AUTHOR=Chevilly Sergio , Dolz-Edo Laura , Martínez-Sánchez Gema , Morcillo Luna , Vilagrosa Alberto , López-Nicolás José M. , Blanca José , Yenush Lynne , Mulet José M. TITLE=Distinctive Traits for Drought and Salt Stress Tolerance in Melon (Cucumis melo L.) JOURNAL=Frontiers in Plant Science VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2021.777060 DOI=10.3389/fpls.2021.777060 ISSN=1664-462X ABSTRACT=

Melon (Cucumis melo L.) is a crop with important agronomic interest worldwide. Because of the increase of drought and salinity in many cultivation areas as a result of anthropogenic global warming, the obtention of varieties tolerant to these conditions is a major objective for agronomical improvement. The identification of the limiting factors for stress tolerance could help to define the objectives and the traits which could be improved by classical breeding or other techniques. With this objective, we have characterized, at the physiological and biochemical levels, two different cultivars (sensitive or tolerant) of two different melon varieties (Galia and Piel de Sapo) under controlled drought or salt stress. We have performed physiological measurements, a complete amino acid profile and we have determined the sodium, potassium and hormone concentrations. This has allowed us to determine that the distinctive general trait for salt tolerance in melon are the levels of phenylalanine, histidine, proline and the Na+/K+ ratio, while the distinctive traits for drought tolerance are the hydric potential, isoleucine, glycine, phenylalanine, tryptophan, serine, and asparagine. These could be useful markers for breeding strategies or to predict which varieties are likely perform better under drought or salt stress. Our study has also allowed us to identify which metabolites and physiological traits are differentially regulated upon salt and drought stress between different varieties.