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Early maturation is an important objective in wheat breeding programs that could facilitate 
multiple-cropping systems, decrease disaster- and disease-related losses, ensure stable wheat 
production, and increase economic benefits. Exploitation of novel germplasm from wild relatives 
of wheat is an effective means of breeding for early maturity. Psathyrostachys huashanica Keng 
f. ex P. C. KUO (2n = 2x = 14, NsNs) is a promising source of useful genes for wheat genetic 
improvement. In this study, we characterized a novel wheat-P. huashanica line, DT23, derived 
from distant hybridization between common wheat and P. huashanica. Fluorescence in situ 
hybridization (FISH) and sequential genomic in situ hybridization (GISH) analyses indicated that 
DT23 is a stable wheat-P. huashanica ditelosomic addition line. FISH painting and PCR-based 
landmark unique gene markers analyses further revealed that DT23 is a wheat-P. huashanica 
7Ns ditelosomic addition line. Observation of spike differentiation and the growth period revealed 
that DT23 exhibited earlier maturation than the wheat parents. This is the first report of new 
earliness per se (Eps) gene(s) probably associated with a group 7 chromosome of P. huashanica. 
Based on specific locus-amplified fragment sequencing technology, 45 new specific molecular 
markers and 19 specific FISH probes were developed for the P. huashanica 7Ns chromosome. 
Marker validation analyses revealed that two specific markers distinguished the Ns genome 
chromosomes of P. huashanica and the chromosomes of other wheat-related species. These 
newly developed FISH probes specifically detected Ns genome chromosomes of P. huashanica 
in the wheat background. The DT23 line will be useful for breeding early maturing wheat. The 
specific markers and FISH probes developed in this study can be used to detect and trace P. 
huashanica chromosomes and chromosomal segments carrying elite genes in diverse materials.
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INTRODUCTION

Early maturation is an important target in wheat breeding 
programs. In recent years, breeding efforts have targeted increase 
in wheat yield potential to meet the growing food demand 
resulting from global population explosion, climate change, 
and reduction in arable land area (Mondal et  al., 2013; Chen 
et  al., 2016). Certain adverse factors, such as Fusarium head 
blight, powdery mildew, and rust infection, high temperature, 
frost damage, excessive rainfall, and preharvest sprouting, are 
liable to occur during the mid to late wheat-growing season 
and comprise the primary causes of reduction in wheat yield 
and quality (Iqbal et  al., 2006; Mahdiyeh and Bahram, 2012; 
Sheehan and Bentley, 2020). Exploitation of new early maturation 
genes and the breeding of early maturing wheat cultivars are 
strategies proven to be  effective against these emerging threats 
to agricultural production and are suitable for a double-cropping 
management system, in which earlier sowing of the following 
crop improves the probability of its success (Hunger et  al., 
2014; Su et  al., 2018). Such an approach promotes effective 
utilization of the limited arable land and enhances grain yield.

The wheat heading stage is jointly controlled by vernalization 
(Vrn), photoperiod (Ppd), and earliness per se (Eps) genes (Shi 
et  al., 2019). Given their involvement in essential growth and 
development processes, these genes are crucial in determining 
the length of the wheat growth period (Zhao et  al., 1989). 
The Ppd and Vrn genes show significant interactions with the 
environment, whereas Eps genes participate at various stages 
of wheat growth and function independently (Ochagavía et al., 
2018; Shi et  al., 2019). To date, a number of Eps quantitative 
trait loci (QTLs) have been mapped on different wheat and 
barley chromosomes (Laurie et  al., 1995; Kamran et  al., 2014; 
Lombardo et  al., 2019). Only a small number of Eps genes 
originating from wheat relatives have been exploited, such as 
LUX and ELF3 derived from Triticum monococcum (Gawroński 
and Schnurbusch, 2012; Gawroński et  al., 2014; Alvarez et  al., 
2016), and HvCEN derived from Hordeum vulgare, respectively 
(Comadran et  al., 2012). Therefore, the discovery and 
identification of additional sources of early maturation in wheat-
related germplasm are an important and long-term objective 
for breeding early maturing wheat cultivars.

Psathyrostachys huashanica Keng f. ex P. C. KUO (2n = 2x = 14, 
NsNs) is a diploid, perennial, outcrossing graminaceous species 
restricted to the Huashan section of the Qinling Mountains, 
Shaanxi Province, China (Baden, 1991). As a wild relative of 
common wheat, P. huashanica is favored by many wheat breeders 
because it possesses numerous agronomically beneficial traits, 
such as early maturity, dwarf stature, disease resistance (to 
scab, stripe rust, powdery mildew, and take-all), and tolerance 
to abiotic factors (cold, drought, salinity, and infertile soil; 
Chen et al., 1991; Kang et al., 2016). To transfer these desirable 
genes from P. huashanica to wheat, distant hybridization between 
common wheat and P. huashanica has been performed since 
the 1980s, from which a heptaploid hybrid H8911 (2n = 7x = 49, 
AABBDNs) was successfully obtained by embryo culture (Chen 
et  al., 1991). Subsequently, derivative lines with P. huashanica 
chromosome(s) incorporated into the common wheat background 

were generated, such as an amphiploid line (PHW-SA, 
2n = 8x = 56, AABBDDNsNs; Kang et al., 2009), and chromosome 
addition and substitution lines (Zhao et  al., 2004, 2010; Kishii 
et al., 2010). In the last decade, a series of wheat-P. huashanica 
derivative lines were developed and identified using molecular 
cytological methods, including wheat-P. huashanica 1Ns-7Ns 
disomic addition lines (Du et al., 2013a,b,c, 2014a,b,c,d), 1Ns(1D), 
2Ns(2D), 3Ns(3D), and 5Ns(5D) disomic substitution lines (Li 
et  al., 2019, 2021a; Bai et  al., 2020; Qu et  al., 2021), and 
several translocation lines (Kang et  al., 2016; Li et  al., 2020a; 
Liu et al., 2021). These progeny lines outperformed their wheat 
parents with regard to disease resistance and agronomic traits, 
demonstrating that P. huashanica is a superior wild relative 
useful to wheat breeding programs. However, the transfer of 
elite Eps genes carried by P. huashanica to common wheat 
has been neglected to date.

Our research team has performed wide hybridization between 
common wheat and P. huashanica since 2004 and successfully 
obtained F1 hybrids without adoption of an embryo rescue 
technique (Kang et al., 2008). Subsequently, wheat-P. huashanica 
derivative lines were generated by backcrossing and selfing 
(Wang et  al., 2011). In the present study, we  identified a novel 
wheat-P. huashanica 7Ns ditelosomic addition line, DT23, from 
offspring lines that exhibited earlier maturation than the wheat 
parents by fluorescence in situ hybridization (FISH), genomic 
in situ hybridization (GISH), FISH painting, and PCR-based 
landmark unique gene (PLUG) marker analyses. Furthermore, 
we  developed and validated new specific molecular markers 
and specific FISH probes, based on specific locus amplified 
fragment sequencing (SLAF-seq) technology, to efficiently trace 
P. huashanica 7Ns chromatin in wheat breeding programs and 
identify chromosomes of P. huashanica and other wheat-
related species.

MATERIALS AND METHODS

Plant Materials
Wheat (Triticum aestivum L.) “Chinese Spring” (CS; 
2n = 6x = 42, AABBDD) is a Sichuan white-grained cultivar. 
Chinese Spring ph2b (CSph2b), a chemically induced mutant, 
was produced by a terminal segment deletion or point 
mutation of ph2 gene on the short arm of CS chromosome 
3D (Wall et al., 1971; Sears, 1982). Psathyrostachys huashanica 
accession ZY3156 (2n = 2x = 14, NsNs) was collected from 
the Huashan Mountains, Shaanxi Province, China, by Profs. 
C. Yen and J.L. Yang of Sichuan Agricultural University. 
We  first crossed CSph2b with P. huashanica, and thereafter, 
the F1 hybrids were crossed with CS, as the male parent, 
to obtain the BC1F1 generation (Kang et al., 2008). Subsequently, 
a wheat-P. huashanica 7Ns ditelosomic addition line, designated 
DT23, was developed through three consecutive cycles of 
self-pollination. Finally, molecular markers and FISH probes 
were validated in other wheat-related species listed in Table 1. 
All plant materials used are preserved in the herbarium of 
the Triticeae Research Institute, Sichuan Agricultural 
University, China.
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FISH and Sequential GISH Analyses
Actively growing root tips from seeds germinated at 22°C in 
a constant temperature incubator were treated with nitrous 
oxide gas for 2.5 h and 90% glacial acetic acid for at least 
10 min and then digested with pectinase and cellulase (Komuro 
et  al., 2013). Mitotic chromosome spreads from root tip cells 
were prepared and observed for the FISH and sequential GISH 
analyses using a previously described method (Han et al., 2006), 
with minor modifications. For the FISH experiment, a pair of 
fluorescent-modified probes comprising oligo-pSc119.2 (6-FAM-
5′) and oligo-pTa535 (TAMRA-5′), synthesized by Sangon 
Biotech (Chengdu, China; Tang et  al., 2014), were used to 
distinguish each wheat chromosome of DT23. The FISH procedure 
was performed as described by Han et  al. (2006) and Gong 
et  al. (2019). The chromosomes were counterstained with 
4,6-diamino-2-phenylindole solution (Vector Laboratories, 
Burlingame, CA, United  States). Mitotic chromosome number 
counts and fluorescent signals were visualized and captured 
using a fluorescence microscope (Olympus BX63) equipped 
with a Photometric SenSys DP-70 CCD camera (Olympus, 
Tokyo, Japan). The images were optimized for contrast and 
brightness using Adobe Photoshop software.

The slides photographed were eluted sequentially in 75% 
alcohol for 10 min, 2× SSC in boiling water for 5 min, 75% 

alcohol for 20 min, and 100% alcohol for 20 min, then exposed 
to bright light for 48 h, and finally were prepared for sequential 
GISH. In the sequential GISH analysis, total genomic DNA 
of P. huashanica and T. aestivum “J-11” was extracted from 
fresh leaves using the improved cetyltrimethylammonium 
bromide method (Cota-Sánchez et  al., 2006). Genomic DNA 
of the former species was labeled with Texas Red-12-dUTP 
(Red) using the nick translation method (Thermo Fisher 
Scientific, Eugene, OR, United  States) and served as a probe, 
whereas genomic DNA of the latter cultivar was used as 
blocking DNA with a probe:block ratio of 1:150. The sequential 
GISH protocol was performed in accordance with that of 
Han et  al. (2006) and Gong et  al. (2019). Detection and 
visualization of GISH signals were performed as 
described above.

FISH Painting Analysis
Seven bulked oligonucleotide-based FISH probes (Synt1 to 
Synt7) derived from single-copy sequences on chromosomes 
1 to 7 of barley and corresponding to each of the seven 
Triticeae linkage groups (Li et  al., 2021b), which were kindly 
provided by Dr. ZJ Yang, University of Electronic Science 
and Technology of China, Chengdu, China, were used to 
determine the homoeologous group relationships of the 
introduced P. huashanica chromosomes in line DT23. FISH 
painting with the bulked oligo probes was performed as 
described previously by Han et al. (2015) and Bi et al. (2020). 
After the bulked oligo-based FISH, sequential FISH and GISH 
were similarly conducted as described above.

PLUG Marker Analysis
Primer pairs for 135 PLUG markers distributed evenly among 
the seven wheat homoeologous groups (Ishikawa et  al., 2009) 
were employed to determine the homoeologous group 
relationships of the added P. huashanica chromosomes in line 
DT23. CS and CSph2b were used as negative controls, whereas 
P. huashanica was used as a positive control. PCR amplification 
was performed as described previously by Yang et  al. (2020) 
with slight modifications.

Observation of Spike Differentiation and 
Growth Period
Plants of CS, CSph2b, and DT23 were grown in the field in 
Wenjiang district, Sichuan Province, China, during the 2020–2021 
growing season. The field layout consisted of plots 1.5 m in 
width with 30 cm rows and a sowing density of 15 plants per 
row. In accordance with the criteria described by Cui et  al. 
(2008), wheat spike differentiation was categorized into eight 
stages, comprising apex elongation, single-ridge, double-ridge, 
glume primordia differentiation, floret primordia differentiation, 
stamen and pistil differentiation, anther separation, and tetrad 
stages. During the three-leaf stage to the heading stage, spike 
differentiation was observed with a stereomicroscope (ZEISS 
SteREO Discovery.V20) at seven-day intervals. Ten randomly 
selected individuals from each material were observed at each 
time point. In addition, the timing of stages in the growth 

TABLE 1 | List of 17 wheat-related species used in this study.

Materials Accession Chromosome 
numbers (2n)

Ploidy Genome

Triticum urartu PI142824 14 2× Au

Aegilops 
speltoides

PI560527 14 2× Bsp

Aegilops tauschii PI508264 14 2× D
Psathyrostachys 
huashanica

ZY3156 14 2× Ns

Psathyrostachys 
juncea

PI314082 14 2× Ns

Secale cereale QL 14 2× R
Hordeum 
vulgare

ZY11001 14 2× H

Agropyron 
cristatum

PI499389 14 2× P

Dasypyrum 
villosum

PI470279 14 2× V

Thinopyrum 
bessarabicum

W6-10232 14 2× Eb

Thinopyrum 
elongatum

PI531718 14 2× Ee

Pseudoroegneria 
libanotica

PI228391 14 2× St

Leymus 
racemosus

ZY07023 28 4× NsXm

Leymus 
secalinus

ZY09002 28 4× NsXm

Leymus 
coreanus

PI531578 28 4× NsXm

Leymus 
multicaulis

PI440326 28 4× NsXm

Leymus 
arenarius

PI294582 56 8× NsXm

Leymus cinereus PI232252 56 8× NsXm
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period of each material was assessed, comprising the seedling, 
three-leaf, tillering, jointing, booting, heading, flowering, and 
maturity stages (Guo and Fan, 2011).

Evaluation of Agronomic Performance
Morphological traits of DT23 and its wheat parents were 
evaluated in the field in Wenjiang district, Sichuan Province, 
China, with three replications in the 2020–2021 growing 
season. At the physiological maturity stage, 20 randomly 
selected plants of each line were harvested to evaluate their 
morphological traits, comprising plant height, tiller number, 
spike length, number of spikelets per spike, number of kernels 
per spike, and 1,000-grain weight. The IBM SPSS Statistics 
24.0 software package was used for statistical analysis of 
the data.

Molecular Marker Development
Genomic DNA of CSph2b, P. huashanica, and DT23 was 
sequenced using the SLAF-seq technique (Biomarker, Beijing, 
China). Genomic DNA digestion, PCR fragment amplification, 
fragment selection, and SLAF-seq library construction were 
conducted as previously described by Sun et  al. (2013) with 
slight modifications. Amplicons with appropriate sizes of 
464–494 bp were excised and diluted for sequencing using an 
Illumina HiSeq  2,500 platform (Illumina, Inc., San Diego, CA, 
United States). The SLAFs were identified, filtered, and clustered 
following the methods described by Chen et  al. (2013). 
Psathyrostachys huashanica 7Ns chromosome-specific sequences 
were generated as follows. The high-quality DT23 sequences 
were first compared with the CS reference genome sequence1 
using the Burrows-Wheeler Alignment software. The sequences 
with 0% similarity to CS were selected. These sequences were 
then compared with the CSph2b sequences acquired using 
SLAF-seq in this study, and the sequences with identities less 
than 23% were selected. Finally, the retained DT23 sequences 
were compared with the sequences of P. huashanica and the 
sequences with identities greater than 90% were selected, which 
were regarded to be  the P. huashanica 7Ns chromosome-
specific sequences.

Based on these specific sequences, PCR primers were 
designed using the Primer3Plus online tool2 and synthesized 
by Sangon Biotech (Chengdu, China). The amplified products 
were electrophoresed in 3% agarose gel. The markers detected 
in DT23 and P. huashanica but absent in CS were identified 
as 7Ns chromosome-specific molecular markers. The stability, 
repeatability, and specificity of these markers were validated 
in CS, CSph2b, P. huashanica, and DT23 as well as in 17 
wheat-related species. The PCR amplification mixture (in a 
final volume of 20 μl) contained 1 μl template DNA (200 ng/
μL), 10 μl of 2× Taq Master Mix for PAGE (Dye Plus), 1.0 μl 
of each primer (10 μM), and 7.0 μl ddH2O. The PCR procedure 
was as follows: 94°C for 5 min, followed by 35 cycles of 94°C 
for 30 s, an appropriate annealing temperature of 60–70°C 

1 https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/
2 http://www.primer3plus.com/cgi-bin/dev/primer3plus.cgi

for 30 s, and 72°C for 30 s, and a final extension at 72°C 
for 10 min.

FISH Probes Development
The verified molecular markers specific to the Ns genome 
of P. huashanica, P. juncea, and Leymus species were amplified 
by PCR from P. huashanica genomic DNA. An aliquot (5 μl) 
of the amplicons was electrophoresed in 3% agarose gel to 
check the product length and yield. The PCR products were 
extracted with sodium acetate and precipitated with ethanol. 
The pellets were rinsed with 70% ethanol and dissolved in 
30 μl ddH2O. The extracted DNA fragments were labeled with 
fluorescein-12-dUTP (Green) using the nick translation method 
(Thermo Fisher Scientific) and served as probes in the FISH 
analysis of CS, DT23, P. huashanica, and 11 wheat-
related species.

RESULTS

Chromosomal Constitution of DT23
FISH and sequential GISH analyses were performed to determine 
the chromosomal composition of the wheat-P. huashanica line 
DT23. According to the standard FISH karyotype of Chinese 
Spring (Tang et  al., 2014), FISH analysis with the probes 
Oligo-pSc119.2 (green) and Oligo-pTa535 (red) revealed that 
DT23 carried 42 wheat chromosomes and two telocentric 
chromosomes that lacked fluorescent signals (Figure 1A). When 
P. huashanica genomic DNA was used as the probe and J-11 
genomic DNA as the blocker, sequential GISH analysis further 
revealed that the two telocentric chromosomes with strong 
red hybridization signals were Ns chromosomes from P. 
huashanica (Figure  1B). To confirm the cytological stability 
of the line DT23, GISH was used to identify 40 randomly 
selected seeds from selfed progeny of DT23. Thirty-six seeds 
carried a pair of Ns telocentric chromosomes (Figure  1C), 
and four seeds carried one Ns telocentric chromosome 
(Figure  1D). Therefore, these findings suggested that DT23 
was a cytogenetically relatively stable wheat-P. huashanica 
ditelosomic addition line.

FISH Painting Analysis of DT23
FISH painting with the probes (Synt1 to Synt7) corresponding 
to the first to seventh linkage group was performed on 
DT23. Probe Synt7 painted the six complete chromosomes 
and two telocentric chromosomes (Figure  2A). Sequential 
FISH using Oligo-pSc119.2 and Oligo-pTa535 indicated that 
three pairs of complete chromosomes were painted, comprising 
the common wheat chromosomes 7A, 7B, and 7D, whereas 
the two telocentric chromosomes did not show hybridization 
signals (Figure  2B). GISH analysis revealed that the two 
telocentric chromosomes with strong red hybridization signals 
were Ns chromosomes of P. huashanica (Figure 2C). Therefore, 
these results convincingly indicated that the alien chromosomal 
segments in DT23 belonged to the seventh group and that 
DT23 is a wheat–P. huashanica 7Ns ditelosomic addition line.
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A B

C D

FIGURE 1 | FISH and sequential GISH identification of the wheat-P. huashanica ditelosomic addition line DT23. (A) FISH identification of DT23 using  
Oligo-pSc119.2 (green) and Oligo-pTa535(red). (B) Sequential GISH analysis on the same metaphase cell of DT23 using P. huashanica genomic DNA as a 
probe (red). (C) GISH identification of the selfed progeny of DT23 which carried a pair of Ns telocentric chromosomes. (D) GISH identification of the  
selfed progeny of DT23 which carried one Ns telocentric chromosome. Arrows indicate the introduced P. huashanica chromosomes in DT23. Scale bar: 
10 μm.

A B C

FIGURE 2 | Sequential FISH and GISH analyses of the wheat-P. huashanica ditelosomic addition line DT23. (A) FISH painting analysis of DT23 using probe Synt7 
(green). (B) FISH identification of DT23 using Oligo-pSc119.2 (green) and Oligo-pTa535(red). (C) P. huashanica genomic DNA was used as a probe for GISH (red). 
Arrows indicate the introduced P. huashanica chromosomes in DT23. Scale bar: 10 μm.
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PLUG Marker Analysis of DT23
As expected, among 135 PLUG markers, two markers 
(TNAC1782-7AS 7BS 7DS and TNAC1845-7AL 7BL 7DL) 
distributed on the group  7 chromosomes of wheat amplified 
the same specific bands in DT23 and P. huashanica but not 
in CS and CSph2b (Figure  3). This result also suggested that 
P. huashanica chromosomal segments introduced into DT23 
belonged to the seventh group.

Observation of Spike Differentiation and 
Growth Period
During the 2020–2021 growing season, the growth period 
was investigated in the field for DT23, CS, and CSph2b. 
Statistical analysis revealed that the timing of the  
seedling, three-leaf, and tillering stages was consistent among 
the three materials, but the timing of the jointing to maturity 
stages in DT23 was strongly accelerated compared with those 
of CS and CSph2b (Table  2). These findings were  
identical to those observed under greenhouse conditions 
(Supplementary Table  1). The entire growth period of DT23 
was 14 and 11 days shorter than that of CS and CSph2b, 
respectively (Table  2).

To further clarify the phenotypic differences between DT23 
and its wheat parents CS and CSph2b, spike differentiation 
from the three-leaf stage to the heading stage in the field 
was observed by stereomicroscopy during the 2020–2021 
growing season. On November 17, 2020, DT23, CS, and 
CSph2b plants were all at the apex elongation stage (Table 3, 
Figure  4A), indicating that no obvious difference in 
development was observed between DT23 and its wheat 
parents up to this stage. However, a clear developmental 
difference was observed on December 15, 2020, when CS 
and CSph2b plants were at the mid-single-ridge stage, whereas 
DT23 plants were at the mid-double-ridge stage (Table  3, 
Figure  4B). Subsequently, DT23 developed more rapidly  
than CS and CSph2b from the late-double-ridge stage to 
the tetrad stage (Table  3, Figures  4C–G). When CS and 
CSph2b were at the booting stage, DT23 plants were already 
at the heading stage and had developed distinctly larger 
spikes (Figures  4H,I).

Morphology of DT23
DT23 showed stability in morphological traits, which were 
similar to those of the wheat parents CS and CSph2b (Table 4, 
Figure 5). The average plant height and tiller number of DT23 
were significantly lower than those of CS and CSph2b. The 
1,000-kernel weight of DT23 was significantly higher than that 
of CS and CSph2b. No significant differences between DT23 
and either CS or CSph2b were observed with regard to spike 
length, number of spikelets per spike, and number of kernels 
per spike.

Molecular Marker Development
A total of 6,963,342, 3,723,959, and 16,237,871 reads were, 
respectively, obtained for CSph2b, P. huashanica ZY3156, and 
DT23 using the SLAF-seq approach. The average Q30 score 
was 94.89%, and the GC content was 48.56%. After filtering 
out low-quality, repeat, and ambiguous reads, a total of 399,489, 
120,418, and 462,445 effective SLAFs were generated for 
CSph2b, P. huashanica, and DT23, respectively. The average 
sequencing depth was 13.95×. These results were optimal 
and fulfilled the expected requirements. Sequence comparison 
revealed that 54 DT23 sequences showed 0% homology with 
the CS reference genome and less than 23% homology with 
CSph2b sequences, but more than 90% homology with P. 
huashanica sequences. These sequences were considered to 
be candidates for specific sequences of chromosome 7Ns from 
P. huashanica.

To develop P. huashanica 7Ns chromosome-specific molecular 
markers, 52 primer pairs were designed based on the candidate 
specific sequences and used to amplify sequences from CS, 
CSph2b, P. huashanica, and DT23 (Supplementary Table  2). 
In total, 45 primer pairs amplified specific bands from DT23 
and P. huashanica but not from CS and CSph2b, such as 
PH7Ns-12 and PH7Ns-38 (Figures  6A,B). Therefore, these 
markers were regarded as P. huashanica 7Ns chromosome-
specific molecular markers, with a success rate of up to 86.54%.

To verify their specificity and stability, the 45 molecular 
markers were used to amplify sequences from 17 wheat-related 
species. The PCR amplification results are presented in 
Supplementary Table  3. Among these markers, two markers 
amplified sequences only from P. huashanica but not from the 
wheat-related species (Figure  7A). In contrast, one and two 
markers amplified specific sequences not only from P. huashanica, 
but also from L. racemosus and P. juncea, respectively 
(Figures  7B,C). In addition, one marker amplified a sequence 
common to P. huashanica, P. juncea, L. arenarius, and L. 
cinereus, but not from any other wheat-related species 
(Figure  7D). Thirteen markers amplified specific sequences 
not only from P. huashanica and P. juncea, but also from six 
Leymus species (Figure  7E). Furthermore, specific bands were 
amplified for the other wheat-related species. Five, 3, 4, 5, 6, 
9, 5, 11, 15, and 4 markers amplified specific sequences from 
T. urartu, Aegilops speltoides, Ae. tauschii, Secale cereale, H. 
vulgare, Agropyron cristatum, Dasypyrum villosum, Th. 
bessarabicum, Thinopyrum elongatum, and Pseudoroegneria 
libanotica, respectively.

A B

FIGURE 3 | Amplification patterns of wheat PLUG markers. (A) TNAC1782-
TaqI, (B) TNAC1845-TaqI. M: Marker (2000 bp); 1: CS; 2: CSph2b; 3: P. 
huashanica; 4: DT23 (wheat-P. huashanica ditelosomic addition line). Arrows 
indicate the diagnostic amplification products for Ns genome.
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FISH Probes Development
To develop P. huashanica-specific FISH probes, PCR products 
of 19 markers, comprising two markers specific to P. huashanica, 
two markers specific to P. huashanica and P. juncea, and 15 
markers specific to the Ns genome-containing species, were 
fluorescently labeled as probes for FISH analysis of P. huashanica. 
A total of 19 P. huashanica-specific FISH probes were developed 
(Supplementary Table  4). All probes produced strong and 
distinct hybridization signals in telomeric regions of every 
chromosome for P. huashanica (Supplementary Figure  1), 
comprising 10 chromosomes with two telomeric signals and 
four chromosomes with one telomeric signal, such as pPh15 
and pPh37 (Figures  8A,B).

To assess the utility of these probes, further FISH analysis 
with probe pPh37 was performed on CS and 11 wheat-related 
species. P. juncea carried two chromosomes with distinct 
hybridization signals in telomeric and middle chromosomal 
arm regions (Figure  9B), Das. villosum, Pse. libanotica, and 
L. multicaulis carried five, two, and two chromosomes, 
respectively, with strong hybridization signals in telomeric 
regions (Figures  9F,G,J). In addition, L. racemosus and L. 
cinereus had 12 and 50 chromosomes, respectively, with strong 
hybridization signals in telomeric and subtelomeric regions 
(Figures  9I,L). No hybridization signals were observed on 
chromosomes of CS, S. cereale, H. vulgare, Ag. cristatum, Th. 
elongatum, and L. arenarius (Figures  9A,C–E,H,K).

In comparison with the GISH pattern of P. huashanica 
genomic DNA as a probe (Figure  10A), the probe pPh37 
generated strong hybridization signals in telomeric regions of 
the two alien chromosomal segments in line DT23, but not 
on common wheat A-, B-, and D-genome chromosomes 
(Figure  10B). This result indicated that the probes developed 
in this study could be  applied to detect P. huashanica 
chromosomes or chromosomal segments in a wheat background.

DISCUSSION

Wild relatives of wheat are important for the breeding of new 
early maturing genotypes and to broaden the genetic base in 
wheat breeding programs. Early maturing germplasm has 
previously been generated by crossing common wheat with 
wild relatives. For instance, Efremova et  al. (1996) developed 
12 alien 5R(5A) disomic substitution lines with different wheat 
genetic backgrounds using the alien substitution line “Saratovskaya 
29” 5R(5A) as a donor. Efremova et  al. (2006) demonstrated 
that these lines differed in timing of ear emergence and response 
to vernalization. Bao et  al. (2009) developed a new dwarf and 
early maturing germplasm line Shannong 0057–2 derived from 
the BC3F6 progeny of the cross between common wheat “Yannong 
15” and Th. intermedium. Liu et  al. (2011) produced two early 
maturing disomic addition lines, WB0528 and WB0647, selected 
from the hybrid progenies between common wheat and cultivated 
barley. Farkas et al. (2013) suggested that the addition of different 
barley chromosomes significantly influenced the flowering time 
of wheat both in controlled environment tests and in the field. 
The authors reported that the wheat-barley 7H addition line 
was consistently the earliest flowering, whereas the wheat-barley 
4H addition line was the latest to flower in all treatments. 
Wang et  al. (2015) identified a novel wheat-P. huashanica 6Ns 
disomic addition line that exhibited earlier maturation than its 
wheat parent and suggested that P. huashanica 6Ns chromosomes 
significantly affected the spike primordium development and 
flowering time of wheat in the field. Wang et al. (2017) developed 
a new germplasm line with early maturation derived from 
hybridization between common wheat “Yannong 15” and Ae. 
ventricosa × Ae. cylindrica amphiploid SDAU18. However, few 
early maturing germplasm lines derived from wide hybrids 
between common wheat and P. huashanica have been reported 
previously. In the present study, we developed and characterized 
a new wheat-P. huashanica 7Ns ditelosomic addition line DT23 
derived from the P. huashanica/CSph2b/CS F4 progeny. The 

TABLE 2 | Growth period statistics of CS, CSph2b, and DT23 in the field.

Materials Seedling 
stage

Three-leaf 
stage

Tillering 
stage

Jointing 
stage

Booting 
stage

Heading 
stage

Flowering 
stage

Maturity 
stage

Whole growth 
period (days)

CS
November 2, 
2020

November 10, 
2020

November 18, 
2020

February 10, 
2021

March 14, 
2021

March 23, 
2021

March 29, 
2021

May 9, 2021 194

CSph2b
November 2, 
2020

November 10, 
2020

November 18, 
2020

February 10, 
2021

March 10, 
2021

March 18, 
2021

March 26, 
2021

May 6, 2021 191

DT23
November 2, 
2020

November 10, 
2020

November 18, 
2020

February 4, 
2021

February 22, 
2021

March 10, 
2021

March 19, 
2021

April 25, 2021 180

TABLE 3 | Spike differentiation of CS, CSph2b, and DT23 at different dates.

Date CS CSph2b DT23

November 17, 
2020

Apex elongation 
stage

Apex elongation 
stage

Apex elongation 
stage

December 15, 
2020

Middle single-ridge 
stage

Middle single-ridge 
stage

Middle double-
ridge stage

December 30, 
2020

Early double-ridge 
stage

Early double-ridge 
stage

Later double-ridge 
stage

January 12, 2021
Later double-ridge 
stage

Later double-ridge 
stage

Glume primordia 
differentiation 
stage

January 20, 2021
Glume primordia 
differentiation 
stage

Glume primordia 
differentiation 
stage

Floret primordia 
differentiation 
stage

February 2, 2021
Floret primordia 
differentiation 
stage

Floret primordia 
differentiation 
stage

Stamen and pistil 
differentiation 
stage

February 24, 2021
Anther separation 
stage

Anther separation 
stage

Tetrad stage
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A B

C D

E F

G H I

FIGURE 4 | Morphological observation of spike differentiation in different dates under field conditions. Different uppercase letters indicate the date of observation. 
(A) November 17, 2020. (B) December 15, 2020. (C) December 30, 2020. (D) January 12, 2021. (E) January 20, 2021. (F) February 2, 2021. (G) February 24, 
2021. (H,I) March 10, 2021. Images of each panel from left to right are CS, CSph2b and DT23, respectively. Scale bars: A, 200 μm; B-F, 150 μm; G, 50 μm; H, 2 cm; 
I, 1 cm.

TABLE 4 | Agronomic traits of DT23 and its wheat parents.

Lines Plant height (cm) Tiller number Spike length (cm) Spikelets per spike Kernels per spike 1,000-kernel weight 
(g)

CS 145.5 ± 1.0 Aa 19.3 ± 1.1 Aa 9.91 ± 0.11 Aa 23.60 ± 0.33 Aa 55.2 ± 2.3 Aa 29.94 ± 0.28 Aa
CSph2b 139.9 ± 1.4 Bb 14.8 ± 1.0 Bb 9.76 ± 0.13 Aa 23.15 ± 0.31 Aa 57.7 ± 1.4 Aa 29.67 ± 0.32 Aa
DT23 127.5 ± 0.7 Cc 8.35 ± 0.5 Cc 9.84 ± 0.13 Aa 22.95 ± 0.30 Aa 53.9 ± 1.4 Aa 36.80 ± 0.27 Bb

Data in the columns indicate means ± standard errors. Different uppercase and lowercase letters following the means indicate significant differences at the p < 0.01 and p < 0.05 
levels, respectively.
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maturity stage of DT23 was 14 and 11 days earlier than that 
of the parents CS and CSph2b, respectively. Morphological 
observation revealed that spike differentiation of DT23 and the 
parents CS and CSph2b displayed distinct differences after the 
apex elongation stage. The main reason for the differences was 
that spike differentiation of DT23 was more rapid than that 
of CS and CSph2b during the single-ridge to double-ridge stages, 
thereby giving rise to the subsequent discrepancy in timing of 
maturity. The pedigree provided the only evidence that DT23 
carried novel Eps gene(s) from the P. huashanica 7Ns chromosome. 
All seven Ns chromosomes of P. huashanica have been verified 
to be  useful on account of the vast number of beneficial genes 
carried: Stripe rust resistance genes are located on 1Ns, 2Ns, 
3Ns, 4Ns, and 5Ns (Du et  al., 2014a,c,d; Li et  al., 2019; Qu 

et  al., 2021); leaf rust resistance genes are located on 1Ns and 
7Ns (Du et al., 2013c, 2014b); powdery mildew resistance genes 
are located on 1Ns, 3Ns, 4Ns, and 5Ns (Han et  al., 2020; Li 
et  al., 2020a, 2021a; Liu et  al., 2021); a take-all resistance gene 
is located on 2Ns (Bai et  al., 2020); gluten and gliadin-related 
genes are located on 1Ns and 6Ns (Du et  al., 2013b; Qu et  al., 
2021); and early maturity-related genes are located on 6Ns 
(Wang et  al., 2015). The present study is the first report of 
new Eps gene(s) probably associated with a group 7 chromosome 
of P. huashanica. Furthermore, the additional chromosomal 
segments have no obvious genetic linkage drag affecting agronomic 
performance. Accordingly, the ditelosomic addition line DT23, 
which exhibits an early maturation phenotype, may represent 
valuable germplasm for breeding early maturity wheat cultivars.

A B

C

FIGURE 5 | Plant morphology of the wheat-P. huashanica ditelosomic addition line DT23 and its wheat parents. (A) Adult plants, (B) Spikes, and (C) Spikelets and 
grains. 1: CS; 2: CSph2b; 3: DT23.

A B

FIGURE 6 | PCR amplification of specific molecular markers. (A) PH7Ns-12, (B) PH7Ns-38. M: Marker (500 bp); 1: CS; 2: CSph2b; 3: P. huashanica; 4: DT23 
(wheat-P. huashanica ditelosomic addition line). Arrows show the diagnostic amplification products of P. huashanica 7Ns chromosome.
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Molecular markers for detecting and tracking alien 
chromosomes and/or chromosomal segments carrying elite 
genes are of vital importance in wheat breeding programs 
(Fedak, 1999). Conventional methods previously used to develop 
markers for P. huashanica are time-consuming, imprecise, and 
expensive, such as random-amplified polymorphic DNA (RAPD) 
and sequence-characterized amplified region (SCAR) markers. 
For example, Chen et  al. (2010) screened three P. huashanica 
genome-specific repetitive sequences using 200 RAPD primers. 

Subsequently, five Ns-specific and 11 5Ns-specific SCAR markers 
for P. huashanica were developed (Wang et  al., 2013; Du et  al., 
2013d; Wang et al., 2014a,b; Zhang et al., 2017; Li et al., 2020b). 
The SLAF-seq approach, a high-throughput, high accuracy, low 
cost, and next-generation sequencing-based technology, has 
been applied successfully to develop large numbers of highly 
accurate molecular markers in a variety of wild relatives of 
wheat, such as Th. elongatum (Chen et al., 2013), Th. intermedium 
(Li et  al., 2016), Th. ponticum (Yang et  al., 2021), S. cereale 
(Du et  al., 2018), and Ae. biuncialis (Song et  al., 2020). To 
date, no P. huashanica-specific SLAF-based markers have been 
reported. In the current study, we developed 45 specific markers 
for chromosome 7Ns of P. huashanica in the ditelosomic addition 
line DT23 based on SLAF-seq data, with a success rate of up 
to 86.54%. These markers may be  potentially useful not only 
for tracking P. huashanica 7Ns chromosomal segments harboring 
Eps gene(s) in a wheat background, but also for distinguishing 
the Ns genome of P. huashanica and other closely related 
genomes from Triticeae species. In addition, marker validation 
analyses indicated that the marker amplification frequencies 
in P. juncea (Ns) and Leymus species (NsXm) were much 
higher than that in other wheat-related species. These findings 
suggested that the relationship between Psathyrostachys and 
Leymus is closer than that with other wild relatives, which 

A

B

C

D

E

FIGURE 7 | Specificity and stability of specific molecular markers in other wheat-related species. (A) PH7Ns-15, (B) PH7Ns-43, (C) PH7Ns-12, (D) PH7Ns-14, 
and (E) PH7Ns-5. M: Marker (500 bp); 1: CS; 2: CSph2b; 3: DT23 (wheat-P. huashanica ditelosomic addition line); 4: T. urartu; 5: Ae. speltoides; 6: Ae. tauschii; 7:  
P. huashanica; 8: P. juncea; 9: S. cereale; 10: H. vulgre; 11: Ag. cristatum; 12: Das. villosum; 13: Pse. libanotica; 14: Th. elongatum; 15: Th. bessarabicum; 16: L. 
racemosus; 17: L. secalinus; 18: L. coreanus; 19: L. multicaulis; 20: L. arenarius; and 21: L. cinereus. Arrows show the diagnostic amplification products of P. 
huashanica 7Ns chromosome.

A B

FIGURE 8 | FISH patterns of repetitive DNA probes in P. huashancia. 
(A) pPh15 (green), (B) pPh37 (green). Scale bar: 10 μm.
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supported evidence that the Ns genome of Leymus was donated 
by Psathyrostachys (Zhang and Dvořák, 1991; Sha et  al., 2017).

FISH analysis with repetitive DNA probes has been widely 
used to identify alien chromosomes and/or chromosomal segments 
integrated into a common wheat background (Cseh et  al., 2011; 
González-García et  al., 2011). For instance, Li et  al. (2016) 
produced a novel FISH probe pSt122 representing terminal repeats 
from Th. intermedium using SLAF-seq. Liu et al. (2018a) generated 
a blue grain-related FISH probe pThp12.19 from the wheat-Th. 
ponticum 4Ag (4D) disomic substitution line Blue 58 by SLAF-
seq. Liu et  al. (2018b) developed eight Th. ponticum-specific 
FISH probes based on SLAF-seq. In the present study, we developed 

19 P. huashanica-specific FISH probes by SLAF-seq, which produced 
strong and identical fluorescent signals in one or both telomeric 
regions of all P. huashanica chromosomes, but not in wheat 
chromosomes. Compared with GISH using genomic DNA of P. 
huashanica as a probe, FISH analysis with these probes was 
successfully applied to detect P. huashanica chromosomal segments 
in DT23. To the best of our knowledge, this is the first report 
of P. huashanica-specific FISH probes. Furthermore, the probes 
provide the possibility of distinguishing different P. huashanica 
chromosomes together with other FISH probes. Therefore, these 
probes will be  convenient and applicable for discrimination of 
P. huashanica chromosomes and/or chromosomal segments in 

A B C

D E F

G H I

J K L

FIGURE 9 | FISH patterns of repetitive DNA probe pPh37 (green) in CS and 11 wheat-related species. (A) CS; (B) P. juncea; (C) S. cereal; (D) H. vulgre; (E) Ag. 
cristatum; (F) Das. villosum; (G) Pse. libanotica; (H) Th. elongatum; (I) L. racemosus; (J) L. multicaulis; (K) L. arenarius; and (L) L. cinereus. Arrows indicate partial 
chromosomes with strong hybridization signals. Scale bar: 10 μm.
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a wheat background and for identification of chromosomes from 
other wheat-related species. The present specificity analysis 
suggested that probe pPh37 generated strong hybridization signals 
from 12 L. racemosus chromosomes and two L. multicaulis 
chromosomes, but not L. arenarius chromosomes. These findings 
revealed that the donor species of the Ns genome to Leymus 
was not P. huashanica, which was consistent with the inferences 
of Bödvarsdóttir and Anamthawat-Jónsson (2003) and Wang 
et  al. (2006) based on DNA hybridization and FISH patterns.

CONCLUSION

Herein, a novel wheat-P. huashanica 7Ns ditelosomic addition 
line, DT23, was identified by FISH, GISH, PLUG marker, and 
FISH painting analyses. Compared with the wheat parents, DT23 
exhibits earlier maturation. Hence, it can be  employed as a 
valuable intermediate material for breeding early maturing wheat 
cultivars. In addition, 45 P. huashanica 7Ns chromosome-specific 
markers and 19 P. huashanica-specific FISH probes were developed 
based on SLAF-seq. The newly developed markers and probes 
will be useful for accurate detection of P. huashanica chromosomes 
and/or chromosomal segments in a wheat background as well 
as chromosomes from other closely related species.
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