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DNA barcodes are standardized sequences that range between 400 and 800 bp, vary
at different taxonomic levels, and make it possible to assign sequences to species that
have been previously taxonomically characterized. Several DNA barcodes have been
postulated for plants, nonetheless, their classification potential has not been evaluated
for metabarcoding, and as a result, it would appear as none of them excels above
the others in this area. One tool that has been widely used and served as a baseline
when evaluating new approaches is Naïve Bayesian Classifiers (NBC). The present
study aims at evaluating the classification power of several plant chloroplast genetic
markers that have been proposed as barcodes (trnL, rpoB, rbcL, matK, psbA-trnH, and
psbK) using an NBC. We performed the classification at different taxonomic levels, and
identified problematic genera when resolution was desired. We propose matK and trnL
as potential candidate markers with resolution up to genus level. Some problematic
genera within certain families could lead to the misclassification no matter which marker
is used (i.e., Aegilops, Gueldenstaedtia, Helianthus, Oryza, Shorea, Thysananthus, and
Triticum). Finally, we suggest recommendations for the taxonomic identification of plants
in samples with potential mixtures.

Keywords: Naïve Bayesian classifier, metabarcoding, matK, trnL, taxonomic classification, chloroplast

INTRODUCTION

In recent years, DNA barcoding has been proposed as a method to survey biodiversity in the field
(Hebert et al., 2003; Gross, 2012). DNA barcodes were proposed originally for animal classification
(Hebert et al., 2003), but later, they were proposed for plants as well (Kress and Erickson, 2007).
DNA barcoding represents an efficient tool for the identification of cryptic or invasive species
(Lopez-Vaamonde et al., 2021), conservation, and community ecology (Hollingsworth et al., 2011;
Yessoufou et al., 2013; Bezeng et al., 2017). This tool is based on the conserved DNA biomarkers
with more interspecific than intraspecific variability creating a barcoding gap (Čandek and Kuntner,
2015), which allows the possibility to identify an organism at different taxonomic levels. An
appropriate marker must have the following characteristics: (a) a significant genetic diversity, based
on the desired resolution of the barcode, with conserved flanking sites to enable primer design; (b)
An appropriate size for DNA extraction and amplification protocols; and (c) to be as generalist as
possible, it should be present in all the targeted taxons (Kress et al., 2005; CBOL Plant Working
Group, 2009). In recent years, advances in sequencing technologies have opened the possibility
of ecological surveys based on sequencing data. Examples of these are the 16S rRNA gene in
prokaryotes, the Internal Transcribed Spacer (ITS) region in fungi and the Cytochrome Oxidase I
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(COI) in animals. Despite these advances, there are several
taxonomic groups for which no ideal marker has been found for
classification purposes or metabarcoding analysis.

Given the low mutation rate of mitochondrial DNA,
mitochondrial cytochrome oxidase I (COI) cannot be used in
plants (CBOL Plant Working Group, 2009; Li et al., 2021). In
consequence, extensive search within nuclear and chloroplast
genomes have been performed to identify suitable regions for
barcode design. Three main regions have been proposed, the
ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit or
RuBisCO large subunit (rbcL), maturase K (matK), and Internal
Transcribed Spacer 2 (ITS2) (Cowan et al., 2006; CBOL Plant
Working Group, 2009; China Plant BOL Group, 2011). However,
none of them have the precision that COI displays for animals
(Pang et al., 2012), they do not have sufficient resolution
for groups, such as lichens, bryophytes, or ferns (Kress and
Erickson, 2007), and are ineffective for samples with degraded
or fragmented DNA (Mallott et al., 2018). In consequence, other
regions, such as Transfer RNA T—L spacer (trnL), photosystem
II protein D1—Transfer RNA H (psbA-trnH), and Photosystem II
K protein—I spacer (psbK-I) have been proposed (Lahaye et al.,
2008; Ghorbani et al., 2017; Mallott et al., 2018; Thakur et al.,
2019). Similarly, the presence of disruptions due to differences in
the demography of species, or rare but recorded events in which
different species share the same haplotype, generate the need
for new strategies, such as the combination of markers and the
evaluation of different regions (Xiao-Xian and Zhe-Kun, 2007;
CBOL Plant Working Group, 2009; Pang et al., 2012; Wang et al.,
2017; Mallott et al., 2018).

Since the majority of these markers (matK, rbcL, trnL, psbA-
trnH, psbK-I, and rpoB) have been studied in specific plant
families, their potential for general taxonomic classification is
still unknown, or their capacity to discriminate individual species
within a complex mixture (metabarcoding), for example, when
processing fecal or soil samples (Lahaye et al., 2008; Gillespie
et al., 2009; Seberg and Petersen, 2009; Nicolalde-Morejón et al.,
2010; De Groot et al., 2011; Korotkova et al., 2011; Diekmann
et al., 2012; Gere et al., 2013; Lee et al., 2017). Therefore, emerging
strategies combining markers, such as matK + rbcL could
represent a better approximation for some plant groups species;
nevertheless, the evaluation of genes distantly located, or that
requires multiple amplicons, are not suitable for metabarcoding
analysis since it is currently impossible to link both amplicons to
a given origin or DNA molecule.

For any given marker, as important as the intrinsic genetic
variability is the availability of a tool that will detect it and
be able to assign it accurately and precisely to a taxonomical
level. One such tool that is widely used for pattern recognition
in DNA sequences and serves as a standard when evaluating
new classification approaches is the Naïve Bayesian Classifier
(NBC) (Busia et al., 2019). NBC is a machine learning technique
that generates a supervised classification model based on a
training set. Given that NBC assumes that the input variables
are independent and have an equal effect on the classification
outcome, each variable (or parameter) must be learned by
the classifier from the training set, allowing it to form a
posterior probability of assignment or classification. This simple
model allows for the evaluation of huge datasets. Moreover,

the effectiveness of this classifier has been demonstrated in
applications, such as text classification, medical diagnostics,
and applications for data administration (Domingos and
Pazzani, 1997; Hellerstein et al., 2000). Databases, such as the
Ribosomal Database Project (RDP), and software, such as QIIME2
and MOTHUR use Bayesian approaches for the taxonomical
classification of nucleic acid sequences (Wang et al., 2007; Schloss
et al., 2009; Cole et al., 2013 Bokulich et al., 2018; Bolyen et al.,
2018).

The use of Bayesian Classifiers in taxonomic classification
requires a reference set of DNA sequences with their respective
taxonomic labels. Furthermore, sequence classification depends
on the type of marker, the training set, and length of the
k-mer (Werner et al., 2012). Here, we used six chloroplast
gene sequences to evaluate their classification power (matK,
rbcL, trnL, rpoB, psbA-trnH, and psbK-I) using an NBC, and to
analyze their performance when considering variables, such as
marker selection, and representativity in databases. We provided
a statistical evaluation of the different marker performance based
on the distribution of sensitivity and accuracy (F1 score). Finally,
we evaluated genera with low classification performance with the
aim to find biological explanations for their misclassification and
make some suggestions for researchers who suspect that they
have species of these genera in their samples.

MATERIALS AND METHODS

Data Preparation
Six chloroplastic markers (trnL, rpoB, rbcL, matK, psbA-
trnH, and psbK) were chosen based on the representation
in public databases and frequent use in literature. Sequences
were downloaded from GenBank on September of 2018 using
as entrez query: txid3193 (corresponding to embryophyta),
with minimum length of 50 bp (e.g., txid3193[Organism:exp]
AND tRNL[Gene Name] AND 50:400000000[Sequence Length]
NOT UNVERIFIED [Title]). The same query was used
for each of the other markers (matK, rbcL, rpoB, psbA-
trnH, and psbK-I) by replacing the corresponding gene
name. Sequences were downloaded in GenBank format and
imported into Geneious R9 (Biomatters, New Zealand). Features
(genes) were extracted in FASTA format using the “extract
annotations” feature of Geneious. The taxonomic distribution
of each marker is represented in Table 1. The accession
numbers of the six chloroplast markers are available in
Supplementary Table 1.

Extraction of Taxonomic Information
From Gene Markers
The accession number of each sequence was used to download the
corresponding taxonomic information from the National Center
for Biotechnology Information (NCBI) taxonomy. Taxonomic
information per sequence was organized into the corresponding
taxonomic levels: Phylum (P), Class (C), Order (O), Family
(F), Genus (G), and Species (S). This was done using in-
house scripts wrapped around the software ETE (Huerta-Cepas
et al., 2016). The taxonomic information was assigned to every
sequence following the pattern of the Greengenes database for
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bacterial classification (DeSantis et al., 2006). The sequences went
through two independent filters: first, maintaining only those
that had complete taxonomic classification, as reported in NCBI
Taxonomy DB; second, keeping those with almost full-length
for the corresponding marker. Sequence number variation after
every filter is available in Supplementary Table 2. Size filtering
was performed in Geneious.

Finally, we balanced the dataset to reduce possible biases in
the data (over- or under-representation of certain species). Each
DNA marker was balanced according to the number of sequences
present at the species level. Two different datasets were generated
for each molecular marker: the first one with species having a
minimum of two sequences and a maximum of 20 sequences
per species (the dataset 2–20), and the second one having a
minimum of five sequences and a maximum of 20 sequences per
species (the dataset 5–20). For both cases, species that had more
than 20 sequences were randomly subsampled to 20 sequences.
On one hand, the 5–20 dataset was generated to evaluate the
performance of every marker at different taxonomic levels. On
the other hand, the 2–20 dataset was only used to determine
how sensible does the model is for underrepresented taxons (i.e.,
species with only 2–4 sequences available). The script used to
perform this balancing is available in https://osf.io/qtz59/?view_
only=538ab7719073498abfaea0ab1b29d2ba.

Classification Algorithm
We used the NBC as implemented in MOTHUR (Schloss et al.,
2009). This implementation follows the algorithm described by
Wang and collaborators (Wang et al., 2007). Here we used the
script classify.seqs from MOTHUR which requires two input
files, one with the sequences to build the classification model and
another with the full taxonomy for each input sequence separated
by each taxonomic level. As output, it will generate a classification
with the name of the sequence and a full taxonomic classification
with the bootstrap value obtained at each level.

To the best of our knowledge, the algorithm, as described by
Wang and collaborators, take each sequence from the dataset,
and decompose them into a vector of words of certain size k (k-
mers), size 8 by default, generating a vector of k-mers and their
corresponding abundances. Those vectors are used to calculate a
joint probability and hence a probability of assignment for any
new sequence (Wang et al., 2007). Confidence estimation of the
assignment is implemented in MOTHUR as well. For this, for
every sequence that is going to be classified, one hundred (100)
random subsets of 1/8 of the k-mer set are chosen randomly
and the resulting vector is used for classification. The confidence
estimation is then the number of times (out of 100) or bootstrap
that the given assignment is obtained. Traditionally an 80%
bootstrap value has been selected as having a high precision and
accuracy and hence, it was selected as a threshold for subsequent
analyses and only results with classifications above that threshold
were considered as “trusted” assignments.

As a cross-validation methodology, we chose the “leave-
one-out” method (Wang et al., 2007), as it is one of the
most exhaustive cross-validation methods. This method is
implemented in MOTHUR in the script classify.seqs. Briefly, one
sequence is extracted from the dataset, the remaining sequences

are used to train the Bayesian model and then the extracted
sequence is classified against the recently trained model. This
procedure was repeated for each sequence in the dataset and for
all markers. The resulting classification for each of the “left out”
sequences were then used to calculate the accuracy and precision
of the models. The scripts used to run MOTHUR and the final
trained model generated are available here https://osf.io/qtz59/
?view_only=538ab7719073498abfaea0ab1b29d2ba.

Statistical and Graphical Analysis
The program RStudio version 1.1.456 (RStudio Team, 2015)
was used for graph generation and statistical analysis. The
caret package (Kuhn, 2008) was used for the calculation of
F1 score. The F1 metric was chosen because it represents the
balance between correct and incorrect classifications (precision
and recall). Precision is defined as the number of True Positives
divided by the number of True Positives plus the number of
False Positives. Recall is the number of True Positives divided
by the number of True Positives plus the number of False
Negatives. F1 score = Precision/Recall. A model that performs
perfectly would have an F1 score equal to 1, whereas a model
that performs poorly would have a score toward zero (0). An
important aspect to highlight the use of F1 score is that it ignores
the true negatives which in this type of classifiers are usually the
large majority and would bias the values obtained. A confusion
matrix was constructed using the real and predicted taxonomic
assignments for the 5–20 dataset. All data and calculations are
available in Supplementary Table 3. The F1 score for a given
genus was calculated as the average value for all the species within
the genus. This information was represented on a heatmap.
We selected genera with the lowest classification scores—F1
(<0.25)—to explore possible reasons that may be responsible for
the constitutive misclassification of the sequences. A multiple
sequence alignment (MSA) was generated using MUSCLE V3.81
(Edgar, 2004). The graph was elaborated using the graphic tool
for alignment evaluation AliView (Larsson, 2014). The R-package
ggplot2 was used for the graphical representation of F1 score
(Wickham, 2016).

RESULTS

Dataset Exploration
In this study, we used two different datasets (2–20) and
(5–20) to determine marker performance and dataset bias,
respectively, for plant classification in metabarcoding. The
taxonomic distribution is shown in Table 1. Sequence and species
count for both 2–20 and 5–20 datasets are presented in Table 2,
showing the highest number of genera and species for markers
trnL, rbcL, and matK. Moreover, rbcL was the marker with the
highest number of sequences and species available in databases
after quality control and filtering (Table 2, 2–20 dataset). Species
with just one sequence as representative is impossible to be used
for training a model. It is important to notice the high decrease
in the number of species due to their representation by one single
sequence, about 50% of all the dataset for most markers was lost
in the filtering process (Supplementary Table 2).
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TABLE 1 | Taxonomical representation of selected markers at different
taxonomical levels.

Barcodes Species Genus Family Order Class Phylum

rbcL 30,208 8,151 670 136 17 1

matK 26,382 6,377 483 113 13 1

trnL 22,027 5,023 451 116 13 1

psbA-trnH 5,059 1,102 204 78 12 1

rpoB 3,996 1,736 305 94 12 1

psbK 3,579 1,465 249 88 11 1

The number of different entities at each taxonomic level for each
marker gene is shown.

TABLE 2 | Number of species and sequences in the datasets used in this study.

Barcodes 2–20 5–20

# of species # of sequences # of species # of sequences

rbcL 9,119 27,836 1,125 8,405

matK 7,732 24,413 946 7,998

trnL 5,218 19,355 919 8,861

psbA-trnH 1,744 6,838 370 3,400

rpoB 2,721 6,667 102 872

psbK 2,694 6,589 99 850

Distribution of Bootstrap Values
Classification with the NBC was used as implemented in
MOTHUR and described in methods, for both datasets at all
taxonomic levels. At higher taxonomic levels, classification was
more accurate, with a decrease in accuracy at lower levels,
such as genus and species. At the genus level, most of the
assigned sequences exhibit bootstraps values with over 90% value,
regardless of the marker used, whereas for species, confidence
of the classification decreased, with values in the (60–69)
and (70–79) range, with trnL as a good example (Figure 1).
However, the largest category corresponded to those sequences
assigned with >95% bootstrap with both datasets (Figure 1 and
Supplementary Figure 1). Here, we used a cut-off bootstrap
value of 80% for evaluation of the taxonomical assignments.

Marker Performance and Dataset Bias
We tested the accuracy at different taxonomic levels. The average
accuracy of phylum, class, order, and family for every marker, for
both datasets (the 5–20 and 2–20), was above 98% of correctly
assigned sequences (Figures 2A,B). This implies a similar
classification power for all the markers at these taxonomic levels.
It is worth highlighting the fact that our final dataset contained
only one phylum, thus, classification at this taxonomic level could
be biased due to the absence of other phylum. At the genus and
species level, a sharp decline in correct assignments was observed,
with genus at about 90% and species at about 80% of correctly
assigned sequences for the 5–20 dataset (Figure 2A). There was
a significant difference in the performance between the 5–20 vs.
2–20 datasets, with the former displaying a better performance at
genus and species levels (95 and 80%, respectively; Figure 2A),
than the latter (85 and 70%, respectively; Figure 2B) verifying the

impact of underrepresented taxons in the classification power of
the algorithm. In consequence, we selected the 5–20 dataset for
subsequent analyses.

We evaluated the performance of each marker at the genus
and species level (Figure 3). We observe that matK and trnL
are the markers with the highest rate of correct assignments at
the genus level. For species, matK and rpoB seems to be the
best markers (fewer incorrect assignments); however, at this level
none of the markers surpasses 95% assignment accuracy (the
number of sequences per marker is represented in Table 2).

Using Classifiers on Problematic Genera
In general, fewer than 15% of the sequences were misclassified
at the species level. Furthermore, those misclassified sequences
tend to belong to a reduced number of genera. Hence, we decided
to identify the genera with the lowest classification performance
at the species level to determine potential reasons for their
problematic classification. We used the F1 score for the selection
of those problematic genera. For a correct interpretation of the
F1 score, it is necessary to remember that the closer the score
is to 1, the higher the quality of the prediction generated by the
precision value (proportion of sequences correctly classified or
true positives) and the recall (proportion of sequences belonging
to one category and classified as another or false positives).
The respective cumulative percentage of genus classification for
every marker based on the F1 score is shown in Figure 4 and
Supplementary Table 3. Essentially, we found three different
scenarios:

(a) The genus has one or multiple markers and at least one
performs well: these genera (n = 684 or 65%) have an F1 score
greater than 0.25 in one or multiple markers. However, there are
some cases (n = 34 or 3.21%) where the genera have an F1 score
below 0.25 for at least one marker but were able to be classified
correctly by at least one another marker.

(b) The genus has only one marker and it performs poorly.
These genera (n = 36 or 3.4%) have only data (sequences)
available for one marker and the F1 score ≤ 0.25. In this case,
there was no further information to evaluate these genera.

(c) The genus has multiple markers and none of them
performs well: There are genera (n = 7 or 0.66%) with multiple
markers and with F1 score < 0.25 in all of them constituting an
important dataset for further analysis into the possible causes for
the misclassification. We call these genera “problematic genera.”

Among the selected problematic genera, seven showed
consistent problematic assignments (Aegilops, Gueldenstaedtia,
Helianthus, Oryza, Shorea, Thysananthus, and Triticum), and
no marker was efficient in classifying these taxa. The heatmap
in Figure 5 shows an example of the widespread classification
problems in these genera for matK (the other markers are in
Supplementary Figure 2). Most of the misclassification problems
occur between species originating from the same genus; however,
some misclassifications are seen at the genus level for the family
Poaceae between Aegilops and Triticum (Figure 5). This happens
for markers psbK, rbcL, and rpoB. Finally, we performed an
analysis of problematic genera and their respective species for
every marker by a Multiple Sequence Alignment to evaluate
if the low performance of the assignment task was correlated
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FIGURE 1 | Representation of the percentage of assigned sequences (i.e., classified) by the Bayesian Classifier at species and genus level for the 5–20 datasets.
Shades of green represent the fraction of sequences with bootstrap values greater than 80 (proposed threshold for accuracy). Yellow represents the fraction of
sequences with bootstrap values lower than 80, thus not used for further analysis.

with low intraspecific variability. Figure 6 is an example of
the genus Shorea for the marker trnL. As expected, we found
very low variation in the multiple alignment within these
problematic genera.

DISCUSSION

The current study shows an evaluation of the most relevant
markers used in literature for plant classification, using one
of the methods that has demonstrated greater effectiveness of
classification in metabarcoding and with the maximum number
of sequences that can be obtained in public databases. This
process was performed to identify the markers with the highest
accuracy at different taxonomic levels for metabarcoding analysis
and to identify genera with problematic species. Not surprisingly,
rbcL was the marker with the highest number of sequences, given
that historically it has been the most used marker (Kress and
Erickson, 2007; Hollingsworth et al., 2011).

Dataset Exploration
Our comparative results between the 5–20 and 2–20 datasets
show that better performance is achieved with datasets with good
representation per class (5–20 dataset), rather than with datasets
with a higher number of classes, but lower representation per
class. This is true for the most classification methods. It further
highlights the importance of increasing the reports of sequences
from different taxonomic lineages in public databases, since only
a good representation of a given lineage will allow a proper model
training for accurate classification.

Markers Examination by Bayesian
Classifiers
Bayesian classifiers have been successfully used in metabarcoding
strategies. The method employed here has the added benefit of
bootstrapping the k-mers used to reduce the chance of overfitting
and guarantee that no single k-mer is responsible for a given
classification. Thus, classifications with high bootstrap values
show the robustness of the method. In our case, we needed to
find a balance between high confidence in the assignment, given
by the bootstrap value, and the high percentage of classification.
We selected a frequently used 80% bootstrap threshold for our
analyses, which allowed the classification of over 80% of the
sequences at species level and over 95% of the sequences at the
genus level or above. At species level, matK and rpoB appear
to be the best markers (fewer incorrect assignments); however,
at this level, none of the markers surpasses 95% of assignment
accuracy. This level of accuracy, which is acceptable in other
fields of machine learning, is probably too low to be considered
a “good classifier” at the species level. According to this result, it
is recommended to use markers above the 98% accuracy at the
genus level, which are matK and trnL.

When analyzing the performance of the individual markers,
we want to highlight matK and its performance on taxonomic
assignment, even with datasets of sparse representation,
such as the 2–20 dataset. Its outstanding performance
could be attributed to the high interspecific variability of
the marker (Mankga et al., 2013; Jiménez-Mejías et al., 2016;
Elansary et al., 2017). Our results were consistent with the
recommendations from other authors based on the low
performance of other single markers at the species level
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FIGURE 2 | Individual marker performance, as percentage of correctly classified sequences, of the Naïve Bayesian Classifiers (NBC) from Phylum to Species based
on the selected bootstrap criterion (80%) in (A) the 5–20 dataset and (B) the 2–20 dataset. Consider that the scale for the y-axis in both plots varies, 80–100% for
panel (A) and 70–100% for panel (B), for visualization purposes.

(Whittall et al., 2010; China Plant BOL Group, 2011; De Groot
et al., 2011; Hollingsworth et al., 2011; Gere et al., 2013; Chen
et al., 2016; Kress, 2017; Menezes et al., 2018). Although a
proposed alternative for barcoding was the combination of
multiple single gene markers, this approach is unsuitable in the
context of metabarcoding given that it is currently technically
impossible to tie two or more markers to an individual in
an environmental sample, unless the markers were next to
each other and amplifiable as a single amplicon. Our results
indicate that for single marker classification, trnL and matK
are the best choices when classifying up to genus level and are
resilient to low sequence representation in databases. In addition,
we recommend matK, which was the marker with the best
performance overall at species level. However, further studies

are necessary to determine flanking regions of matK that could
improve the species classification. For general plant classification,
we agree with the recommendation from several authors of using
matK in combination with other genes (Braukmann et al., 2017;
Xu et al., 2018; Li et al., 2021).

Problematic Genera
For the genera with problematic classifications, we found
three types of behavior (Supplementary Table 3). First, we
identified some genera (3.2%) with very low F1 score with
one specific marker, but with enough resolution for other
markers (e.g., Citrus, Adenophora, Oenothera, Rosa, and Vitis),
thus representing a limitation of a given marker-genus pair
for classification. Second, there were some genera (3.4%) with
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FIGURE 3 | Correct and Incorrect classifications for Genus (G) and Species (S) levels for all markers evaluated in the 5–20 dataset. The value corresponding to the
percentage of correct assignments is shown in the bottom of the bar, while the value for incorrect assignments is right below the corresponding light green bar.

FIGURE 4 | Cumulative F1 score for the 5–20 dataset for every marker. The cumulative percentage of assigned genus at every F1 score threshold is shown. Thus,
100% of the genera are assigned at a cut-off of 1.0 or below. Notice that less than 10% of the genera had an F1 score of 0.25 or below and 65% of the genera
shows a score of 0.9 or above for every marker. The shown line defines the threshold for the genera that will be handpicked to evaluate their possible causes of
misclassification.

information for only one marker, making it impossible to
compare or gather more information from those, highlighting
the importance of generating more data on those markers for
under-represented taxa. Moreover, most of these genera had
a low number of sequences which itself implies an associated
factor to their low classification accuracy. Third and finally,

there was a set of genera (0.66%) with two or more markers
generating misclassifications. For this final case, we found a total
of seven genera Aegilops (Poaceae, goatgrasses), Gueldenstaedtia
(Fabaceae, legume), Helianthus (Asteraceae, sunflower), Oryza
(Poaceae, rice), Shorea (Dipterocarpaceae, lauan), Thysananthus
(Lejeuneaceae, liverwort), and Triticum (Poaceae, wheat).
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FIGURE 5 | Heatmap corresponding to the confusion matrix of assignment for problematic genera in the case of the matK marker. Species from selected genera are
depicted in the same order in the x- and y-axis. Horizontal band color and vertical bar colors at the bottom and side of the heatmap correspond to the families
evaluated. Squares enclose their corresponding species. Species in X-axis (original) are predicted as one of the Y-axis (predicted). The numbers within parenthesis
represents the number of sequences for that species.

FIGURE 6 | Multiple sequences alignment (MSA) example of species variation from the genus Shorea using trnL marker. The sequence on the top is the alignment
consensus of the genus Shorea sp. The different colors below this line indicate the variations within the sequences. The numbers at one side represents the species
of this genus. Horizontal lines represent divisions between the different species. Notice that there are no specific variations that could work as specific markers for
any given species.

A deeper look at these genera allowed important observations.
Gueldenstaedtia is a small genus of Fabaceae that is very
similar to the Tibetia genus (Xie et al., 2016). Most of
the misclassified species in Gueldenstaedtia were assigned
as Tibetia species. We found a similar situation with the
genera Shorea and Thysananthus. Shorea is a very important
genus related to timber and wood products. Tsumura et al.
(2011) reported that some species within Shorea have identical
sequences for multiple chloroplast regions, indicating that

it may be difficult to discriminate between closely related
species. In their manuscript, they propose a method for the
identification of species of this genus and suggest using other
non-chloroplast-based markers, such as ITS for the identification
of Shorea. Finally, for Thysananthus, one of the largest genera
of liverworts that has been monographed worldwide, some
authors suggest that given their morphological overlap, the
molecular evidence and the lack of morphological characters
separating them from Mastigolejeunea, they should be merged
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as a single genus (Sukkharak and Gradstein, 2017). Thus, the
misclassification on those three genera seems to be more related
to the lack of biological divergence than the performance of the
markers themselves.

The genera Aegilops and Helianthus showed a pattern
that regardless of the species being assigned, all assignments
were collapsed to a single species. For Aegilops, this pattern
was observed in many of the evaluated markers, such as
matK (Figure 5, notice most species are classified as Aegilops
longissima). For Helianthus, the pattern was presented in matK,
rbcL, psbK, and rpoB (Supplementary Figure 2). A second
pattern of apparent random assignments was found for Oryza,
Triticum, Citrus, and Shorea, just to mention some of the
examples. This behavior was found for more than one marker
(matK, rpoB, rbcL, psbK, and psbA-trnH). Analyzing those genera
and their respective species using MSA, we noticed a very low or
non-existent variation among the sequences (Figure 6) pointing
again at very low biological divergence among the species of the
genus, and likely the cause of the low F1 score for those genera.

We identified a particular pattern among Aegilops and
Triticum, both belonging to the Poaceae family. In these genera,
for different markers, occurs a classification of Aegilops species as
Triticum ones, and vice versa. In the most recent phylogenetic
classification of Poaceae, these two genera have been assigned
as being part of the subtribe Triticinae (Soreng et al., 2015)
based on methods of maximum likelihood on matK and ndhF
markers. In those genera, there is evidence of hybridization
(Loureiro et al., 2009; Tsunewaki, 2009; Zhang et al., 2010)
using allopolyploidization as the major force leading to the
diversification during the evolution of Triticum species. Aegilops
has been characterized as a wild relative of Triticum (wheat).
Cultivated wheats and their close wild relatives belong to the
genus Triticum, a member of the tribe Triticeae, which contains
300 species (Clayton and Renvoize, 1986). Together, this evidence
suggests some of the possible causes of classification problems
with the assignment of these two genera.

Hollingsworth et al. (2011) suggests seven key factors that may
lead to a lower level of success in species discrimination, such as
hybridization, polyploidy, life history, breeding systems, species
history, level of taxonomic “splitting,” and seed dispersal. In all
our problematic genera (Aegilops, Gueldenstaedtia, Helianthus,
Oryza, Shorea, Thysananthus, and Triticum) those patterns were
present. In Aegilops, there is evidence of allopolyploid, containing
multiple chloroplast haplotypes, each identical to haplotypes
of the diploid progenitor species, indicating multiple origins
as the major source of variation (Meimberg et al., 2009). In
Triticum, there was evidence of hybridization and polyploidy.
Hybridization occurs between wheat cultivars because mixed
cultivation of different wheats with different ploidies is a tradition
and still common practice in the Middle East and Transcaucasia.
Furthermore, wild wheat species can be involved in hybrid
swarms in regions where they naturally grow in and around the
areas of wheat cultivation (Matsuoka, 2011). There was a similar
pattern with the genus Oryza and Helianthus given their human
domestication and their economic importance as food source
(Blackman et al., 2011; Molina et al., 2011; Kantar et al., 2012;
Civáň et al., 2015; Badouin et al., 2017; Stein et al., 2018).

Caveats and Recommendations
Finally, it is important to highlight that the taxonomy source
of the evaluated sequences was GenBank. This is a database
of primary sequences where the submitter gives the taxonomic
assignment of the uploaded sequence and thus, it is prone
to human error. A certain error percentage is expected by
using such a database. We tried to minimize the error by
using several representative sequences per species, but this was
limited in some cases.

Our results show that the NBC is a tool that could be used
for plant classification. Based on the results of this classifier
for the taxonomic levels: class, order, or family, any of the
evaluated markers would sufficiently fulfill the expected accuracy
and precision. For classification at the genus level, trnL and matK
are the recommended choice due to their high performance of
classification, even on taxons with low number of sequenced
representatives (2–5 sequences per taxon). We only evaluated
classifications based on Naïve Bayesian models; however, other
methods using machine learning models, such as support-vector
machine (SVM) could be of interest for future validations. Due
to the limitations in metabarcoding studies and with long-read
sequencing technologies becoming more prevalent, we propose
the evaluation of chloroplast regions that contains more than one
gene, identical to the regions close to trnL, matK, psbA-trnH, rbcL,
and rpoB using NBC as a modeling method.

Some specific combinations of marker-genus were
problematic for classification; however, several of them
could be assigned with other markers. We further analyzed
the possible reasons of multiple marker misclassification for the
genera Aegilops, Gueldenstaedtia, Helianthus, Oryza, Shorea,
Thysananthus, and Triticum, identifying in all cases that it was
likely related to biological conditions, such as hybridization,
polyploidy, and evolutionary history, and not due to the
algorithm or technical difficulties. Barcodes are powerful
tools for sequence classification and plants are no exception.
However, only a thorough analysis, such as the one performed
in the current study can provide evidence of the usability of
the different markers and their limitations. Here, we used the
most common molecular markers together with all the available
sequences on public databases and a state-of-the-art classification
method to determine the best performing marker for each taxon
on potential interest and, finally, release a Green Genes-like
database to be used by the researchers on their own research.
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