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Seed germination is crucial for the life cycle of plants and maximum crop production.
This critical developmental step is regulated by diverse endogenous [hormones, reactive
oxygen species (ROS)] and exogenous (light, temperature) factors. Reactive oxygen
species promote the release of seed dormancy by biomolecules oxidation, testa
weakening and endosperm decay. Reactive oxygen species modulate metabolic and
hormone signaling pathways that induce and maintain seed dormancy and germination.
Endosperm provides nutrients and senses environmental signals to regulate the growth
of the embryo by secreting timely signals. The growing energy demand of the developing
embryo and endosperm is fulfilled by functional mitochondria. Mitochondrial matrix-
localized heat shock protein GhHSP24.7 controls seed germination in a temperature-
dependent manner. In this review, we summarize comprehensive view of biochemical
and molecular mechanisms, which coordinately control seed germination. We also
discuss that the accurate and optimized coordination of ROS, mitochondria, heat shock
proteins is required to permit testa rupture and subsequent germination.

Keywords: seed germination and dormancy, reactive oxygen species (ROS), mitochondria, heat shock proteins
(HSPs), embryogenesis and endosperm

HIGHLIGHTS

- ROS inside cell due to external environmental dynamics
signals seed germination.

- Mitochondria produce large amounts of ATP for seed
germination.

- HSPs induces testa weakening and micropylar endosperm
decay to release dormancy.

INTRODUCTION

Seed germination is crucial for uniform and maximum crop production (Carrera-Castaño et al.,
2020), and the optimization of intrinsic and extrinsic factors is very important for promoting the

Abbreviations: ABA, Abscisic acid; GA, Gibberellins; PCD, Programmed cell death; ROS, Reactive oxygen species; ET,
Ethylene; DOG, Delay of Germination; QTL, Quantitative trait loci; ME, Micropylar endosperm; TCA, Tricarboxylic acid
cycle; HAI, Hours after imbibition; PPRs, Pentatricopeptide repeat proteins; HSP, Heat shock protein; PFE, Puncture force of
endosperm; NOX, NADPH oxidase.
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transition from dormancy to germination (Figure 1) (Wang
et al., 2020). The dormancy level of commercial crop varieties
is typically lower than that of their wild relatives, as this
helps to achieve maximum production. Nonetheless, the level of
dormancy must be calibrated to prevent pre-harvest sprouting
and consequent losses of yield and quality (Shu et al., 2016).
A deeper understanding of seed germination and dormancy is
therefore important for both agronomic and economic reasons.

The transition from seed dormancy to germination is a
physiological process that is regulated by diverse endogenous
hormones and environmental factors. ABA (abscisic acid)
and GAs (gibberellins) are the main hormones that work
in coordination to release seed dormancy and enable seed
germination (Wang et al., 2019). Recent findings have revealed
that auxins also play an important role in maintaining seed
dormancy until conditions are favorable for plant survival
(Shuai et al., 2017). Besides intrinsic cues, numerous extrinsic
factors can prolong or terminate seed dormancy and promote
seed germination and development. Light (Oh et al., 2004),
temperature (He et al., 2016), and soil conditions (Meng et al.,
2017) are major signals that can be perceived by seeds to
regulate the timing of germination. The regulatory effect of
light on seed germination depends on its spectrum, the red
light increases the seed germination than any other light color
(Stawska and Oracz, 2019).

Reactive oxygen species (ROS) have traditionally been viewed
as destructive agents in plants; however, it has been recently
explained that ROS also play a positive role in seed germination
(Oracz and Karpiński, 2016). Oxygen can be transformed into
multiple ROS, including singlet oxygen, superoxide, the hydroxyl
radical, and hydrogen peroxide. Hydrogen peroxide is considered
to be an important ROS agent, as it can pass readily through
various cellular membranes (Anand et al., 2019). Reactive oxygen
species production inside the seed transforms it from the
quiescent seed produced by the mother plant into a biologically
active seed that is capable of germination (Xia et al., 2018).
This process occurs when environmental signals are accurately
perceived and processed into endogenous signals by the seed
(Bailly, 2019). The mitochondrion is known to carry out diverse
functions in the cellular landscape. It synthesizes vitamins, (i.e.,
ascorbic acid, folic acid, and biotin) and selected amino acids
(Foyer et al., 2020), and has a pivotal role in programmed cell
death (PCD) (Zhao et al., 2018). Beside a major site for ROS
production, mitochondrion also plays a significant role in seed
germination (Bailly, 2019). Heat shock proteins localized in the
mitochondria play a crucial role in seed germination through
temperature-dependent ROS generation (Ma et al., 2019). This
article mainly summarizes the roles of ROS, heat shock proteins
and mitochondria in seed germination.

ROLE OF REACTIVE OXYGEN SPECIES
IN SEED GERMINATION

Reactive oxygen species (ROS) are produced in the seed as
a result of metabolism and play a significant role in seed
germination (Table 1). Weakening of the endosperm is a
prerequisite for the initiation of seed germination and is driven

by various internal and external factors. The decay of the
endosperm is directly linked to the production of ROS in
response to the availability of external environmental signals
(Zhang et al., 2019). ROS include free radicals such as singlet
oxygen (1O−2), superoxide (O−2) or the hydroxyl radical (OH)
(Bailly, 2019). Hydrogen peroxide is a reactive molecule that
performs a signaling function in seed germination and has
the ability to cross biological membranes (Hajihashemi et al.,
2020). During the germination of the seed, the endogenous
H2O2 accumulates inside the seed so the germination can
occur, and seed coat can loosen up. When the production of
H2O2 will begin to damage the internal organelles, the defense
mechanisms inside the cell will be activated. Recently hydrogen
peroxide responsive genes (HRG) 1 and 2 have been identified
that play a significant role in containing the production of
H2O2 inside the cell so that plant metabolic process cannot
be disrupted (Gong et al., 2021). The specialty of HRG1 and
HRG2 is that they will keep rather low content of protein
until the level of H2O2 is elevated, which discerns them from
the other hydrogen peroxide responsive genes providing novel
pathway for H2O2 sensing and response. During the germination
process, this novel pathway is involved in the meristem activity
regulation of embryonic roots. The novel HRG1 and HRG2 genes
express to protect the microenvironmental stability of root tip
meristem for maintain meristem cell normal activity concerning
both cell division and elongation (Gong et al., 2021). Abiotic
and biotic stresses can result in oxidative stress that causes
programmed cell death. In addition to their negative effects,
ROS also play a significant positive role in dormancy release,
seed germination signaling, protection against pathogens, and
regulation of internal cellular machinery in response to external
environmental dynamics. There is a specific “oxidative window”
that allows cellular events to unfold in sequential order for
seed germination if ROS are maintained within a particular
range (Anand et al., 2019). To date, ROS dynamics have been
studied mainly after water imbibition because they are easier to
measure at this time.

After ripening, seeds are quiescent and very low in moisture.
Measurement of ROS production and metabolism in dry seeds
is very challenging, mainly due to technical barriers. Oxygen
is the main driver for ROS production in anhydrobiotic seeds.
It typically exists in its ground state (3O2) with two unpaired
electrons with parallel spins, and its reduction generates various
forms of ROS. Oxygen is present primarily in the void spaces
of dry seeds, and these dry spaces collectively form an air space
network (Ahmed et al., 2018). Seeds are desiccated on the mother
plant after ripening, but mother plants generate ROS to create
an oxidative environment inside the seed. During seed storage,
available oxygen kickstarts chemical reactions. Lipids can be
easily oxidized in seeds under low moisture conditions and
therefore serve as a source of free radicals. The increase in water
uptake in zone 1 of the water sorption isotherm reduces lipid
oxidation by filling the pore spaces and decreasing the oxygen
concentration inside the seed, resulting in a low reaction rate.
Lipid peroxidation in the low moisture system may lead to the
reactions of proteins with lipid hydroperoxides, free radicals, and
peroxide breakdown products (Cai et al., 2011). The key function
of oxygen in the seed is the release of seed dormancy, as has been
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FIGURE 1 | Driving forces of seed germination; Phytohormones, High temperature, Light, Reactive oxygen species (ROS), Endosperm decaying and Mitochondria.
CTK: Cytokinins, JA: Jasmonic acid, BR: Brassinosteroids, ET: Ethylene, SA: Salicylic acid, GA: Gibberellic acid, ABA: Abscisic acid, PIF1: Phytochrome Integrating
Factor 1, Pfr: Photoreceptors far red, Pr: Photoreceptor red, Cyt c: Cytochrome c, AOX: Alternative oxidases, HSP: Heat shock proteins, ROS: Reactive oxygen
species, Temp: Temperature.

observed in experiments with barley, Arabidopsis, and sunflower
(Leymarie et al., 2012; Beracochea et al., 2015).

The resumption of metabolic activity in the seed is related
to the regulated enzymatic production of ROS. Seeds are
very sensitive to water, which leads to the production of
ROS. The decision to germinate is dependent on various
environmental stimuli such as temperature, moisture, and
light (Gomes and Garcia, 2013). Major sites involved in the
production of ROS are the mitochondria, the peroxisome, and
the NADPH oxidases of the plasma membrane. The inhibition
of NADPH oxidase delays seed germination, underscoring
the important function of this enzyme. After imbibition, the
resurgence of mitochondrial respiration in the seed may cause
electrons to be donated to oxygen as an electron acceptor, leading
to ROS production (Kranner et al., 2010). NADPH oxidases,
also known as respiratory burst oxidase homologs (Rbohs)
after the homology with gp91phox domain of the mammalian
respiratory burst oxidase are main drivers of ROS production in
the cell wall space which leads to seed germination through non-
enzymatic way and results in radicle elongation and endosperm
cap weakening in dicots (Sun L. R. et al., 2019). Rbohs transfers
the electron from NADPH or NADH to apoplastic oxygen which
results in the production of superoxide radicals and these radicals

can directly cleave polysaccharides which will loosens the plant
cell walls (Yang et al., 2020). As a typical dicot seed, i.e., Lactuca
sativa has two layers of seed coverings, a dead and soft seed coat
and an endosperm tissue covered with 2–3 layers of the living cells
(Jones, 1974). NADPH oxidases as non-enzymatic mode along
with enzymatic mechanisms, i.e., pectin-methyltransferases,
cellulase and hemicellulose degrading enzymes are involved
in the loosening and degradation of these layers so that the
germination can occur (Zhang et al., 2014). Protein carbonylation
and protein turnover increase owing to the accumulation of
H2O2. It also causes a decrease in electron pressure in the
mitochondrial electron transport chain, allowing the provision
of reducing equivalents (NADPH) to the thioredoxin (Trx)
system (via the pentose phosphate pathway), which is involved
in the regulation of seed germination and seedling development
(Li et al., 2017). The H2O2 concentration also affects the
hormone balance by increasing GA and decreasing ABA/ethylene
via 1-aminocyclopropane-1-carboxylic acid. This remodeling
of hormone signaling may lead to the recommencement of
metabolic activity that is essential for seed germination and
seedling emergence (El-Maarouf-Bouteau and Bailly, 2008).

In monocots, the coleorhiza, a non-vascularized multicellular
embryonic tissue, covers the seminal roots of monocot seeds and
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TABLE 1 | Effects of ROS on seed germination in various plant species.

Context Effect Species References

Zn and arsenic stress Negative Anadenanthera peregrina and
Myracrodruon urundeuva

Gomes et al., 2013

Germination Positive Malus domestica Krasuska et al., 2014

Dormancy alleviation Positive Malus domestica Dębska et al., 2013

Salt stress Negative Arabidopsis thaliana Yang et al., 2019b

ABA cross talk ABA positive regulator
of rboh and ROS

Arabidopsis thaliana Yang et al., 2019a

Cd stress Negative Arabidopsis thaliana Nourimand and Todd, 2019

Mitochondrial functioning Positive Arabidopsis thaliana Ma et al., 2019

Salt stress Positive Arabidopsis thaliana Ortiz-Espín et al., 2017

Seed dormancy and iron deficiency Positive Arabidopsis thaliana Murgia and Morandini, 2017

Germination/ABA Negative Arabidopsis thaliana Baek et al., 2015

Salt stress/ethylene Negative Arabidopsis thaliana Lin et al., 2013

Germination light Positive Arabidopsis thaliana Lariguet et al., 2013

Dormancy Positive Arabidopsis thaliana Leymarie et al., 2012

Germination/ABA Positive Arabidopsis thaliana He et al., 2012

Germination/ABA/GA Positive Arabidopsis thaliana Liu et al., 2010

Germination/ABA signaling Positive Arabidopsis thaliana Bi et al., 2017

Dormancy/ABA/GA Positive Hordeum vulgare Bahin et al., 2011

Seed germination and dormancy Positive Hordeum vulgare Ma et al., 2017

Germination/ABA signaling Positive Hordeum vulgare Ishibashi et al., 2017

Dormancy alleviation Positive Hordeum vulgare Ma Z. et al., 2016

Germination/GA/NADPH oxidase Positive Hordeum vulgare Kai et al., 2016

Germination/NADPH oxidase Positive Hordeum vulgare Ishibashi et al., 2015

Dormancy Positive Bidens Pilosa Whitaker et al., 2010

Dormancy alleviation Positive Bunium persicum Amooaghaie and Ahmadi, 2017

Dormancy alleviation Positive Hedysarum scoparium Su et al., 2016

Germination/endosperm weakening Positive Lactuca sativa Zhang et al., 2014

Mutagen agents Negative Zea Mays Zhang et al., 2018

Dormancy alleviation by heat Positive Mesembryanthemum crystallimum Visscher et al., 2018

Drought and salt stress negative Miscanthus Yang et al., 2018

Germination/ABA Positive Pisum sativum Barba-Espin et al., 2012

Germination Positive Pisum sativum Kranner et al., 2010

High temperature, drought stress Negative Oryza Sativa Liu et al., 2019

Low phytic acid seed vigor Positive Oryza Sativa Zhou et al., 2018

Dormancy alleviation (after ripening) Positive Oryza Sativa Zhang et al., 2017

Germination NADPH oxidase Positive Oryza Sativa Li et al., 2017

Osmotic and salt stress Negative Oryza Sativa Chen et al., 2016

Germination/ABA/GA Positive Oryza Sativa Ye and Zhang, 2012

Germination/ethylene Positive Sorghum bicolor Ishibashi et al., 2013

Dormancy alleviation (after ripening) Positive Helianthus annus Morscher et al., 2015

Dormancy alleviation/ABA/ethylene Positive Helianthus annus El-Maarouf-Bouteau et al., 2015

Dormancy Positive Helianthus annus Oracz et al., 2007

GA response Positive Nicotina tabacum Oracz et al., 2009

Germination Positive Vigna radiata Singh et al., 2015

Seed vigor and GA signaling Positive Citrullus lanatus He et al., 2019

Dormancy Positive Triticum aestivum Bykova et al., 2011

is thought to have a role in protecting the emerging root and it
is also involved in the regulation of radicle emergence upon the
germination of monocots seeds, i.e., wheat (González-Calle et al.,
2015). The embryo is located on the side of endosperm, where
it is considered that endosperm is involved in providing the
nutrition to the growing embryo. During germination process,

the epiblast and coleorhiza appears first and then the primary
leaf appears from the coleoptile (Betekhtin et al., 2018). The role
of coleorhiza is known to protect the emerging roots during
seed germination; however, it has been established that it plays
the same role in monocots which micropylar endosperm plays
in the dicots, i.e., it acts as a barrier for radicle protrusion to
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complete germination (sensu stricto) (Holloway et al., 2021).
The dissolution of coleorhiza occurs after 6h of imbibition of
the water in rice and thus its degeneration is pre-requisite for
the germination of the seeds (Barrero et al., 2009). The non-
enzymatic mechanisms, i.e., the production of ROS is directly
linked with the increase in the germination especially the
accumulation and production of O2−, H2O2, and OH− radicals
were higher in coleorhiza and radicle than in the coleoptile of
germinating seeds (Li et al., 2017). Moreover, NADPH oxidases
(NOXs) are kind of proteins and are major enzymatic route
of ROS synthesis in rice seed germination (Kai et al., 2016).
The inhibition of NOXs in monocots can results in the delayed
germination because these are involved in radicle and root
growth. NOXs mRNAs are reported to express in the embryo and
aleurone cells of barley seeds (Iglesias-Fernández et al., 2020),
these expression sites are in conformity with the sites of ROS
production in the seeds after imbibition (Ishibashi et al., 2015).

MITOCHONDRIA ARE INDISPENSABLE
FOR SEED GERMINATION

The mitochondrion is responsible for regulating various
functions in the cell. It is involved in the production of vitamins
(ascorbic acid, folic acid, and biotin) (Foyer et al., 2020), and
selected amino acids so that cellular processes are carried out
uninterrupted (Wagner et al., 2018). Moreover, under abiotic
and biotic stress, it causes programmed cell death to put plant
in a better position to combat these stresses. Mitochondria
also induces the production of ROS which functions in the
signaling pathways of cellular networks. It also has key roles
in diverse metabolic pathways such as iron homeostasis, lipid
metabolism, and nitrogen assimilation. Its most established
role is in the production of cellular energy in the form of
ATP through oxidative phosphorylation (Law et al., 2014). The
onset of germination is marked by the conversion of simple,
quiescent promitochondria of dry mature seeds into energetic,
metabolically active, cristae-containing organelles. The study of
sunflower seeds by transmission electron microscopy has shown
that low density of the mitochondrial matrix, absence of a
discontinuous outer membrane, and few cristae are associated
with low ATP production through oxidative phosphorylation
(Czarna et al., 2016). In other crops, such as rice (Taylor
et al., 2010), maize (Bahaji et al., 2019), and peas (Henriet
et al., 2021), the presence of mature mitochondria with large
numbers of continuous cristae structures, an electron dense
matrix, and abundant electron transport chain components were
suggestive of high protein contents that enable the seed to
produce large amounts of ATP through increased metabolic
activity and respiration. Isolated promitochondria from rice
seeds were rich in proteins but were unable to be metabolically
active without imbibition. When rice seed was imbibed for
30 min, its mitochondrial metabolic and protein import functions
were restored. Therefore, imbibition is a prerequisite for
the transformation of promitochondria into mature and fully
differentiated mitochondria. As seed germination proceeds, the
import of components for mitochondrial function is reduced,
and the import of machinery for primary metabolism in the cell

increases (Best et al., 2020). The rate of protein import continues
to rise, whereas the abundance of protein import machinery
declines in the cell overall. This suggests that there may be some
degradation of import machinery in the cell as the concentration
of promitochondria decreases and that of mature mitochondria
increases (Law et al., 2014).

CHANGES IN THE MITOCHONDRIAL
TRANSCRIPTOME DURING SEED
GERMINATION

Dynamics of mitochondrial genes changes quantitatively as
the germination progresses which validates that mitochondrial
transcription and in turn the production of proteins is very vital
for the germination of seeds. Northern blot analysis in maize
showed that transcripts of genes associated with mitochondrial
biogenesis such as atpa, atp9, cox1, cox2, and cox3 were present
at low abundance during early time points of seed germination
but increased in abundance from 24 to 48 h after imbibition
(HAI) (Logan et al., 2001). Emp12 encodes a P-subfamily PPR
protein that is located in the mitochondria (Small et al., 2004)
and its expression is ubiquitous in a range of vegetative and
reproductive tissues, which is mostly involved in the development
of kernels (Cheng et al., 2016). The maize Emp12 is involved
in embryogenesis and endosperm development, the mutation
in Emp12 restricts the embryo and endosperm development
causing embryo fatality. At the 16 DAP the kernels which were
Emp12 mutated were much smaller in size and microscopy
study indicated that this mutation resulted in crumbled empty
pericarp, accumulated less starch and the embryo development
halted at the transitional stage, rendering an undifferentiated
embryo (Sun F. et al., 2019). It suggests that mitochondrial
localized Emp12 plays an essential role in the embryogenesis
and endosperm development. Moreover, the Emp12 mutation
causes trans-splicing of mitochondrial nad2 intron 2 and cis-
splicing of nad2 intron4 are obstructed, whereas the cis-splicing
of nad2 intron 1 is reduced in Emp12 mutants (Cheng et al., 2016;
Dai et al., 2018). It results in the dismantling of the complex1
assembly, and its activity decreases manifolds in the mutants and
the expression of other alternative oxidases, and several other
mitochondrial complexes greatly increases (Xiu et al., 2016; Qi
et al., 2017). Therefore, Emp12 is inevitable for the accurate and
timely trans-splicing of nad2 intron 2 and cis splicing of nad2
introns 1 and 4 and plays a significant role in the complex 1
biogenesis, embryogenesis and endosperm development in maize
(Sun F. et al., 2019).

Similarly, a study in rice demonstrated that there was
a low concentration of mitochondrial transcripts 3 HAI
and a peak in transcripts related to mitochondrial energy
production and metabolism at 12 HAI (Howell et al., 2009).
Transcriptome data indicated that a small surge in transcripts
in the germinating seed at 3 HAI was specifically associated
with mitochondrial proteins rather than any other organelle,
suggesting that the activation of mitochondria is essential for seed
germination after imbibition (Logan et al., 2001). The analysis
of genes that encode mitochondrial proteins has demonstrated
a triphasic progression of transcriptomic events during seed
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germination (Law et al., 2012). Initially, two groups of genes are
transiently expressed. The first group shows the highest transcript
abundance until the end of stratification and before the seed is
exposed to continuous light. They encode proteins that function
in nucleic acid metabolism. The second group encodes proteins
with import and synthesis functions. They are followed by a third
group of genes that encode electron transport chain components
and whose transcript abundance progressively increases. During
the first transcriptomic phase, the first two groups of genes
are activated, and the abundance of proteins related to DNA
and RNA metabolism increases. These include proteins that
function in transcription, RNA editing, splicing, processing,
stability, and translation. Specifically, there is over representation
of mitochondrial targeted pentatricopeptide repeat proteins
(PPRs). PPRs are mitochondria or plastid-targeted proteins with
diverse functions in RNA metabolism: RNA editing (Chateigner-
Boutin et al., 2008), transcription (Ding et al., 2006), splicing
(De Longevialle et al., 2008), processing (Nakamura et al.,
2003), stability (Yamazaki et al., 2004), and translation (Choquet
and Wollman, 2002). The expression of these transcripts
is synchronized with the expression of transcripts encoding
proteins that function in cytosolic nucleotide metabolism and
factors responsible for conveying these nucleotides into the
mitochondrial matrix. This pattern of transcription suggests
that the coordinated production and transport of nucleotides
is important, enabling them to be used for the transcription of
mitochondrial genes (Li et al., 2012). During the second phase,
the second group of genes is activated, including transcripts
that encode ribosomes, translation factors, and tRNA-related
functions (Narsai et al., 2011). There is an increased abundance
of proteins related to mitochondrial protein import, including
components of the inner membrane (TIM) and the outer
membrane (TOM) complexes. This suggests that the import of
nuclear-encoded mitochondrial proteins goes hand-in-hand with
the synthesis of organelle-encoded proteins. This is necessary
because many mitochondrial protein complexes contain both
nuclear- and organelle-encoded subunits, and their successful
assembly requires careful control of subunit accumulation
(Jänsch et al., 1996). The presence of these biogenesis factors
early in the germination time course highlights the significance
of mitochondrial biogenesis for successful seed germination
(Law et al., 2012). The third group of mitochondrial transcripts
encodes components of the electron transport chain. The
abundance of these proteins increases as germination progresses
and it peaks before the end of germination. This marks the third
and final phase in the transition of promitochondria to mature
mitochondria and establishes the metabolic functions that are
required for the vegetative stages of plant development (Figure 2)
(Howell et al., 2009).

CHANGES IN THE MITOCHONDRIAL
PROTEOME DURING SEED
GERMINATION

Numerous mitochondrial proteins are involved in seed
germination; they perform various functions such as respiration,

metabolism, import or transport, carbon metabolism/-
tricarboxylic acid cycle (TCA) reactions, stress responses,
and chaperone activities. The abundance of these proteins in seed
mitochondria at the time of germination indicates that they are
indispensable for seed germination (Hao et al., 2019). Galland
performed a proteome study in the mitochondria of Arabidopsis
seeds within the first 0–24 h of germination (Galland et al., 2014).
Two hundred fifty-seven non-redundant proteins from 475
identified mitochondrial protein spots showed various responses
during seed germination. There were mitochondrial proteins
that were up- or down regulated or remained at a constant
level during the seed germination. The mitochondrial proteins
which were upregulated were glutamate dehydrogenase 1 or 3,
monodehydroascorbate reductase, glyceraldehyde-3-phosphate
dehydrogenase, succinate-semialdehyde dehydrogenase,
the beta subunit of ATP synthase, aconitate hydratase 3,
phosphoenolpyruvate carboxykinase, the beta subunit of
mitochondrial processing peptidase, Hsp 60, and translation
elongation EF-Tu. The proteins which remained at constant
levels from 0–24 h, including succinyl-CoA ligase alpha-chain,
the flavoprotein subunit of succinate dehydrogenase, and Hsp
70-2. A few newly synthesized proteins decreased in abundance
over the 24-h germination period, such as the alpha subunit of
ATP synthase and superoxide dismutase 2 (Czarna et al., 2016).
Some proteins that were not newly synthesized but decreased
over the germination period included the NADH-ubiquinone
oxidoreductase 75 kDa subunit, superoxide dismutase 1, and
late embryogenesis abundant proteins. The relative abundance
of specific proteins at different time points and selective mRNA
translation highlight those proteins that are important for the
process of seed germination (Rao et al., 2017).

HEAT SHOCK PROTEINS ARE THE
ULTIMATE DECISION-MAKERS IN SEED
GERMINATION

In addition to their established role in protection from heat,
heat shock proteins play a significant part in seed germination
and development (Kaur et al., 2016). Seed germination depends
on the surrounding temperature, which can delay or expedite
the process after sowing (Ding et al., 2020). The germination
efficiency of the cotton seed is related to warm temperatures
in a narrow window ranging from 20◦C to 36◦C (Zhang et al.,
2015; Ma W. et al., 2016). The functional characterization of
NnHSP17.5 gene in sacred lotus (Nelumbo nucifera Gaertn) has
revealed that heat shock proteins (HSPs) play an important role
in the seed germination and in the protection of the seeds against
heat stress (Zhou et al., 2012). NnHSP17.5 is a member of class
2 proteins which are localized in cytoplasm and nucleoplasm,
and specifically expressed in seeds development at later stages
under normal conditions and are strongly up regulated in the
germinating seeds upon heat and oxidative stresses (Scharf et al.,
2001). When the heat stress goes beyond 42◦C, the NnHSP17.5
expression gets instantly upregulated and in case if there is high
concentration of H2O2 causing the oxidative stresses then again
the NnHSP17.5 expressions in the germinating seed increases
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FIGURE 2 | Mitochondrial biogenesis during seed germination, based on the work of Law et al. (2012). Seeds were collected at ten time points: H (freshly harvested);
0 h (dry seeds after two weeks of desiccation); 1 h S, 12 h S, and 48 h S [three time points during seed stratification (S)]; and 1 h SL, 6 h SL, 12 h SL, 24 h SL, and
48 h SL [five time points during the exposure to continuous light after stratification (SL)]. The promitochondria in dry seeds do not have the cristae that are associated
with mature mitochondria. The transient expression of transcripts encoding proteins associated with DNA and RNA metabolism and nucleotide synthesis and import
occurs when the seed is shifted from stratification to continuous light. Afterward, there is transient expression of transcripts encoding proteins for protein metabolism
and import functions. During the next stage, after 24 h of continuous light, there is increased expression of genes encoding various metabolic components
associated with the Tricarboxylic acid (TCA) cycle and the electron transport chain. The progress of each minute event in this process is closely monitored by the
nucleus and mitochondrion through processes known as antegrade and retrograde regulation. TIM, the inner membrane; TOM, the outer membrane.

(Bailly et al., 2008). The role of small HSP17.4 as a regulator
of thermotolerance during the seed development has shown
in Arabidopsis thaliana seeds that the seeds which indicated
high tolerance against desiccation had high concentration of
sHSP17.4 during seed development in comparison to the mutants
which were producing low concentration of sHSP17.4. Moreover,
the study indicated that the seeds indicated low dormancy
when the concentration of HSP17.4 was high or equal to
the wild type in comparison to the mutant which expressed
reduced concentration of HSP 17.4 (1%–2% of wild type) or at
undetectable levels (Wehmeyer and Vierling, 2000).

Mitochondria I subfamily small heat shock proteins (msHSPs)
are significantly induced during seed germination, especially
GhHSP24.7 in cotton. There was a positive correlation (R = 0.99)
between GhHSP24.7 expression levels and the change in
temperature from 4◦C to 36◦C, underscoring the importance

of this HSP in seed germination. Likewise, GhHSP24.7
overexpression lines showed faster germination than those
in which GhHSP24 expression was suppressed (Ma et al., 2019).
This result confirmed that HSPs have a significant role in seed
germination (di Donato and Geisler, 2019). Heat shock proteins
regulate seed germination in response to temperature dynamics.
For example, GhHSP24.7 accelerates seed germination by 50%
when the temperature is increased from 20◦C to 36◦C (Ma
et al., 2019). However, the germination of various crop plants
begins to decline if temperatures increase above an optimum
range. The germination percentage of wheat decreased when the
temperature rose above 30◦C, and its germination percentage at
45◦C was only 12% (Essemine et al., 2010).

Heat shock proteins (HSPs) also play a key role in the
weakening of the testa so that the embryo can achieve its
growth potential (Wehmeyer and Vierling, 2000). Seeds from
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GhHSP24.7 suppression lines had higher puncture force of
endosperm (PFE) values than seeds with normal levels of
GhHSP24.7. High PFE indicates a strong penetration resistance
of the seed covering layers, and seeds in which GhHSP24.7 was
suppressed showed both high PFE and delayed germination.
ROS is a dominant factor in the transformation of the quiescent
seed to a metabolically active organism, and GhHSP24.7
improves seed germination by increasing ROS production. Ma
et al., observed that seeds with high levels of GhHSP24.7
expression underwent timely germination, whereas seeds with
low GhHSP24.7 expression produced less H2O2 and O2−,
which delayed germination (Ma et al., 2019). GhHSP24.7
also influenced the cellular structure of the seeds. Its high
expression in seeds indicated that the two layers of cells in the
endosperm were beginning to separate, marking the decay of cell
structure in the micropylar endosperm. The function of HSPs
is conserved in various plants such as tomato and Arabidopsis,
as demonstrated by the presence of functional orthologs
in the two genomes. Two Arabidopsis mitochondrial sHSPs
(AtHSP23.5 and AtHSP23.6) and two tomato mitochondrial
sHSPs (SlHSP23.8B and SlHSP21.5B) are reported to have
definite roles in seed germination (Ma et al., 2019).

In summary, seed dormancy and seed germination
respond to an interplay of endogenous and exogenous factors
(Liu and Hou, 2018).

CONCLUSION

Uniform seed germination is essential for maximizing crop
production. Seed germination is a very complex process

that requires the careful regulation of external and internal
biotic and abiotic interactions. The accurate and optimized
coordination of phytohormones, light, temperature, heat
shock proteins, ROS, and endosperm decay is required
to permit testa rupture and subsequent germination. Seed
germination therefore requires internal responsiveness to
external environmental cues.
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