2021a) our application does
not involve a design search but rather the quantification of
information for a given design (dataset).

In this paper we consider the impact of MET dataset structure
on the reliability of residual maximum likelihood (REML)
estimates of genetic variance parameters by proposing D-
optimality values as a diagnostic measure. The paper is arranged
as follows. Section 2 describes the statistical methodology,
including a one-stage and two-stage approach for computing the
diagnostic. The methods allow for the inclusion of information
on genetic relatedness. In section 3, we apply the diagnostic to
a durum wheat MET dataset, then examine the performance of
the diagnostic using two simulation studies. Some concluding
remarks are given in section 4.

2. STATISTICAL METHODS

2.1. Model for Analysis
Let yj denote the nj−vector of data for the jth environment,
j = 1, . . . , p. We then let y denote the n−vector of data
combined across all environments in the MET, so write y =

(y⊤1, y
⊤

2, . . . , y
⊤
p)

⊤. Note that n =
∑p

j=1 nj. The LMM for y can be
written as:

y = Xτ + Zgug + Zpup + e (1)

where τ is a vector of fixed effects with associated design
matrix X; ug is the vector of random genetic effects with
associated design matrix Zg ; up is a vector of random non-
genetic (or peripheral) effects with associated design matrix Zp

and e = (e⊤1, e
⊤

2, . . . , e
⊤
p)

⊤ is the combined vector of residuals
from all environments. The vector of fixed effects includes
mean parameters for individual environments. The vector of
random peripheral effects includes effects associated with the
experimental designs within environments. It is assumed:





ug
up
e



 ∼ N









0

0

0



 ,





Gg 0 0

0 Gp 0

0 0 R







 (2)

where the matrices Gg , Gp and R are variance matrices for ug
up and e, respectively. Gg is known as the between environments
variance/covariance matrix and is described in later sections. Gp

is assumed to be block diagonal given by Gp = ⊕b
i=1σ

2
pi
Iqi where

b is the number of components in up and qi is the number of
effects in (length of) upi. R is assumed to be block diagonal, so
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that R = ⊕
p
j=1Rj where Rj = var

(

ej
)

is the variance matrix for

the residuals for the jth environment. In the LMM of Smith et al.
(2001b), spatial models are used for the residuals and thematrices
Rj correspond to separable autoregressive processes.

The random genetic effects ug comprise the variety effects
nested within environments, and will be referred to as the VE
effects. If we let m denote the total number of unique varieties
across all environments, then the vector ug has lengthmp, which
is ordered as varieties within environments. In this paper we
allow for the use of pedigree information, so we partition the
VE effects into additive and non-additive (residual VE) effects
(Oakey et al., 2007) as follows:

ug = ua + ue

It is assumed that var (ua) = Ga ⊗ A where A is the numerator
relationship matrix and Ga is a p × p symmetric positive
(semi)-definite matrix that will be referred to as the between
environment additive genetic variance matrix. In terms of the
non-additive effects, it is assumed that var (ue) = Ge ⊗ Im where
Ge is a p × p symmetric positive (semi)-definite matrix that will
be referred to as the between environment non-additive genetic
variance matrix. The variance matrix of the total VE effects (that
is, additive plus non-additive) is therefore given by:

var
(

ug
)

= Gg = Ga ⊗ A+ Ge ⊗ Im (3)

Note that if no pedigree information is included in the analysis
then ug = ue and Gg = Ge ⊗ Im. Finally, the variance matrix for
the data vector is given by:

var
(

y
)

= H = ZgGgZg
⊤ + ZpGpZp

⊤ + R (4)

The first step in fitting the model in Equation (1) is the estimation
of the variance parameters associated with the random effects
and residuals. We let κ denote the vector of (unknown) variance
parameters and let nκ be the associated number of parameters.
We use residual maximum likelihood (REML) estimation which
requires calculation of the REML scores for the elements of κ .
These are given by:

U(κi) = − 1
2

[

tr
(

PḢi

)

− y⊤PḢiPy
]

(5)

where P = H−1 − H−1X
(

X⊤H−1X
)−

X⊤H−1 with
(

X⊤H−1X
)−

being any generalised inverse of
(

X⊤H−1X
)

. The “dot” notation
indicates a derivative so that Ḣi = ∂H/∂κi, i = 1 . . . nκ . The
REML estimate of κ is obtained by equating the scores to zero and
will be denoted by κ̂ . This typically requires an iterative scheme.
A computationally efficient scheme is the average information
algorithm of Gilmour et al. (1995) which is a Fisher scoring
algorithm in which the average information matrix, IA , is used
instead of the expected information matrix, IE . The elements of
these matrices are given by:

IA (κi, κj) = 1
2y

⊤PḢiPḢjPy

IE (κi, κj) = 1
2 tr

(

PḢiPḢj

)

(6)

Given the REML estimates of the variance parameters we can
then compute empirical best linear unbiased estimates (EBLUEs)
of the fixed effects and empirical best linear unbiased predictions
(EBLUPs) of the random effects in Equation (1). In particular, the
EBLUPs of the VE effects are given by ũg = GgZg

⊤Py and these
have an associated prediction error variance of var

(

ũg − ug
)

=

Gg − GgZg
⊤PZgGg . Note that in these equations the matrices

Gg and P are formed using the REML estimate κ̂ of κ . We can
then compute a model based reliability (Mrode and Thompson,
2005) for an individual VE effect prediction as the square of the
correlation between the true effect and the EBLUP. For the kth VE
effect, this is obtained as:

cor
(

ũgk , ugk
)2

= 1−

(

Gg − GgZg
⊤PZgGg

)

kk
(

Gg

)

kk

(7)

where the subscript “kk” indicates the kth diagonal element of the
associated matrix.

2.2. Information Based Diagnostic for
Genetic Variance Parameter Estimation
An asymptotic variance matrix for the REML estimates of the
variance parameters can be obtained as the inverse of the
information matrix. This could either be the average information
matrix or, more traditionally, the expected information matrix.
For the purposes of developing a diagnostic, we use the latter
as it does not depend on the data, the elements of which are
given in Equation (6). In this paper the interest lies in the
estimation of genetic variance parameters, so we partition the
variance parameters as κ =

(

κg
⊤, κḡ

⊤
)⊤
, where κg are the

genetic variance parameters associated with Ga and Ge and κḡ
are the remaining variance parameters, that is, associated with
the peripheral random effects and residuals. We partition the full
expected information matrix accordingly and write as:

IE (κ , κ
⊤) =

[

IE (κg , κg
⊤) IE (κg , κḡ

⊤)
IE (κḡ , κg

⊤) IE (κḡ , κḡ
⊤)

]

(8)

The asymptotic variance matrix for κ̂g can then be obtained as:

6(κg , κg
⊤) =

[

IE (κg , κg
⊤)− IE (κg , κḡ

⊤)(IE (κḡ , κḡ
⊤))−1

IE (κḡ , κg
⊤)

]−1

(9)
Smith and Cullis (2018) recommend the use of factor analytic
models for Ga and Ge. Other possibilities include compound
symmetric and unstructured forms. Irrespective of the form used,
the parameters of interest are the variances and covariances in
Ga and Ge. The aim in this paper is to develop a diagnostic that
reflects the information available to estimate these parameters
but which does not require the fitting of the full LMM. In order
to achieve this we apply some of the concepts from model-
based design in which the aim is to search a design space for
a configuration which is optimal in some sense under a pre-
specified LMM. The latter includes specification of the terms in
the model and also values for the variance parameters. Although
the aim here is not to search a design space but rather to
assess a particular design (dataset) we can proceed in a similar
manner by considering a pre-specified LMM. In order to simplify
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computations but enable wide applicability we use a LMM that
has a relatively simple structure for the non-genetic effects. In
terms of the model in Equation (1) we assume that the fixed
effects comprise a mean parameter for each environment (so that
τ =

(

τ1, τ2, . . . , τp
)⊤
) and we assume there are no peripheral

effects so write:

y = Xτ + Zg (ua + ue) + e (10)

where the design matrices are given by X = ⊕
p
j=11nj and Zg =

⊕
p
j=1Zg j

where Zg j
is the nj ×m design matrix for the VE effects

for environment j (= 1, . . . , p). The genetic variance matrices,Ga

and Ge, are assumed to have unstructured forms with p(p+ 1)/2
unique variance parameters in each that are denoted by σajs and
σejs (j ≤ s = 1, . . . , p), respectively.

Finally, we assume that the residual variance matrices are
given by Rj = σ 2

j Inj so that R = ⊕
p
j=1σ

2
j Inj . The variance matrix

for the data vector is then given by:

H = Zg (Ga ⊗ A+ Ge ⊗ Im)Zg
⊤ + R

and the unknown variance parameters are κ =
(

κg
⊤, κḡ

⊤
)⊤

where
κg comprises σajs and σejs (j ≤ s = 1, . . . , p) and κḡ comprises

σ 2
j (j = 1, . . . , p). We then use pre-specified values of these

parameters to compute the information matrix in Equation (8)
and thence the variance matrix in Equation (9). The chosen
variance parameters will be denoted κg0 and κḡ0 and the resultant
variance matrix denoted by 6(κg0, κg

⊤

0
). We then consider the

D-optimality criterion of model-based design because it is used
to search for designs that minimise the generalised variance
of parameter estimates. In our setting we wish to measure the
generalised variance of the genetic variance parameter estimates
for a given dataset. This can be obtained for the complete set of
genetic variance parameters as:

D =
log

∣

∣6
(

κg0, κg
⊤

0

)∣

∣

nκg

(11)

where the vertical bar represents the determinant and nκg is
the number of genetic variance parameters which is used as a
divisor to provide a scaling for comparisons acrossmodels and/or
datasets.

Although the overall D-value is of interest, our focus is on
individual environments and their relative contribution to the
reliability of genetic variance parameter estimation. We therefore
also compute a D-value for environment j (= 1, . . . , p) as:

Dj =
log

∣

∣

∣
6

(

κg0j
, κg

⊤

0j

)
∣

∣

∣

nκg j

(12)

where 6(κg0j
, κg

⊤

0j
) is the partition of 6(κg0, κg

⊤

0
) that relates to

environment j and nκg j
is the associated number of genetic

variance parameters. In the case of models in which information
on genetic relatedness is not used we have nκg j

= p, and the

parameters are the genetic variance for the environment and all

p − 1 genetic covariances with other environments. In models
in which the genetic effects are partitioned into additive and
non-additive effects we have nκg j

= 2p. To distinguish between

these different genetic models we label the diagnostic values as
Dj(A+I) if they correspond to a LMM with both additive (A)
and non-additive (or independent, I) VE effects; Dj(I) if they
correspond to the LMM with independent VE effects alone (that
is, genetic relatedness is not used) or Dj(A) if they correspond
to the LMM with additive VE effects alone. Irrespective of the
genetic model used, the diagnostic values for all p environments
can then be scrutinised in various ways in order to check for
“problem” environments with large values, which represent those
environments with large variance.

Finally, a further computational simplification can be made
in the calculation of 6(κg , κg

⊤) by using the marginal variance
matrix for the genetic variance parameters rather than the
conditional matrix as given in Equation (9). Thus, we can use:

6(κg , κg
⊤) =

[

IE

(

κg , κg
⊤
)]−1

(13)

This is a reasonable simplification given that the non-genetic
variance parameters in the pre-specified LMM are simply the
residual variances so that the uncertainty associated with their
estimation is likely to be small.

2.3. A Two-Stage Procedure
We first let dj be the number of varieties in environment j

(= 1, . . . , p) and define d =
∑p

j=1 dj to be the number of VE

combinations present in the data. Then note that formation of
6(κg0, κg

⊤

0
) using Equations (9) or (13) involves calculating traces

of matrices of dimension n. The dimensionality of the problem
can be reduced by considering a two-stage approximation to
the LMM as described in Gogel et al. (2018). Given the simple
form for the model in Equation (10) and the associated variance
matrices, we may expect little loss in using this approach and the
benefit is a reduction in dimensionality from n (total number
of plots in the dataset) to d (total number of VE combinations
present).

In the first stage of the two-stage approach, a separate analysis
is conducted for each environment in order to obtain predicted
variety means and a measure of their uncertainty. In these
analyzes the variety effects are regarded as fixed effects. The
predicted means are combined across environments to form the
data for the second stage analysis.We adopt the notation of Gogel
et al. (2018) so let η denote the fullmp× 1 vector of variety mean
parameters for individual environments and let ηd be the d × 1
sub-vector corresponding to the VE combinations present in the
data. Thus, we can write ηd = Dη where D is a d ×mp indicator
matrix that selects the appropriate elements. We let η̂d be the
vector of predicted variety means for individual environments
from the first stage. In our setting the individual environment
analyzes are particularly simple, involving only a single set of
effects, namely the fixed variety effects, and the residual variance
for environment j is simply σ 2

j Inj . This means that the variance

matrix of η̂d from the first stage is given by � = ⊕
p
j=1�j where
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TABLE 1 | Durum example: Summary of environments in the durum MET dataset.

No. Environment Number of trials Number of

S1 S2 S3 Total Plots Varieties

1 2014-Breeza 3 0 0 3 1,296 937

2 2014-Tworth 2 0 0 2 700 554

3 2015-Edgeroi 0 4 0 4 864 417

4 2015-Tworth 6 4 0 10 2,052 1,418

5 2016-Breeza 0 0 1 1 192 96

6 2016-Nstar 0 0 1 1 192 96

7 2016-Tworth 6 3 1 10 2,448 1,649

8 2017-Breeza 0 0 1 1 204 102

9 2017-Nstar 0 0 1 1 204 102

10 2017-Tworth 0 3 1 4 1,004 482

11 2018-Breeza 0 0 1 1 210 105

12 2018-Gurley 0 0 1 1 210 105

13 2018-Tworth 0 0 1 1 210 105

Total 17 14 9 40 9,786 3,708

Number of: trials for each stage of testing (S1, S2, and S3), total trials, plots and varieties.

�j is the dj× dj diagonal matrix given by σ 2
j diag

(

1/rji
)

, where rji
is the number of plots of variety i in environment j.

The LMM for the second stage combined analysis of the p
environments can then be written as:

y2 = X2τ + D (ua + ue) + ξ (14)

where y2 = η̂d from the first stage, and X2 = D
(

Ip ⊗ 1m
)

.
In terms of the variance structures, var (ua) = Ga ⊗ A and
var (ue) = Ge⊗ Im (as in the one-stage analysis) and var (ξ) = �

where this is known from the first stage. The variance matrix for
the data vector in the second stage is then given by:

H2 = D (Ga ⊗ A+ Ge ⊗ Im)D⊤ + � (15)

Elements of the expected information matrix for the variance
parameters in the second stage LMM are then given by:

I2E (κi, κj) =
1
2 tr

(

P2Ḣ2iP2Ḣ2j

)

(16)

whereP2 = H2
−1−H2

−1X2

(

X2
⊤H2

−1X2

)−1
X2

⊤H2
−1. This now

involvesmatrices of dimension d rather than n. As in the previous
section 2.2 we do not actually conduct the two-stage analysis but
compute the expected information matrix using Equation (16)
for a given choice of variance parameter values. We then form
the (marginal) variance matrix for the genetic variance parameter
estimates using Equation (13) and denote the resultant matrix by
62(κg0, κg

⊤

0
). This is substituted into Equations (11) and (12) to

compute the diagnostic.
A β-version of theR script file to calculateD-values is available

upon request to the corresponding author.

3. RESULTS

3.1. Application of Diagnostic to a MET
Dataset
The motivating MET dataset of this paper comes from the
Durum Breeding Australia North program. Here we present
some key summary information and apply the diagnostic
procedure. Summary information for the durum wheat dataset
is given in Table 1. The dataset comprised m = 3, 708 varieties
from n = 9, 786 plots corresponding to 40 trials from breeding
stages Stage 1 (S1) to Stage 3 (S3) across p = 13 environments
sown between 2014 and 2018. The number of varieties per
environment ranged from 96 to 1,649 with a median of 105.
We note that there are d = 6,168 variety by environment
combinations present in the data, representing a nearly 40%
reduction when using a 2-stage approach for computing the
diagnostic. The pedigree information comprised 3,959 records
and included all the varieties in the MET dataset. The inbreeding
coefficients of the latter ranged from 0.750 to 0.998 with a mean
of 0.911. The number of varieties in common between pairs of
environments (displayed in a heatmap in Figure 1) ranged from
3 to 485 with a median of 36.

Given that the analysis of the durum data for the purposes
of variety selection would proceed using a LMM with the
partitioning of the VE effects into additive and non-additive
effects, we computed the I2E based on this model (so that nκg =

182). The values of the variance parameters for calculation of the
diagnostic were set to:

σajs = 0.10; j = s = 1, . . . , p

= 0.08; j < s = 1, . . . , p
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FIGURE 1 | Durum example: Heatmap of the number of varieties in common between all pairs of environments in the durum MET dataset. The colors as referenced in

the legends. The boxes along the diagonal show the number of unique varieties in individual environments. Boundaries for years are indicated by the grey horizontal

and vertical lines.

σejs = 0.05; j = s = 1, . . . , p

= 0.04; j < s = 1, . . . , p

σ 2
j = 0.15; j = 1, . . . , p

These values were chosen as being both representative of actual
estimates from historical analyzes that are often encountered
in practise and of a magnitude that could allow the diagnostic
to provide good discrimination between environments. In
particular, we have set the additive genetic variance to 80% of
the total genetic variance (see Equation 3) for each environment
and therefore 20% for the non-additive genetic variance), and a
between environments correlation of 0.8 for both additive and
non-additive VE effects.

The Dj(A+I)-values for each environment from this pre-
specified LMM are given in Table 2. The environments 2016-
Tworth and 2015-Tworth had the smallest Dj(A+I)-values and
therefore the greatest information to estimate genetic variance
parameters. Whereas, 2018-Tworth, 2018-Gurley, and 2018-
Breeza had the largest Dj(A+I)-values and therefore the least
information to estimate genetic variance parameters.

Given the high percentage of additive genetic variance we also
computed the simpler diagnostic, based on a LMM with additive

VE effects alone. For this diagnostic nκg = 91 representing a
four-fold reduction in the number of elements in I2E (κi, κj) and
hence a significant savings in computation. The resultant Dj(A)-
values are presented in Figure 2A and Table 2, which show
little difference compared with the Dj(A+I)-values. In particular,
Figure 2A shows an almost 1:1 relationship.

To investigate the robustness of the diagnostic we also inspect
the Dj(A+I)- and Dj(A)-values with parameters set to those
which are at the lower end of those seen in practise. The values
of the variance parameters for calculation of the diagnostic were
set to:

σajs = 0.05; j = s = 1, . . . , p

= 0.02; j < s = 1, . . . , p

σejs = 0.15; j = s = 1, . . . , p

= 0.06; j < s = 1, . . . , p

σ 2
j = 0.15; j = 1, . . . , p

In particular, we have set the additive genetic variance to 40% of
the total genetic variance (see Equation 3) for each environment
and therefore 60% for the non-additive genetic variance, and a
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TABLE 2 | Durum example: Diagnostic Dj-values based on LMMs with additive

and non-additive VE effects [Dj (A+I)] and those based on LMMs with additive VE

effects alone [Dj (A)].

Environment High Low

Dj(A+I) Dj(A) Dj(A+I) Dj(A)

2016-Tworth –8.28 –9.25 –7.82 –8.60

2015-Tworth –8.27 –9.27 –7.82 –8.61

2017-Tworth –8.03 –9.04 –7.45 –8.25

2015-Edgeroi –7.95 –8.94 –7.30 –8.09

2017-Breeza –7.65 –8.69 –6.95 —7.80

2017-Nstar –7.65 –8.69 –6.95 –7.80

2014-Breeza –7.56 –8.61 –6.74 –7.47

2016-Breeza –7.51 –8.53 –6.76 –7.61

2016-Nstar –7.51 –8.53 –6.76 –7.61

2014-Tworth –7.43 –8.51 –6.72 –7.53

2018-Breeza –7.39 –8.55 –6.67 –7.59

2018-Gurley –7.39 –8.55 –6.67 –7.59

2018-Tworth –7.39 –8.55 –6.67 –7.59

High and low parameter values of additive variance (80 and 40%, respectively)

and between environments genetic correlation (0.8 and 0.4, respectively) are used.

Environments are ordered in ascending order on their Dj (A+I)-values (High).

between environments correlation of 0.4 for both additive and
non-additive VE effects. The resultant Dj-values are presented in
both Figure 2 and Table 2. Once again there is little difference in
the rankings of environments for Dj(A+I) compared with Dj(A)
(Figure 2D). Additionally the rankings were robust to the two
choices of variance parameters (high and low) used in forming
the diagnostic, with the only noticeable change being associated
with 2014-Breeza (Figures 2B,C).

As a comparison with the historical measure of variety
connectivity the Dj(A+I) values computed using the high set
of parameters have been plotted against mean connectivity
in Figure 3. Two other structural characteristics of the
environments are indicated on this plot, namely the number of
varieties grown and the mean replication per variety. The figure
shows that the diagnostic values encompass numerous structural
elements of the environments.

3.2. Simulation Studies to Investigate the
Performance of the Diagnostic
3.2.1. LMM Without Pedigree Information
Within the framework of the LMM with independent VE effects
it was previously thought that variety connectivity was a key
driver of the reliability of variance parameter estimation and
that this in turn affected the reliability of predictions of VE
effects. We therefore consider a simulation study in which
a range of connectivity levels is examined and assess the
performance of both variety connectivity and the D-optimality
diagnostic. For simplicity, and without loss of generality, we use
p = 2 environments and label these as Env1 and Env2. Each
environment has the same number of varieties (so that d1 = d2),
and we vary the number of varieties in common (which is given
by c = d −m). We assume the trials in Env1 and Env2 comprise

3 replicates and consider 4 sizes (Tsize) of trial corresponding to
different numbers of varieties, namely d1(= d2) = 12, 24, 48 and
96 so that n1(= n2) = 36, 72, 144 and 288.

The simulation study for the first trial size (Tsize=12) is
described in the following. We consider the connectivity levels
c = 2, 4 . . . 12 (increments of 2). The maximum total number
of varieties across Env1 and Env2 is m = 22, corresponding
to c = 2. We label these varieties as V1 - V22. We assume
that the 12 varieties in Env1 are always V1 - V12. The 12
varieties in Env2 are then V1 - V12 for c = 12; V2 - V13
for c = 11 and so on to V11 - V22 for c = 2. Our focus
is on Env1 because this contains the same varieties across all
connectivity levels so allows a fair comparison across these levels.
The underlying LMM is as in Equation (10) but with independent
VE effects alone (that is, without the additive VE effects) so
that nκg = 3. Given the data structure for each value of c
and some pre-specified variance parameters, we can compute
the diagnostic for Env1 which will be denoted D1c(I). For the
purposes of both the calculation of D1c(I) and of data generation
in the simulation study we chose the values of the variance

parameters to be κg0 =

(

σe110 = 0.2, σe120 = 0.16, σe220 = 0.2
)⊤

and κḡ0 =
(

σ 2
10

= 0.15, σ 2
20

= 0.15
)⊤

. The diagnostic is calculated

using the two-stage formula for expected information, that is, as
in Equation (16) and is given by:

D1c(I) =
log

∣

∣

∣
6c

(

(σe110 , σe120 ), (σe110 , σe120 )
⊤

)
∣

∣

∣

2
(17)

In the simulation study, the steps for the tth simulation (t =

1 . . .N) are as follows:

1. Generate the random genetic effects ue and residuals e as
per the LMM in Equation (10) and for the pre-specified
variance parameters κg0 and κḡ0. In terms of the fixed effects,
without loss of generality we choose τ1 = τ2 = 0. Note
that we generate 2m genetic effects, where m = 22 which
corresponds to the maximum total number of varieties across
all connectivity levels. We denote the resultant vector for
simulation t by uet . The residuals for simulation t are denoted
by et which is a vector of length n1 + n2 = 72.

2. For the connectivity level c, we subset the appropriate 24
elements of uet . We will label the associated vector as uetc . We
then form the data vector and fit the LMM as in Equation (10),
without the inclusion of pedigree information. We save the
REML estimates of the genetic variance parameters, denoting
these as σ̂e11tc , σ̂e12tc , σ̂e22tc and save the EBLUPs of the genetic
effects, denoting these as ũetc .

3. Repeat step 2. for each value of c

A total of N = 2, 000 simulations was conducted for each trial
size by variety connectivity combination. The simulation based
diagnostics and reliabilities were only computed for the LMMs in
Step 2. that achieved convergence (with one update if required)
and resulted in a positive definite form for the REML estimate
of Ge. All models in this paper were fitted using the ASReml-R
package (Butler et al., 2017) within R (R Core Team, 2020).
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FIGURE 2 | Durum example: Comparisons of Diagnostic Dj-values based on LMMs with additive and non-additive VE effects [Dj (A+I)] and those based on LMMs

with additive VE effects alone (Dj (A+I)) for high and low parameter values of additive variance (80 and 40%, respectively) and between environments genetic

correlation (0.8 and 0.4, respectively). (A) Dj (A+I) against Dj (A) values using the high parameter values, (B) Dj (A+I) against Dj (A+I) values using high and low

parameter values, respectively, (C) Dj (A) against Dj (A) using high and low parameter values, respectively, and (D) Dj (A) against Dj (A+I) using low parameter values.

The simulations were conducted in order to obtain two main
quantities of interest for each value of c, namely a measure of
the reliability of the genetic variance parameter estimates and a
measure of the reliability of the predicted variety effects for Env1.
For the former, we computed a simulation based equivalent of the
diagnostic in Equation (17), namely:

D
S
1c(I) =

log
∣

∣Vc

(

(σ̂e11c , σ̂e12c ), (σ̂e11c , σ̂e12c )
⊤
)∣

∣

2
(18)

where the determinant is with respect to the sample
variance/covariance matrix of the REML estimates of the
genetic variance parameters for Env1. In terms of the variety
predictions, we computed the reliability of the EBLUPs for the 12
varieties that were always present in Env1, namely V1 - V12. For
each value of c, the reliability for variety k(= 1 . . . 12) in Env1

was computed as the square of the sample correlation between
the true (generated) effects (element of uetc for the variety and
Env1) and the EBLUPs (element of ũetc for the variety and Env1).
This will be denoted RS

kc
.

Noting that the simulation based reliabilities (RS

kc
) of the

variety predictions take into account the uncertainty in having
to estimate the variance parameters, we compute analogues
values that assume known variance parameters. These reliabilities
therefore reflect the maximum possible values against which
we can measure the loss attributable to variance parameter
estimation. This was achieved by fitting, for each value of c, the
LMM as per Equation (10) but with the variance parameters
fixed at the value κ0. We then computed the model based
reliability for variety k(= 1 . . . 12) in Env1 using Equation (7) but
because this has been computed with respect to known variance
parameters (not REML estimates) we will call it the design based
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FIGURE 3 | Durum example: Diagnostic Dj (A+I)-values based on LMM with additive and non-additive VE effects plotted against mean number of varieties in

common. Labels show the total number of varieties, colors as represented in legend show the mean number of replicates.

reliability (RD

kc
). We calculated the associated loss for the EBLUP

reliabilities as:

RD

kc − RS

kc (19)

Finally we summarise these by taking means across the varieties
in Env1 that were also present in Env2. We restrict the results
to this set of varieties because in any MET analysis, there is
a fundamental difference between varieties that were present
in multiple environments (so-called connected varieties) and
those that were present in a single environment only. The
MET analysis, compared with separate analyzes of individual
environments, has the potential to improve the reliability of
predictions for connected varieties through the use of additional
data. This is not the case for varieties present in a single
environment only. Hence our focus is the connected varieties.

3.2.2. Results of Simulation Without Pedigree

Information
First we note that the number of simulations in which the
model fitting was successful (as defined in section 3.2.1) was
strongly related to the number of varieties in common between
the two environments (see Figure 4). The number of successful
model fits for the connectivity level of c = 2 was particularly
low and additionally the results were found to be unreliable.

Therefore, in what follows, the results for this connectivity level
have been excluded.

The relationship between the diagnostic D1c(I)-values (from
Equation 17) and the simulation based equivalent DS

1c(I)-values
(from Equation 18) is shown in Figure 5A. This good agreement
shown in Figure 5A clearly indicates that the diagnostic performs
well in terms of forecasting the level of uncertainty in genetic
variance parameter estimation. Figure 5B shows that there is a
decreasing linear relationship between (log) variety connectivity
and the uncertainty in genetic variance parameter estimation, but
this is only within a given trial size, that is, for a given number
of varieties. The connectivity measure fails for comparisons
involving trials with different number of varieties.

Figure 6 shows the mean losses in reliability of the EBLUPs of
VE effects for Env1 for those varieties that were present in both
environments. These are plotted against the diagnostic D1c(I)-
values, with a separate panel for each trial size. Each point has
been supplemented with a standard error of the mean (SEM)
which was based on a pooled estimate of error across all trial
sizes and connectivity levels. Thus differences in SEM reflect
differences in the numbers of varieties used to compute the
means (that is, differences in connectivity). The panels in this
figure show that, for a given trial size, the loss in reliability of
EBLUPs is well predicted by the diagnostic D1c(I)-values. This
also holds across trial sizes, although the relationship is more
variable (Figure 7).
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FIGURE 4 | Independent VE effects simulation study: Number of successful model fits from N = 2, 000 simulations plotted against number of varieties in common for

four trial sizes (trials with 12, 24, 48, and 96 varieties). Trial sizes (Tsize) are represented using different colours. Each point within Tsize corresponds to a different level

of variety connectivity which ranges from c = 2 up to the number of varieties in a trial (representing 100% connectivity between the two trials).

FIGURE 5 | Independent VE effects simulation study: Simulation based D
S

1c(I)-values plotted against (A) diagnostic D1c(I)-values and (B) log number of varieties in

common for four trial sizes (trials with 12, 24, 48, and 96 varieties) and a sequence of connectivity levels. Trial sizes (Tsize) are represented using different colours.

Each point within Tsize corresponds to a different level of variety connectivity which ranges from c = 4 up to the number of varieties in a trial (representing 100%

connectivity between the two trials).
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FIGURE 6 | Independent VE effects simulation study: Mean loss in reliability of the EBLUPs of VE effects for Env1 for those varieties that were present in both

environments. Each panel corresponds to a different trial size (trials with 12, 24, 48, and 96 varieties) and the points correspond to a sequence of connectivity levels.

Also shown are standard errors for each mean (vertical lines) and a loess smoother through the means for each Tsize.

Results displayed in Figures 4, 5, 7 have been extracted for
the “best case” scenario of 100% connectivity for each Tsize and
are presented in Table 3. This again shows the good agreement
between the diagnostic D1c(I)-values and the simulation based
D

S
1c(I)-values and the relationship between the diagnostic and

the loss in reliability of VE predictions. It also shows that, even
with 100% connectivity, there were substantial problems with the
smallest trial size in terms of all criteria (number of successful
model fits, reliability of genetic variance parameter estimates and
reliability of VE effect predictions).

3.2.3. LMM With Pedigree Information
We then extended the simulation study in order to assess the
performance of the diagnostic in terms of correlated VE effects.
To simplify the simulations, and without loss of generality, we
considered the LMM as in Equation (1) but without the non-
additive VE effects, so that as in section 3.2.1, nκg = 3. The set-up
for the study is the same as in section 3.2.1 but we only consider
the two larger trial sizes, namely d1(= d2) = 48 and 96 so that
n1(= n2) = 144 and 288. Across the range of connectivity levels

the total number of varieties required for the simulation was 191
(corresponding to c = 2 for the trial size of 96) and we label
these as V1-V191. The simulation study requires a numerator
relationship matrix (A) for these varieties. We therefore chose
V1-V191 from the actual lines in Stage 3 (S3) and Stage 4 (S4)
in 2018 and 2017 in the durum data and computed A from
the associated pedigree information. For the chosen subset of
varieties, the inbreeding coefficient ranged from 0.938 to 0.969
with a mean of 0.957.

For the purposes of both the calculation of D1c(A)
and of data generation in the simulation study we
chose the values of the variance parameters to be

κg0 =

(

σa110 = 0.1, σa120 = 0.08, σa220 = 0.1
)⊤

and

κḡ0 =
(

σ 2
10

= 0.15, σ 2
20

= 0.15
)⊤

.

3.2.4. Results of Simulation With Pedigree

Information
As in the independent VE effects study, the number of
simulations in which the model fitting was successful was
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FIGURE 7 | Independent VE effects simulation study: Mean loss in reliability of the EBLUPs of VE effects for Env1 for those varieties that were present in both

environments. The colours correspond to different trial sizes (trials with 12, 24, 48, and 96 varieties) and the points for each colour correspond to a sequence of

connectivity levels. Also shown are standard errors for each mean (vertical lines) and a loess smoother through all the means.

TABLE 3 | Independent VE effects simulation study: Summary of key results for each trial size and the case of 100% connectivity between the two trials: Simulation

based D
S

1c(I)-values; diagnostic D1c(I)-values; mean loss in reliability of EBLUPs of VE effects for Env1 (with associated standard error); number of successful model fits

out of N = 2, 000 simulations.

Tsize Varieties in D
S

1c(I) D1c(I) EBLUP reliability Successful

common model fits
loss se

12 12 –5.15 –5.16 0.021 0.0023 1,509

24 24 –5.85 –5.90 0.013 0.0016 1,842

48 48 –6.51 –6.62 0.006 0.0011 1,974

96 96 –7.19 –7.32 0.004 0.0008 1,999

related to the number of varieties in common between the two
environments (see Figure 8). However, a key difference was that
the number of successful model fits for the connectivity level of
c = 2 was reasonable so these results have been included in
what follows.

The results are presented in the same format as in section
3.2.1. The good agreement shown in Figure 9A clearly indicates
that the diagnostic performs well in terms of forecasting the
level of uncertainty in genetic variance parameter estimation
in the presence of pedigree information. Figure 9B shows that
there is a decreasing linear relationship between (log) variety
connectivity and the uncertainty in genetic variance parameter

estimation, but this only holds for trials with the same number
of varieties.

The mean loss in reliability of the EBLUPs of the additive
VE effects for Env1 for those varieties that were present in both
environments is well predicted by the diagnostic D1c(A)-values,
both for individual trial sizes (Figure 10) and across trial sizes
(Figure 11).

We again investigate the robustness to a change in variance
parameters. The same low bound values used in the durum
example are used and applied to the same set of simulation
studies. These results are provided in Supplementary Materials

and highlight similar trends to the results above.
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FIGURE 8 | Additive VE effects simulation study: Number of successful model fits from N = 2, 000 simulations plotted against number of varieties in common for two

trial sizes (trials with 48 and 96 varieties). Trial sizes (Tsize) are represented using different colours. Each point within Tsize corresponds to a different level of variety

connectivity which ranges from c = 2 up to the number of varieties in a trial (representing 100% connectivity between the two trials).

FIGURE 9 | Additive VE effects simulation study: Simulation based D
S

1c(A)-values plotted against (A) diagnostic D1c(A)-values and (B) log number of varieties in

common for two trial sizes (trials with 48 and 96 varieties) and a sequence of connectivity levels. Trial sizes (Tsize) are represented using different colours. Each point

within Tsize corresponds to a different level of variety connectivity which ranges from c = 2 up to the number of varieties in a trial (representing 100% connectivity

between the two trials).
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FIGURE 10 | Additive VE effects simulation study: Mean loss in reliability of the EBLUPs of VE effects for Env1 for those varieties that were present in both

environments. Each panel corresponds to a different trial size (trials with 48 and 96 varieties) and the points correspond to a sequence of connectivity levels. Also

shown are standard errors for each mean (vertical lines) and a loess smoother through the means for each Tsize.

4. DISCUSSION

Despite the fact that Multi-environment trials (METs) are a key
aspect of plant breeding, there is little in the literature that
addresses the “design” of METs in the sense of determining
which trials should be combined. Within the paradigm of the
factor analytic linear mixed model (FALMM) approach for MET
analysis, the aim of both the design and analysis is the reliable
prediction of the variety effects for individual environments
(VE effects). These are the baseline predictions which can
then be summarised across environments in meaningful
ways, for example, using the interaction class approach of
Smith et al. (2021b).

Smith et al. (2021a) discuss the structure of MET datasets
and use a model-based design approach to quantify the amount
of information for variety comparisons in a given dataset. They
apply the A-optimality measure to variety effects to show the
importance of including as many trials as are necessary to capture
the selection histories of the varieties under consideration for
selection. As in the case of standard model-based design, the
calculation of A-values is based on a pre-specified linear mixed
model (LMM) so assumes that the associated variance parameters
are known. It is important, therefore, to also consider the impact
of the structure of a MET dataset on the reliability of genetic
variance parameter estimation, as this in turn may affect the
reliability of variety predictions, so should be used in conjunction
withA-optimality.

In this paper we have developed a diagnostic to be applied
to a MET dataset prior to analysis in order to assess the
likely reliability of genetic variance parameter estimates, both

for the dataset across all environments and for individual
environments. As in Smith et al. (2021a) we use a model-based
design approach and apply D-optimality measures to genetic
variance parameters. Two simulation studies, one using a LMM
with independent VE effects and the other additive VE effects,
showed that these diagnostic D-values performed well in the
sense of predicting the actual reliability of genetic variance
parameter estimates.

Historically, variety connectivity between environments was
the measure calculated prior to the conduct of a MET
analysis to investigate the likely reliability of genetic variance
parameter estimation. This measure is simple to compute
and intuitively reasonable but there has been nothing in the
literature to validate its use. In our simulation studies it
was shown that variety connectivity was only able to predict
the reliability of genetic variance parameter estimation across
connectivity levels for a given trial size (number of varieties in
the trial), whereas the new D-optimality diagnostic predicted
reliability across both connectivity levels and trial sizes. The
application to the real example also suggested that D-optimality
encapsulates numerous structural features of a MET data-set
that are influential in determining the reliability of genetic
variance parameter estimation. These features included, but
are not limited to, variety connectivity, trial size and variety
replication. Computation of the diagnostic requires specification
of variance parameters, namely genetic and residual variances
for individual environments and genetic correlations between
pairs of environments. Clearly we do not know these values or
how they differ between environments prior to the MET analysis.
In terms of the latter a pragmatic and sensible approach is
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FIGURE 11 | Additive VE effects simulation study: mean loss in reliability of the EBLUPs of VE effects for Env1 for those varieties that were present in both

environments. The colours correspond to different trial sizes (trials with 48 and 96 varieties) and the points for each colour correspond to a sequence of connectivity

levels. Also shown are standard errors for each mean (vertical lines) and a loess smoother through all the means.

to assume homogeneity between environments. The parameter
values can be chosen to reflect typical estimates obtained in
practise. Both the simulation studies and the real example
showed that the diagnostic was robust to the specification of
these values.

The pre-specified LMM for the D-optimality diagnostic
allowed for the estimation of separate genetic variances for all
environments and separate genetic covariances for all pairs of
environments. It is therefore targetingMET analyzes that employ
factor analytic, or possibly unstructured forms for the genetic
variance matrices. It is easy to modify the pre-specified LMM to
reflect simpler models, for example, variance component models.
Additionally, the partitioning of the genetic effects into additive
and non-additive was achieved in this paper using pedigree
information but the modification to use genomic (marker) data
is straightforward.

The simulation study results suggested that trials with small
numbers of varieties will, in general, have larger D-values when
compared with trials with more varieties. Even in the case
of 100% connectivity, the smallest trial size considered (12
varieties in each of the two trials) resulted in large D-values
which then translated to substantial losses in the reliability of
VE effect predictions. Additionally, the number of successful

model fits was much lower compared with scenario in which
there were more varieties in each trial. This is consistent with
our experience in analysing MET datasets in which many trials
have small numbers of varieties. Even when the connectivity
between these and larger trials is high, there are often
computational difficulties in fitting the FALMM. In practise,
we therefore suggest that individual environment diagnostic
values should be examined for a given MET dataset in order to
identify environments with large D-values. These environments
may contribute insufficient information for genetic variance
parameter estimation so their inclusion in the MET dataset
should be carefully considered. Additionally, examination of the
overall diagnostic value across all environments may be useful.
If the overall D-value is large this may indicate insufficient
information to fit the gold standard FALMM and it may
only be possible to fit a simpler model, such as a variance
component model.
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