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Salt stress affects the plant growth and productivity worldwide and NHX is one of those 
genes that are well known to improve salt tolerance in transgenic plants. It is well 
characterized in several plants, such as Arabidopsis thaliana and cotton; however, not 
much is known about NHXs in tea plant. In the present study, NHX genes of tea were 
obtained through a genome-wide search using A. thaliana as reference genome. Out of 
the 9 NHX genes in tea, 7 genes were localized in vacuole while the remaining 2 genes 
were localized in the endoplasmic reticulum (ER; CsNHX8) and plasma membrane (PM; 
CsNHX9), respectively. Furthermore, phylogenetic relationships along with structural 
analysis which includes gene structure, location, and protein-conserved motifs and 
domains were systematically examined and further, predictions were validated by the 
expression analysis. The dN/dS values show that the majority of tea NHX genes is 
subjected to strong purifying selection under the course of evolution. Also, functional 
interaction was carried out in Camellia sinensis based on the orthologous genes in  
A. thaliana. The expression profiles linked to various stress treatments revealed wide 
involvement of NHX genes from tea in response to various abiotic factors. This study 
provides the targets for further comprehensive identification, functional study, and also 
contributed for a better understanding of the NHX regulatory network in C. sinensis.

Keywords: salt tolerance, Arabidopsis, genome-wide search, expression profiles, Camellia sinensis, NHXs

BACKGROUND

Excessive use of inorganic fertilizers is making the land infertile and unavailable for agriculture 
due to over accumulation of salts in it (Kovda, 1983). Moreover, abiotic stresses, such as 
drought and heat stress, cause an additive effect and overall decrease the crop yield and quality 
(Zhu, 2001). Therefore, to keep up with growing demands of population, there is a pressing 
need to identify and characterize more salt tolerant genes from different plant species and 
use them for improvement of salt tolerance in crop plants.

Sodium chloride is one of major salts present in the soil and most of the salt tolerance 
mechanism focuses on the transport and compartmentalization of sodium ions. Na+ influx is 
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controlled by either sodium/hydrogen antiporter (NHX) family 
of cation/H+ transporters (Apse et  al., 1999) or nonselective 
cation channels (NSCCs), or high-affinity K+ transporters (HKTs; 
Waters et al., 2013). HKT can regulate the long-distance transport 
of Na+ (Rubio et  al., 1995) while Na+/H+ antiporter (NHX) 
is involved in the transport of Na+ ions from cytoplasm to 
vacuole or outside of the cell. To achieve this, it utilizes the 
H+ electrochemical gradient formed by two proton pumps, 
i.e., H+-ATPase and H+-PPase thereby avoiding the cell from 
the toxic effects of sodium ions (Apse et  al., 1999).

NHX proteins belong to the cation/proton antiporter 1 
(CPA1) superfamily and most of NHX proteins possess 10 
transmembrane helices (Yamaguchi et  al., 2003; Brett et  al., 
2005; Chanroj et  al., 2012; Wu et  al., 2019b). Localization of 
NHX proteins is mainly restricted to plasma membranes, 
vacuoles, and endosomes (Aharon et  al., 2003; Pehlivan et  al., 
2016). The first plant NHX gene was recognized in barley 
root tips (Ratner and Jacoby, 1976) followed by its identification 
and characterization in Arabidopsis thaliana (At; Roberto et al., 
1999), and a total of 8 NHX genes have been reported in 
A.  thaliana till date. Out of 8 NHXs in A. thaliana, 2 genes 
(AtNHX7 and AtNHX8) belong to PM-class (plasma membranes), 
2 genes (AtNHX5 and AtNHX6) belong to Endo-class 
(endosomes), and 4 genes (AtNHX1-4) belong to Vac-class 
(vacuoles). This classification is done on the basis of their 
subcellular localization (Shi et  al., 2000; Aharon et  al., 2003; 
Brett et al., 2005; Bassil et al., 2011b). Apart from the involvement 
of these genes in salt tolerance, NHX antiporters are involved 
in the regulation of wide variety of physiological processes, 
such as vesicle trafficking, pH regulation, K+ homeostasis, protein 
transport, and growth/development (Pardo et al., 2006; Rodriguez 
Rosales et  al., 2009; Bassil et  al., 2012; Reguera et  al., 2014).

Camellia sinensis is native to East Asia, the Indian Subcontinent, 
and Southeast Asia, but it is today cultivated across the world 
in tropical and subtropical regions. Tea plant (C. sinensis L.) is 
an important economic crop, leaves of which are an important 
source of non-alcoholic beverage. As a leaf-harvested crop, tea 
plant is unavoidably threatened with various adverse environment 
stresses throughout the whole life cycle, such as drought (Xie 
et  al., 2019), salt (Wan et  al., 2018), and cold (Li et  al., 2018) 
stresses, which critically hinders the development of the tea 

industry. With drastic environmental changes leading to a decline 
in the cultivated land area, like many other economic crops, 
tea planting fields are moving to salinity and drought-affected 
areas. In this study, we  performed a genome-wide analysis of 
NHX genes in C. sinensis including the phylogenetic relationships, 
a motif analysis, promoter analysis, gene expression pattern, and 
the gene structures. Through a systematic analysis of all the 
members of the NHX gene, we can understand the gene regulation, 
expression pattern, and eventually their biological functions  
in tea.

MATERIALS AND METHODS

Identification of NHX Genes of Tea Plant
The tea plant genome sequence was recovered from the 
Tea Plant Information Archive, TPIA (Xia et  al., 2019).1 
The NHX genes from A. thaliana and rice were retrieved 
from TAIR database (Berardini et al., 2015)2 and Rice Genome 
Annotation Project database (Kawahara et  al., 2013)3, 
respectively. These sequences were then used as a query 
sequences to scan the tea genome database using the BLASTp 
algorithm with an e-value of 1e-5 and an identity match 
of 50% as the threshold. To further confirm the presence 
of Na+/H+_Exchanger domain, the NHX genes were submitted 
to SMART (Letunic et  al., 2015)4 and Pfam web tool. 
ProtParam tool integrated in ExPASy database was used to 
predict the physicochemical properties of the NHX peptides 
(Gasteiger et  al., 2005).5 BaCello (Balanced subcellular 
localization predictor) online server was used to predict 
the subcellular localization of the protein sequences (Pierleoni 
et  al., 2006).6 Additionally, TMHMM server v2.07 was used 
to predict the transmembrane helices in NHX peptide 
sequences (Sonnhammer et  al., 1998).

Phylogenetic Analysis of NHX Genes
The NHX peptide sequences from C. sinensis (Cs), A. thaliana 
(At), Oryza sativa (Os), Solanum lycopersicum (Sl), Solanum 
tuberosum (St), Medicago truncatula (Mt), Populus trichocarpa 
(Pt), Gossypium hirsutum (Gh), Sorghum bicolor (Sb), Zea 
mays (Zm), and Glycine max (Gm) were aligned by using 
MUSCLE (Robert, 2004), with default parameters. The aligned 
sequences were then used to generate the phylogenetic tree 
using MEGA7.0.14 software (Kumar et  al., 2016). The tree 
was constructed using Neighbor-Joining (NJ) algorithm with 
default parameters. The reliability of the phylogenetic tree 
was analyzed by the bootstrap method and replicates were 
set to 1,000.

1 http://tpia.teaplant.org/
2 https://www.arabidopsis.org/
3 http://rice.plantbiology.msu.edu/
4 http://smart.embl-heidelberg.de/
5 https://expasy.org/
6 http://gpcr.biocomp.unibo.it/bacello/index.htm
7 http://www.cbs.dtu.dk/services/TMHMM/

Abbreviations: ABA, Abscisic acid; ABRE, ABA-responsive element; ARE, Anaerobic-
responsive element; CBL, Calcineurin B-like proteins; CDC2, Cell division cycle 
protein 2 CDS Coding sequences; CIPK, CBL-interacting protein kinases; CMP, 
Calcium-binding protein; CYB5R1, NADH-cytochrome b5 reductase 1; DER, 
Drought-responsive element; ERE, Ethylene-responsive element; GSDS, Gene 
structure display serve; GSK3, Glycogen synthase kinase 3; HKT, High-affinity 
K+ transporter; IAA, Indole Acetic Acid; LTR, Low-temperature responsiveness; 
ORF, Open reading frame; pI, Isoelectric point; PM, Plasma membrane; PPI, 
Protein–protein interaction; SA, Salicylic acid; SOS1, Salt overly sensitive 1; 3-D, 
Three-dimension; TM, Transmembrane helical domain; VP, Vacuolar H+-PPase; 
MEME, Multiple expectation maximization for motif elicitation; MW, Molecular 
weight; NHX, Na+/H+ antiporter; ROS, Reactive-oxygen species; TPIA, Tea Plant 
Information Archive; CS/Cs, Camellia sinensis; TAIR, The Arabidopsis Information 
Resource; HMM, Hidden Markov Model; dN, non-synonymous substitution; dS, 
Synonymous substitution; NJ, Neighbor Joining; AT/At, Arabidopsis thaliana; CK, 
Non acclimated; CA1, Fully acclimated; CA3, De-acclimated; TPM, Transcripts 
per million; UTR, Untranslated Region.
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Conserved Motif and Gene Structure 
Analysis
In order to identify the conserved motifs, the MEME (Bailey 
et al., 2009)8 suite was used with default parameters. The intron/
exon distribution pattern of NHX genes was obtained and 
then analyzed using the gene structure display server V2.0 
(Hu et  al., 2015).9

Analysis of Cis-Regulatory Elements
The promoter sequences of 2,000 bp of the tea NHX genes 
were retrieved from the TPIA database to analyze the cis-acting 
regulatory elements (CAREs). The PlantCARE program10 
(Rombauts et  al., 1999; Lescot et  al., 2002) was used for 
identifying and analyzing the CAREs.

Genomic Distribution of NHX Genes and 
Ka/Ks Ratios
Due to the incomplete genome assembly information available 
in the TPIA database, the NHX genes were mapped into their 
corresponding scaffolds. MapGene2chromosome web v2 (MG2C) 
server (Jiangtao et  al., 2015)11 was used to map the genes into 
their scaffolds based on their positional information in the 
TPIA database, which includes scaffold length, number, gene 
ID, starting and ending position of the genes, and scaffold 
ID. Further, the dN (Ka) and dS (Ks) ratios were evaluated 
using the SNAP v.2.1.1 online tool (Korber, 2000)12 to assess 
the synonymous and non-synonymous groups. The dS values 
represent the time of divergence of duplication events and the 
dN/dS values represent the selective pressure of duplicate genes.

GO Ontology Annotation and Functional 
Interaction Network
QuickGO13 was used to perform GO Ontology (GO) analysis 
for all the 9 tea NHX genes. Furthermore, the network of 
functionally interacting homologous genes between tea and 
A. thaliana was identified and constructed using STRING online 
tool (Szklarczyk et  al., 2019)14 with default parameters.

Expression Profile of Tea NHXs
The tissue-specific expression profiles in 8 plant tissues, which 
include expression levels in apical bud, flower, fruit, young 
leaf, mature leaf, old leaf, root, and stem, were retrieved from 
TPIA database and analyzed (Xia et  al., 2019). Furthermore, 
gene expression data under cold, drought, and salt stresses 
were analyzed to understand the potential role of tea NHXs 
in response to the abiotic stress factors. Additionally, to check 
the effects of methyl-jasmonate (MeJA) treatment, its expression 
data were retrieved from TPIA database and analyzed for the 

8 http://meme-suite.org/
9 http://gsds.cbi.pku.edu.cn/
10 http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
11 http://mg2c.iask.in/mg2c_v2.0/
12 https://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html
13 https://www.ebi.ac.uk/
14 https://string-db.org/

9 tea NHXs. Respective graphs for the gene expression for all 
the tea NHX genes were generated. Heat maps for the same 
were generated using heatmapper online server (Babicki et  al., 
2016; Heatmapper).

RESULTS

Genome-Wide Identification of NHX Genes 
in C. sinensis
In order to retrieve the members of the NHX gene family in 
tea, the published NHX protein sequences of A. thaliana (8) 
and rice (7) were retrieved from TAIR database (see footnote 2) 
and Rice Genome Annotation Project database (see footnote 3), 
respectively. These peptide sequences were then used as queries 
to search against the genome database of tea, Tea Plant 
Information Archive (TPIA; see footnote 1) by making use of 
the BLASTp algorithm with e-value and identity percentages 
set to 1e-5 and 50% as threshold, respectively (Supplementary  
Table S1). The tea NHX peptide sequences identified were 
further screened using the Hidden Markov Model (PF00999) 
to confirm the presence of the Na+/H+ _Exchanger domain. 
Based on the results, 9 putative tea NHX genes were incorporated 
into the final dataset.

The physicochemical properties of the identified tea NHX 
protein sequences were evaluated and analyzed by the ExPASy 
ProtParam tool (Table 1). The length of the NHX peptide sequences 
ranged from 201 (CsNHX8) to 1,204 (CsNHX3) amino acid 
residues while the molecular weights varied from 21764.56 
(CsNHX8) to 134630.87 (CsNHX3) kDa. The predicted isoelectric 
points (pI) values ranged from 5.82 (CsNHX4) to 8.79 (CsNHX2). 
5 out of the 9 NHX peptide sequences had more positive residues 
than negative ones, 3 had more of negative residues and remaining 
one (CsNHX9) had equal number of positive and negative residues. 
All the 9 NHX peptide sequences had positive grand average of 
hydropathy (GRAVY index) values, ranging from 0.209 (CsNHX3) 
to 0.695 (CsNHX8). This indicated that all the 9 NHX peptides 
identified are hydrophobic in nature. The instability index scores 
revealed that 2 out of 9 NHX peptides (CsNHX2 and CsNHX9) 
were above 40 while the rest 7 had scores below the given level, 
indicating that most of the screened peptides had a stable nature 
(Wang et  al., 2018). The aliphatic index of the peptides ranged 
from 102.02 (CsNHX9) to 114.38 (CsNHX8). The subcellular 
localization revealed that most of the NHX genes in tea were 
localized in vacuole (7 out of 9), while the remaining 2 genes 
were localized in the endoplasmic reticulum (ER; CsNHX8) and 
plasma membrane (PM; CsNHX9), respectively. Additionally, the 
presence of transmembrane helices was also analyzed and it 
revealed that all the NHX peptides had a considerable number 
of transmembrane helices, ranging from a minimum of 6  in 
CsNHX8 to a maximum of 12  in CsNHX9 (Supplementary  
Figure S1).

Phylogenetic Analysis of Tea NHXs
To explore the evolutionary relationships of the NHX genes 
among the different plant species, a phylogenetic analysis was 
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conducted comparing the identified tea NHX genes along with 
NHXs from 10 other plants. For this study, we  retrieved the 
NHX peptide sequences from A. thaliana (At), O. sativa (Os), 
S. lycopersicum (Sl), S. tuberosum (St), M. truncatula (Mt), 
P.  trichocarpa (Pt), G. hirsutum (Gh), S. bicolor (Sb), Z. mays 
(Zm), and G. max (Gm) from their respective genome databases. 
The NHX peptide sequences from A. thaliana were used as 
query sequences to search for the NHX genes in all these 
plants. The sizes of all the NHX gene family from the 11 
members ranged from a minimum of 5  in S. tuberosum to a 
maximum of 23  in G. hirsutum (Table  2).

The phylogenetic tree was then constructed using all the 
100 NHX peptide sequences from the 11 species. MEGA 
7.0.14 was used to generate the phylogenetic trees, using 
the Neighbor-Joining (NJ) algorithm, at default parameters 
and 1,000 bootstrap replicates. The phylogenetic tree shows 
a direct relation with the subcellular localization as all the 
NHX peptides clustered into 3 different clades based on 
their localizations (Figure  1). The 3 different clades were 
the Vac-class (Vacuole), Endo-class (Endosomal), and PM-class 
(Plasma membrane). Among these 3 classes, the Vac-class 
was the most abundantly present class of NHXs in all the 
11 species with 71 genes, followed by the Endo-class and 
PM-class with 18 and 11 genes, respectively.

Motif Composition of Tea NHXs
To evaluate the structural characteristics and diversity of the 
tea NHXs, a correlative study of the conserved motifs from 
the NHX peptides of A. thaliana, C. sinensis, and O. sativa 
was conducted using the MEME suite (Figure  2). 15 motifs 
were identified from 24 NHXs used out of which 2 (Motif 8 
and Motif 14) were conserved across all the genes. Motif 1, 
5, and 11 were each present in 18 NHXs. These 3 motifs 
existed only in the Vac- and Endo-classes. The amiloride-binding 
site (FFIYLLPPI) is a characteristic feature of NHX proteins. 
It was detected in Motif 3 and was found in 16 NHXs, existing 
only in the Vac- and Endo-classes. Motif 2, 4, 6, 10, and 12 
existed only in the Vac-class and was present in 15, 15, 10, 
14, and 12 NHXs, respectively. Motif 13 and 15 were present 
in 8 and 7 NHXs correspondingly. These 2 motifs existed only 
in the PM- and Endo-classes. The remaining motif 7 and 9 
were present in all the classes and were harbored by 22 and 
21 NHXs correspondingly. Additionally, the motif logos of all 
the 15 motifs were also obtained and are presented in the 
supplemental information (Supplementary Figure S2). The 
NHXs present in the same class had similar conserved motifs 
except Endo-class, which showed partial conservancy. These 
results provided noteworthy evidence that the NHX genes were 
highly conserved.

Gene Structure Analysis of Tea NHXs
To identify the structural characteristics of the tea NHXs, the 
intron/exon architecture of the genes were analyzed using Gene 
Structure Display Server v2.0. Study of the intron/exon patterns 
revealed some significant differences concerning the number of 
introns and exons, which further contributes to the variation in TA
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gene lengths. Abundant presence of non-coding sequences within 
a genome is regarded to be  an indicator of genome complexity 
(Taft et  al., 2007; Goyal et  al., 2018; Chatterjee et  al., 2020). 
Analyzing these intron arrangements thereby provides significant 
information regarding the evolution, regulation, and function of 
the NHXs (Deutsch and Long, 1999; Fedorova and Fedorov, 2003; 
Zhang et  al., 2014; Liu et  al., 2015). The analysis of the tea NHX 
gene structures indicated considerable differences with respect to 
the number of introns and exons across the 3 classes (Figure 3A). 
Among the 9 tea NHXs, only CsNHX1 (TEA012938.1) possessed 
UTR (Untranslated Regions) segments at both 5′ and 3′ ends. 5 
out the 7 Vac-class NHXs had 14 exons and 13 introns. CsNHX3 
(TEA021179.1) possessed 19 exons and 18 introns while CsNHX7 
(TEA023041.1) had 13 exons and 12 introns, respectively. The 
Endo-class NHX CsNHX8 (TEA011468.1) had the least share of 
IEs (Introns-exons) among the 3 classes with only 6 exons and 
5 intron segments. However, the PM-class NHX CsNHX9 
(TEA006997.1) had the most share of IEs with 25 exons and 24 
introns. It was observed that the genes belonging to the same 
clade had a similar distribution of introns and exons. The intron 
segments and exon lengths were relatively conserved among the 
genes of the same class. Additionally, analyzing the amino acid 
sequence identity also supported the sequence conservation among 
the tea NHXs (Figure  3B). Two paralogous pairs of NHX in 
Vac-class displayed high amino acid sequence identities 
(TEA012286.1/TEA012938.1 = 86.14% and TEA012245.1/TEA000 
661.1 = 79.05%). On the flip side, tea NHXs in different classes 
displayed lower levels of sequence identities (TEA012245.1/
TEA006997.1 = 21.98%; TEA012245.1/TEA011468.1 = 31.22%; and 
TEA011468.1/TEA006997.1 = 22.63%).

Retrieval of Tea NHX Promoter Regions 
and Analysis of CAREs
Cis-acting regulatory elements (CAREs) play a key role in 
determining gene regulation, function, transcription, and gene 
expression (Wu et  al., 2019a; Liu et  al., 2021). Analysis of 
these regulatory elements helps in defining the plant responses 
to various environmental stimuli, stress factors, thereby affecting 
the growth regulation (Akram et  al., 2020). To explore the 
transcriptional potential of the tea NHX genes, the promoter 
sequences of 2,000 bp upstream of the transcriptional start 
codon “ATG” were retrieved from the TPIA database. These 
promoter sequences were then used to predict and analyze 
the CAREs using the PlantCARE database. 41 total CAREs 
were identified randomly distributed across the promoter 

regions of the 9 tea NHXs (Supplementary Table S2). Based 
on the specific biological functions of the identified CAREs, 
they were grouped together into a pie chart under 20 different 
sections (Figure 4A). Most of the CAREs had sequence lengths 
of 6 and 9 bp, while the others ranged between 5 to 13 bp 
(Figure  4B). Analyzing the 41 CAREs, it was observed that 
18 elements were involved in light responsiveness, 9 elements 
in phyto-hormonal as well as plant growth and regulation 
each, and 5 elements in stress response. The light responsive 
elements had the largest share of CAREs and were present 
in all the 9 tea NHXs. Among these 18 light responsive 
elements, the Box-4 and G-box elements were abundantly 
present in 8 and 6 NHXs, respectively. Few of the other light 
responsive elements were TCCC-motif, AE-box, AT1-motif, 
Box-II, TCT-motif, chs-CMA1a, and chs-CMA2a in 4, 2, 2, 
1, 1, 3, and 3 tea NHXs, respectively. NHXs are mostly involved 
in response to various environmental stresses and regulation 
(Akram et  al., 2020). The stress responsiveness elements 
comprised of elements responding to drought stress (MBS), 
low temperature (LTR), defense and stress (TC-rich repeats), 
and anaerobic induction (ARE) in 1, 2, 3, and 7 tea NHXs 
correspondingly. Another element was involved in maximal 
elicitor mediated activation (AT-rich sequences) was harbored 
by 1 tea NHX (TEA023041.1). The CAREs involved in 
phytohormone responses mainly comprised of abscisic acid 
responsive element (ABRE), gibberellin responsive elements 
(GARE-motif, TATC-box, and P-box), and salicylic acid 
responsive element (TCA-element) in 6, 5, and 5 genes, 
respectively. Other phytohormone response elements included 
elements responsive to MeJA (CGTCA-motif and TGACG-
motif) in 4 genes and auxin (TGA-element and AuxRR-core) 
in 2 genes. The elements associated with plant growth and 
development mainly comprised of MYBvH1-binding site 
(CCAAT-box), zein metabolism regulatory element (O2-site), 
endosperm expression element (GCN4_motif), and palisade 
mesophyll differentiation element (HD-Zip  1) in 5, 4, 3, and 
3 tea NHXs, respectively. A regulatory element (A-box) was 
present in CsNHX1 (TEA012938.1) and CsNHX9 (TEA006997.1), 
while AT-rich DNA-binding site (ATCT-motif) was present 
in CsNHX8 (TEA011468.1) and CsNHX9 (TEA006997.1). Some 
of the other growth-related CAREs included elements involved 
in meristem expression (CAT-box) and circadian control, both 
present in CsNHX5 (TEA000661.1) and cell cycle regulation 
(MSA-like) in CsNHX8. The results obtained from the analysis 
of these CAREs suggests the involvement of the tea NHXs 
in various phytohormone, light, and stress responses.

TABLE 2 | NHX gene family members from A. thaliana (At), C. sinensis (Cs), O. sativa (Os), S. lycopersicum (Sl), S. tuberosum (St), M. truncatula (Mt), P. trichocarpa 
(Pt), G. hirsutum (Gh), S. bicolor (Sb), Z. mays (Zm), and G. max (Gm).

Class\
Plants

At Cs Os Sl St Mt Pt Gh Sb Zm Gm

Vac 4 7 4 7 5 6 5 17 4 4 8
Endo 2 1 2 0 0 1 1 4 2 2 3
PM 2 1 1 0 0 0 2 2 1 1 1
Total 8 9 7 7 5 7 8 23 7 7 12

The gene family has been grouped into 3 different subfamilies based on their subcellular localizations.
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Genomic Distribution Map and 
Evolutionary Pressures on Tea NHXs
In an attempt to understand the genome distribution pattern of 
the tea NHXs, the genes were mapped into their genomic scaffolds. 
Due to the lack of chromosome-level assembly data in the TPIA 
database, the genes had to be  mapped into their scaffolds instead 
of the chromosomes. The 9 tea NHXs were distributed evenly 
across 9 different scaffolds (Figure  5). The genes were positioned 
such that a single scaffold housed individual genes. Additionally, 
the Ka/Ks or dN/dS (non-synonymous substitution rate/synonymous 
substitution rate) ratios were calculated in order to understand 
the evolutionary pressures and gene divergence mechanisms 
(Supplementary Table S3). The dN/dS ratio helps determine 
whether Darwinian selection pressures were involved in the 
duplication events (Tian et  al., 2017; Chatterjee et  al., 2020). If 
the value of the dN/dS ratio is >1, it implies a positive or Darwinian 
selection. If the ratio is equal to 1, it implies a neutral selection 

and if the ratio is <1, it determines a purifying selection (Bowers 
et  al., 2003; Liu et  al., 2014). Pairwise comparisons of the 9 tea 
NHXs revealed 13 gene pairs having their dN/dS ratios >1, 
indicating a positive selection. The rest 23 gene pairs had their 
ratios <1, indicating a negative or purifying selection. Additionally, 
a cumulative graph of the tea NHXs was also generated 
(Supplementary Figure S3). The results from the gene distribution 
pattern and dN/dS ratios showed that the NHXs were extensively 
distributed across the C. sinensis genome. Tandem duplication 
events were however absent across the tea NHXs. The dN/dS 
ratios are conclusive proof that strong purifying selection pressures 
had occurred during the evolution thereby enabling a number 
of different factors to regulate the NHXs in tea genome.

GO Ontology Analysis of Tea NHXs
In order to predict the functions of the 9 tea NHXs, GO 
ontology analysis was done. It was observed that tea NHXs 

FIGURE 1 | Phylogenetic tree of NHX genes from Arabidopsis thaliana, Camellia sinensis, Oryza sativa, Solanum lycopersicum, Solanum tuberosum, Medicago 
truncatula, Populus trichocarpa, Gossypium hirsutum, Sorghum bicolor, Zea mays, and Glycine max. The full-length NHX protein sequences were aligned using 
MUSCLE, and the phylogenetic tree was constructed using MEGA 7.0.14 by the Neighbor-Joining (NJ) method with default parameters and 1,000 bootstrap 
replicates. The tree is divided into three major classes of NHX genes, consisting of the Vac-, Endo-, and PM-classes.
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were enriched in 24 GO terms (Supplementary Table S4). 
The 9 NHX genes were divided into 3 major groups, which 
included biological process, cellular component, and molecular 
function. The first group featured 13 different GO terms with 
“proton transmembrane transport” (GO:1902600; 6 sequences; 
66.67%) having the highest representation (Figure  6). It was 
followed by “Na+ transmembrane transport” (GO:0035725; 5 
sequences; 55.56%), “K+ homeostasis” (GO:0055075; 5 sequences; 
55.56%), “regulation of pH” (GO:0006885; 5 sequences; 55.56%), 
and “response to salt” (GO:0009651; 5 sequences; 55.56%). 
Few of the other GO terms included “monovalent inorganic 
cation homeostasis” (GO:0055067), “metal ion transport” 
(GO:0030001), and “RNA splicing” (GO:0008380). The first 
group was followed by the cellular component group that 
featured 6 different GO terms. Among these 6, “integral 
component of membrane” (GO:0016021; 6 sequences; 66.67%) 
was featured the most and was closely followed by “vacuolar 
membrane” (GO:0005774; 5 sequences; 55.56%) and “plasma 
membrane” (GO:0005886; 5 sequences; 55.56%). The rest was 

“intrinsic component of membrane” (GO:0031224; 3 sequences; 
33.33%), “plastid” (GO:0009536; 1 sequence; 11.11%), and 
“mitochondria” (GO:0005739; 1 sequence; 11.11%). The remaining 
5 of the 24 identified GO terms were featured in the molecular 
function group. Among these 5, “Na:proton antiporter activity” 
(GO:0015386; 5 sequences; 55.56%) was represented the most. 
It was followed by “monovalent cation:proton antiporter activity” 
(GO:0005451; 3 sequences; 33.33%), “solute:proton antiporter 
activity” (GO:0015299; 2 sequences; 22.22%), “double stranded 
DNA binding” (GO:0003690; 1 sequence; 11.11%), and “antiporter 
activity” (GO:0015297; 1 sequence; 11.11%).

Functional Interaction Network of Tea NHX 
Proteins
To understand and explore the interaction pattern of NHX 
genes in tea, a protein interaction network was constructed 
using the STRING server based on an Arabidopsis association 
model (Figure  7). The Arabidopsis model had to be  employed 

FIGURE 2 | The motif analysis of NHX genes in A. thaliana, C. sinensis, and O. sativa. The motif figures were generated by MEME suite. A total of 15 motifs were 
identified and are marked individually.
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due to the absence of tea database in the STRING server. 
NHXs are largely involved in a variety of biological processes 
of which response to salt stress is one of the prominent ones 
(Tian et  al., 2017). The interaction network was therefore 
constructed based on 5 tea NHXs (CsNHX1, CsNHX2, CsNHX3, 
CsNHX4, and CsNHX5), involved in response to salt stress 
according to GO ontology. The A. thaliana homolog for these 
5 tea NHXs, AtNHX2 (AT3G05030), was used as the central 
node to build the full network. The tea proteins, homologs 
to the Arabidopsis proteins participating in the network, were 
also added. These homologous proteins were designated as 
STRING proteins and were selected based on high bit scores 
in BLAST results (Chatterjee et  al., 2020). Similarity search 
program, such as BLAST, is frequently used to produce accurate 
statistical estimates that help ensuring protein sequences with 
significant similarity to have similar structures (Pearson, 2013). 
In addition, proteins sharing higher degree of sequence and 
structural similarities often tend to have similar functions as 
well (Gan et  al., 2002). AtNHX2 (AT3G05030) is involved in 
active K+ uptake at the tonoplast and involved in regulating 

stomatal closure (Berardini et al., 2015). AtNHX1 (AT5G27150) 
encodes a vacuolar sodium-proton antiporter involved in salt 
tolerance, ion homeostasis, and leaf development. Two of the 
tea NHXs (CsNHX1 and CsNHX2) which are homologous to 
AtNHX1 are massively involved in response to salt stress. AVP1 
(AT1G15690) is involved in regulation of apoplastic pH and 
auxin transport (Berardini et  al., 2015). CLC-C (AT5G49890) 
is a chloride channel protein and is involved in the Cl− 
transmembrane transporter activity. CLC-F (AT1G55620) is 
another chloride channel protein, localized in chloroplast and 
Golgi apparatus, and is involved in voltage-gated Cl− channel 
activity (Berardini et  al., 2015). HKT1 (AT4G10310) encodes 
for a sodium transporter expressed in xylem parenchyma cells 
and is involved in response to osmotic stress and salt stress. 
SOS2 (AT5G35410) encodes a member of the CBL-interacting 
protein kinase family and is a regulatory component controlling 
plant K+ nutrition (Berardini et al., 2015). TEA006066.1, which 
is homologous to SOS2, also shows response to nutrient and 
water deprivation according to GO ontology. SOS3 (AT5G24270) 
encodes for a calcium sensor that is essential for K+ nutrition, 

A

B

FIGURE 3 | The intron/exon architecture and pairwise sequence identity among NHX proteins of A. thaliana and C. sinensis. (A) Gene structure maps were drawn 
using the Gene Structure Display Server 2.0. Black boxes represent exons, blue boxes represent the UTRs, and black lines represent introns. The gene length can 
be estimated by using the scale (in kb) given at the bottom. (B) The full-length protein sequences were aligned using MUSCLE tool (https://www.ebi.ac.uk/Tools/
msa/muscle/) with default settings. The table has been marked based on a gradient with lighter shades representing minimum percentage identity and darker 
shades representing maximum identity between the sequences.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://www.ebi.ac.uk/Tools/msa/muscle/
https://www.ebi.ac.uk/Tools/msa/muscle/


Paul et al. NHX Gene Family in Camellia sinensis

Frontiers in Plant Science | www.frontiersin.org 9 December 2021 | Volume 12 | Article 777884

K+/Na+ selectivity, and salt tolerance. CHX18 (AT5G41610), 
CHX17 (AT4G23700), and CHX15 (AT2G13620) are all involved 
in regulation of pH and are members of the putative Na+/H+ 
antiporter family (Berardini et  al., 2015).

Tissue-Specific Gene Expression of Tea 
NHXs
The tissue-specific expression levels of the 9 tea NHXs in 8 
different tissues were retrieved from the TPIA database wherein 
the levels of expressions were evaluated in transcripts per 
million (TPM). The database has the expression profile data 

of all the C. sinensis genes, which have been experimentally 
validated (Wei et  al., 2018). The plant tissues that have been 
assessed in the study involved apical bud, flower, fruit, young 
leaf, mature leaf, old leaf, root, and stem 
(Supplementary Table S5). All the 9 tea NHXs exhibited 
varying levels of expression in these 8 different tissues. Few 
of the genes had high levels of expression while the rest had 
negligible transcript levels (Figure 8). CsNHX1 (TEA012938.1) 
was expressed the most in apical bud, closely followed by 
CsNHX5 (TEA000661.1). This similar pattern was observed 
when the expression levels were checked in flower, young leaf, 
root, and stem. The highest expression level was recorded by 

A

B

FIGURE 4 | Analysis of cis-acting elements identified from the NHX genes of C. sinensis. All cis-acting elements have been identified using PlantCARE database. 
(A) Pie chart showing the frequency of different cis-acting elements based on their specific biological activities. (B) Histogram showing the frequency of different 
sequence lengths of the cis-acting elements.
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CsNHX1 in fruit, followed by CsNHX2 (TEA012286.1) and 
CsNHX5 (TEA000661.1). In mature leaf and old leaf, CsNHX2 
was expressed the most, followed by CsNHX1 and CsNHX5. 

These results suggested that 3 out of the 9 tea NHXs (CsNHX1, 
CsNHX2, and CsNHX5) were significantly expressed in all the 
8 tissues. The rest of the 6 NHXs were minimally expressed 

FIGURE 5 | The scaffold distribution 9 NHX genes in C. sinensis. MapGene2chromosome web v2 (MG2C) software tool (http://mg2c.iask.in/mg2c_v2.1/) was 
used to map genes into their respective scaffolds. The scaffolds are drawn to scale and the scaffold numbers are indicated on the top.

FIGURE 6 | GO analysis of all the 9 NHX genes in C. sinensis. The results have been grouped into three main categories: Biological Process, Cellular Component, 
and Molecular function. The y-axis represents the frequency of genes while the x-axis represents the potential functions.
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in these 8 tissues with CsNHX7 (TEA023041.1) and CsNHX4 
(TEA012245.1) being the least.

Expression Profiles of Tea NHXs Under 
Cold and Drought Stress
In order to check how the 9 tea NHXs respond to varying 
levels of cold and drought stress, their expression data were 
retrieved from the TPIA database. The TPIA database has 
experimentally verified expression data for all the C. sinensis 
genes under cold (Wang et al., 2013) and drought stress (Zhang 
et  al., 2017). The cold acclimated data comprised of 5 stages 
of expression: (1) 25~20°C (CK), (2) Fully acclimated at 10°C 
for 6 h (CA1-6 h), (3) 10~4°C for 7 days (CA1-7 d), (4) Cold 
response at 4~0°C for 7 days (CA2-7 d), and (5) Recovering 
under 25~20°C for 7 days (DA-7 d; Xia et  al., 2019), where 

CK is the control (Supplementary Table S6). Expression levels 
for CA1-6 h showed that 7 out of 9 tea NHXs were upregulated 
while the rest 2 were downregulated. Out of these 7 upregulated 
genes, CsNHX1 (TEA012938.1), CsNHX5 (TEA000661.1), and 
CsNHX2 (TEA012286.1) were upregulated the most. When 
the cold stress was increased to the next stage (CA1-7 d), 
again 7 genes showed upregulation with CsNHX2, CsNHX1, 
and CsNHX5 being the highest. CsNHX9 (TEA006997.1), which 
was initially upregulated in the first condition, was downregulated 
in this present condition. Further increasing the cold stress 
levels at CA2-7 d, expression data revealed 5 NHXs being 
upregulated. CsNHX6 (TEA025916.1) was slightly upregulated 
at CA1-7 d but was downregulated at CA2-7 d. CsNHX2 was 
also upregulated for the previous two levels of cold stress, but 
at CA2-7 d, it was downregulated. CsNHX5 was expressed the 
most followed by TEA12938.1. Expression levels under the 

FIGURE 7 | Functional interaction networks of NHX proteins in C. sinensis. The interaction network was formed according to homologs in  
A. thaliana.
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recovery phase (DA-7 d) showed that only 3 NHXs were 
upregulated (Figure  9). Throughout the cold stress conditions, 
2 genes namely, CsNHX1 and CsNHX5 consistently maintained 

high levels of expression, followed by CsNHX2 and CsNHX3. 
These results indicated the active participation of these 4 tea 
NHX genes in response to cold stress. The expression levels 

A

B

FIGURE 8 | Tissue-specific expression patterns of NHX genes in C. sinensis in 8 different plant tissues. (A) The relative expression of Tea NHX genes represented 
graphically by analyzing the transcriptome data. (B) Relative expression represented as a heatmap, generated using heatmapper online server. The color bar on the 
top represents the normalized transcript per million (TPM) values. Green and red colors represent the up- and downregulation values while black represents no 
expression.
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were further checked under drought stress. The expression 
data in the TPIA database with respect to 25% polyethylene 
glycol (PEG) treatment include four stages: (1) 0 h, (2) 24 h, 
(3) 48 h, and (4) 72 h (Zhang et  al., 2017), where 0 h was 
taken as the control (Supplementary Table S7). Under the 
first drought stress period of 24 h, 5 of the 9 tea NHXs were 
upregulated with CsNHX1 being expressed the most. The same 
set of genes was upregulated when the drought stress condition 
was extended to a period of 48 h and then for 72 h (Figure 10). 
These 5 genes showed upregulated levels of expression throughout 
the experimental conditions and thereby suggest their roles 
in response to drought stress.

Expression Profiles of Tea NHXs Under 
Salt Stress
The primary role of the NHX genes is response to salt stress 
(Tian et  al., 2017). To understand the potential role of the 9 
tea NHXs in response to high levels of salinity, the expression 
data were analyzed. The salt stress data in TPIA database are 
recorded based on treatment with 200 mm NaCl under 4 stages: 
(1) 0 h, (2) 24 h, (3) 48 h, and (4) 72 h (Zhang et  al., 2017) 
where 0 h was taken as the control (Supplementary Table S8). 
Expression data under the 24 h salt stress condition revealed 
3 genes being upregulated. Among these 3 tea NHXs, CsNHX1 
(TEA012938.1) was expressed the most. A similar pattern was 
observed when the salt stress conditions were extended for 
periods of 48 h and 72 h (Figure  11). CsNHX7 (TEA023041.1) 
and CsNHX8 (TEA011468.1) were upregulated to a fair extent 
while CsNHX1 maintained very high levels of expression 
throughout the experimental condition, with increasing transcript 
levels at each stage. GO ontology data too suggested the 
involvement of CsNHX1 in response to salt stress. These results 
clearly indicate the active role of these tea NHXs in response 
to prolonged levels of salt stress.

Response of Tea NHXs to MeJA Treatment
The analysis of the cis-acting elements in the promoter regions 
of the 9 tea NHXs had revealed the presence of 2 MeJA 
responsive elements (CGTCA-motif and TGACG-motif; 
Supplementary Table S2). To further understand the effect 
of MeJA on the 9 tea NHXs, their expression data were retrieved 
from the TPIA database and analyzed. This data is recorded 
based on the results of exposing the plant parts to aqueous 
solution of MeJA, under 4 stages: (1) 0 h, (2) 12 h, (3) 24 h, 
and (4) 48 h (Shi et  al., 2015) where, 0 h was used as the 
control (Supplementary Table S9). 7 out of 9 tea NHXs showed 
upregulation in expression levels when exposed to the MeJA 
treatment for a period of 12 h. Extending the duration of the 
experiment to 24 h showed a few minor changes in the genes 
showing upregulation. CsNHX2 (TEA012286.1), which was 
showing upregulation initially, now was slightly downregulated. 
On the other hand, CsNHX6 (TEA025916.1) was downregulated 
in the initial phase but showed upregulated levels of expression 
in the present condition. 7 genes were upregulated in total at 
24 h of MeJA treatment. Further extending the experiment to 
48 h revealed that 5 genes were upregulated while the rest 4 

were downregulated (Figure  12). CsNHX1 (TEA012938.1) and 
CsNHX5 (TEA000661.1) consistently maintained high levels 
of expression throughout the 48 h of the exposure to MeJA. 
These results suggested that the transcription levels of the tea 
NHXs might have a close relation to the regulation of MeJA.

DISCUSSION

NHX gene families have already been identified and functionally 
characterized for several plants, including A. thaliana, rice, 
wheat, sweet beet, cotton, and other (Kumari et  al., 2018; 
Yarra, 2019; Wu et  al., 2019b; Fu et  al., 2020; Khare et  al., 
2021). However, the NHX genes in C. sinensis have not been 
studied yet. In this study, the gene structure, phylogenetic 
relationship, genomic distribution, and expression of NHX 
genes in C. sinensis were all analyzed at the genomic level. 
A diverse no. of NHX genes have been identified in various 
plant species. Gene duplication and loss specific to different 
subfamilies of NHX over the course of evolution could explain 
these differences in the number of NHX genes in plants. A 
total of 9 NHX genes have been identified in C. sinensis based 
on the Na+/H+ exchanger domain (Table  1).

In-silico studies based on subcellular localizations showed 
that NHXs are grouped into three classes (Vac-, Endo-, and 
PM-class). In A. thaliana, both NHX7 and NHX8 are localized 
in the plasma membrane (Shi et  al., 2002), whereas in tea, 
CsNHX9 (TEA006997.1) localized in the plasma membrane, 
CsNHX8 (TEA011468.1) is localized in endosome, and the 
others in the vacuole (Table 1). Members in each of the classes 
from algae to higher plants showed that the NHX families 
were fairly similar, indicating that NHXs had conserved functions 
throughout the evolutionary process (Chanroj et  al., 2012). 
The function of NHX transporters may be  influenced by their 
subcellular localization. Members of the NHX family, which 
are found on both the plasma membrane and tonoplast, help 
to maintain ionic homeostasis by excluding and 
compartmentalizing excess Na+. Furthermore, endomembrane-
bound NHX members have been discovered to be  important 
for cellular cargo trafficking, growth development, and protein 
processing regulation (Bassil et  al., 2011a,b). The exon/intron 
structural diversity, which plays an important role in the 
evolution of gene families, brings to the evidence for phylogenetic 
groupings. In C. sinensis, CsNHX3 (TEA021179.1) possesses a 
greater number of introns (18) and exons (19) while CsNHX1 
(TEA012938.1) has lesser number of introns (12) and exons 
(18) than the rest of the 5 genes present in Vac-class. However, 
in P. trichocarpa, Vac-class NHXs (PtNHX1-5) contain 14 exons 
and the Endo-class NHX (PtNHX6) has 22 exons, while the 
PM-class NHXs (PtNHX7 and PtNHX8) displays 23 exons 
(Tian et  al., 2017). Similarly, for NHX genes in G. max (Gm), 
seven members of GmNHX contain 14–15 exons, whereas the 
rest three members have 20 exons (Chen et  al., 2015). These 
findings suggested that NHX gene families in plants have a 
fair share of structural diversity.

The putative amiloride-binding site and membrane-spanning 
pore in the NHX gene families, which contain the amino acid 
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sequence “FFIYLLPPI” (Bassil et  al., 2012), have been found 
to be  highly conserved (Brett et  al., 2005; Rodriguez Rosales 
et  al., 2009; Bassil et  al., 2012). In the presence of the drug 
amiloride and/or its derivatives, this domain inhibits the cation/
H+ exchange (Wu et  al., 2011). In the motif study, the 

amiloride-binding site was found to be located in the N-terminus 
of motif 3 and it is found in 6 NHX genes of C. sinensis 
(Figure  2). The C-terminus of NHX proteins was diverse in 
contrast to the conserved N-terminus. Studies have shown that 
the deletion of the C-terminal hydrophilic region results in 

A

B

FIGURE 9 | Expression of NHX genes in C. sinensis under cold stress. (A) The relative expression of Tea NHX genes represented graphically by analyzing the 
transcriptome data. (B) Relative expression represented as a heatmap, generated using heatmapper online server. The color bar on the top represents the 
normalized TPM values. Green and red colors represent the up- and downregulation values while black represents no expression.
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increased Na+/H+ transport activity, implying that the C-terminus 
is important not only for subcellular localization but also for 
transport activity regulation (Yamaguchi et  al., 2003; Orlowski 
and Grinstein, 2007). The phylogenetic analysis indicated that 

the NHXs in P. trichocarpa (Tian et al., 2017), S. bicolor (Kumari 
et  al., 2018), and Beta vulgaris (Wu et  al., 2019b) showed 
three phylogenetic clusters based on their location in the cell; 
we  found the same results for tea NHX transporters. So 

A

B

FIGURE 10 | Expression of NHX genes in C. sinensis under drought stress. (A) The relative expression of Tea NHX genes, represented graphically by analyzing the 
transcriptome data. (B) Relative expression represented as a heatmap, generated using heatmapper online server. The color bar on the top represents the 
normalized TPM values. Green and red colors represent the up- and downregulation values, respectively, while black represents no expression.
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according to these findings, the NHX family genes have remained 
relatively conserved throughout evolution.

Cis-acting regulatory elements function as key molecular 
switches in transcriptional regulation of gene activities that 
control a variety of biological processes, such as hormonal 

response, abiotic stress response, and development (Ding et al., 
2018; Verma et  al., 2019). Hormones including ABA, ethylene, 
SA, and IAA play significant roles in plants development and 
stress response (Mishra et  al., 2014; Li et  al., 2019; Wang and 
Huang, 2019; Zhang and Li, 2019). In this study, cis-acting 

A

B

FIGURE 11 | Expression of NHX genes in C. sinensis under salt stress. (A) The relative expression of Tea NHX genes, represented graphically by analyzing the 
transcriptome data. (B) Relative expression represented as a heatmap, generated using heatmapper online server. The color bar on the top represents the 
normalized TPM values. Green and red colors represent the up- and downregulation values while black represents no expression.
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regulatory elements related to transcription factors were identified 
to be  randomly distributed across the promotor region of the 
9 tea NHXs (Supplementary Table S2). One ABA-responsive 
element (ABRE) has been discovered in 6 NHXs (CsNHX1, 
CsNHX2, CsNHX4, CsNHX5, CsNHX6, and CsNHX8) of C. 
sinensis (Supplementary Table S2). Whereas in poplar, one 

or two ABREs were observed (Tian et  al., 2017). This analysis 
showed that NHX genes may play a role in the ABA signaling 
pathway. Furthermore, ARE (anaerobic induction), DRE 
(drought-responsive cis-acting element), LTR (low-temperature 
responsive element), MBS (drought response), and STRE (stress 
response) were identified as stress responsive regulatory elements 

A

B

FIGURE 12 | Expression levels of NHX genes in C. sinensis under plant hormonal treatment. The plant hormone under study was Methyl-jasmonate (MeJA). 
(A) The relative expression of Tea NHX genes, represented graphically by analyzing the transcriptome data. (B) Relative expression represented as a heatmap, 
generated using heatmapper online server. The color bar on the top represents the normalized TPM values. Green and red colors represent the up- and 
downregulation values while black represents no expression.
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in tea. Similarly, in PtNHXs from poplar and SbNHXs from 
S. bicolor are also found to contain similar elements (Kumari 
et al., 2018). The results indicated that the identified regulatory 
elements in this study aid in understanding their roles in 
various abiotic and biotic stress-related pathways.

Further to understand the distribution pattern of the tea 
NHXs, the genomic distribution mapping was performed. 
Tandem duplication events were absent across the tea NHXs 
(Figure  5). The duplication of genes increases the functional 
divergence, which is an essential factor in adaptability under 
changing environmental conditions (Conant and Wolfe, 2008). 
The dN/dS ratio indicates different selection pressure on genes 
throughout the evolutionary changes. Wang et al. (2019) found 
that positive selection of a gene during evolution increases its 
potential and transcription levels under stress conditions in 
Triticum aestivum and TaBT1. Whereas in tea, the dN/dS ratios 
provided conclusive evidence that strong purifying selection 
pressure existed during evolution, allowing a variety of factors 
to regulate the genes (Supplementary Table S3).

In plants, sodium-proton antiporters facilitate both Na+/H+ 
and K+/H+ exchanges, contributing to stress tolerance as well 
as K+ nutrition (Venema et  al., 2002; Apse et  al., 2003; Leidi 
et  al., 2010). NHXs have been reported to enhance salinity 
tolerance in different species, such as A. thaliana (Shi et  al., 
2000), B. vulgaris (Xia et  al., 2002), S. lycopersicum (Zhang and 
Blumwald, 2001; Rodríguez-Rosales et al., 2008), Hordeum vulgare 
(Vasekina et  al., 2005), Z. mays (Zörb et  al., 2005), T. aestivum 
(Brini et  al., 2005), G. max (Li et  al., 2006), O. sativa (Fukuda 
et  al., 2011; Zeng et  al., 2018), and S. bicolor (Kumari et  al., 
2018). The expression data for various tissues and stress conditions 
showed that the tea NHXs may be  involved in developmental 
processes and abiotic stress responses. Our study revealed that 
in C. sinensis, the NHX genes express differentially in 8 different 
tissues (Supplementary Table S5). The different expression 
patterns in various tissues (Figure  8) indicated that the NHX 
gene family provides opportunities to break the functional 
constraint from the original gene during the course of evolution.

Based on data from other species, functional annotation 
and interaction analysis of NHX proteins can help us predict 
their potential regulatory roles. The electrochemical gradient 
of protons across tonoplasts, generated by two vacuolar H+-
pumps, H+-ATPase, and H+-PPase, has been shown to drive 
the Vac-class NHXs (Brett et  al., 2005; Bao et  al., 2009; Wu 
et  al., 2011). In this analysis, all the tea genes considered for 
building the interaction network, belongs to the Vac-class. By 
increasing cation accumulation, co-expression of ZxNHX and 
ZxVP1 genes can improve salt tolerance in transgenic plant 
species, such as Lotus corniculatus (Bao et  al., 2014), Alfalfa 
(Bao et  al., 2015), and sugar beet (Wu et  al., 2015). These 
finding suggested that when plants were exposed to salt stress, 
Vac-class NHXs might work together to transport Na+ across 
tonoplasts. Calcineurin B-like (CBL) is well known for its ability 
to interact and modulate CBL-interacting protein kinases (CIPK), 
which then mediate Ca+ signal transduction (Yu et  al., 2014; 
Tian et  al., 2017). During the salinity response, CBL regulates 
NHX7 (SOS1) and CIPK mediates the Ca2+ signaling pathway 
(Miranda et al., 2017). A salt stress elicited Ca2+ signal activates 

a protein kinase complex consisting of CBL4 (SOS3) and CIPK24 
(SOS2), and the complex then phosphorylates and activates 
the SOS1 protein to extrude Na+ out of the cell in A. thaliana 
under salt stress (Quintero et  al., 2011). In transgenic tobacco, 
overexpression of SOS1 gene increased salt tolerance by 
maintaining a higher K+/Na+ ratio (Yue et  al., 2012). In the 
current study, CLBs are hypothesized to interact with 
TEA006066.1, CsNHX1 (TEA012938.1), CsNHX2 (TEA012286.1), 
CsNHX3 (TEA021179.1), and CsNHX4 (TEA012245.1) but not 
with CIPK (Figure  7). Similarly, NHX7 (SOS1) interactions 
with CBLs were predicted in poplar (Tian et  al., 2017) and S. 
bicolor (Bassil et  al., 2011a). However, in the future, yeast two 
hybrid research will need to confirm these proteins interactions.

Ion transporters are important in many biological processes, 
including ion uptake and sequestration, energy provision, and 
cell expansion (Bassil and Blumwald, 2014). Previous studies 
in plants found that Na+/H+ antiporters as important members 
in transporters mediate the coupled exchange of Na+ or K+ 
for H+ in all cellular compartments (Qiu, 2012; Bassil and 
Blumwald, 2014). The NHX genes primarily use two proton 
pumps, the H+-ATP enzyme and H+-PPase, to produce H+ 
electrochemical gradients that transport Na+ from the cytoplasm 
to vacuoles or outside the cell, thereby maintain Na+ ion stability 
and avoiding the toxic effect of Na+ accumulation in cells 
(Munns, 2002; Sze and Chanroj, 2018).

Stress response analysis showed that each tea NHX genes 
were responsive to abiotic stresses of drought, cold, and salt. 
Under PEG treatment, the expression of CsNHX1 (TEA012938.1), 
CsNHX4 (TEA012245.1), TEA00066.1, CsNHX7 (TEA023041.1), 
CsNHX8 (TEA011468.1) reached the highest level at 12 h 
(Figure 10), and CsNHX1, CsNHX7 and CsNHX8 also responded 
to salt stress in varying degree, demonstrating these genes may 
be  associated with salt and drought stress. MeJA was found to 
be  linked to salt tolerance in few studies (Zhang et  al., 2019; 
Zhao et  al., 2019) and the expression data suggested the close 
relation of the NHXs toward the regulation of MeJA. Further 
in the study, the expression levels of CsNHX1, CsNHX7, and 
CsNHX8 were significantly upregulated by various concentrations 
of NaCl over a 48 h period and 72 h period (Figure  11), and 
their expression levels under high-salt stress were relatively 
higher than those under either mild or moderate-salt stress. In 
Reaumuria trigyna, the expression levels of RtNHX1  in leaves 
showed an increase and reached a high level at 3 h, and then 
reduced after 6 h when exposed to high-salt stress (200 mm 
NaCl; Li et  al., 2017). A similar expression pattern was found 
in sweet potato, where IbNHX2 was significantly upregulated 
at 4 h after treatment of 200 mm NaCl (Wang et  al., 2016). 
Another study (Lu et  al., 2014) found that the transcription 
level of TaNHX3  in both leaves and roots sharply increased at 
24 h and then gradually decreased after 48 h over a 96 h period 
in different wheat cultivars subjected to salt stress. Moreover, 
CsNHX1 belonging to the Vac-class NHX showed the highest 
level of expression for all the salt stress condition. The study 
showed that the expression levels of Vac-class NHXs are 
significantly higher than other class genes thereby confirming 
that Vac-class NHXs might play critical roles in salt tolerance. 
The study also notices that CsNHX1 and CsNHX7 showed 
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significant expression levels under all abiotic stress conditions 
thereby providing a comprehensive understanding of the functions 
of NHXs in C. sinensis.

CONCLUSION

Among the numerous transporters in monovalent cation/proton 
antiporter (CAP1) family, the Na+/H+ antiporters (NHXs) are 
secondary ion transporters to exchange H+ and transfer the Na+ 
or K+ across membrane. The objective of this study was to identify, 
characterize, and determine the role of NHX genes in tea at the 
genomic stage. Using phylogenetic relationship, the 9 tea NHXs 
were grouped into three major classes (Vac-, Endo-, and PM-classes). 
The amiloride-binding site (FFIYLLPPI) is a characteristic feature 
of NHX proteins and it was found in the N-terminus of motif 
3. The lack of tandem duplication events was a result of the 
close distribution pattern of the NHX genes in tea. ABA-responsive 
element (ABRE) was found in 6 genes, implying NHX gene 
might be involved in ABA signaling pathway as well. Furthermore, 
responses of tea NHX to drought, cold, and salinity indicated 
that the genes were involved in single or multiple stress responses. 
The study also confirms the active role of Vac-class NHXs in 
response to salt stress over the other two classes. CsNHX1 
(TEA012938.1) and CsNHX7 (TEA023041.1) maintained high 
expression levels for all the abiotic stress conditions thereby giving 
us a comprehensive understanding of the role of NHX genes. 
Adding to the tally, the responses to MeJA treatment also suggested 
the involvement of the tea NHXs in MeJA regulation. Tea is a 
commercial crop, grown all over the world and abiotic stresses 
are one of the major factors that limit the crop productivity 
worldwide. This work will therefore serve as a basis to provide 
valuable information for future studies and exploration of the 
role of NHX genes in various developmental process, as well as 
the elucidation of other potential functions in C. sinensis.
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