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In conjunction with big data analysis methods, plant omics technologies have provided
scientists with cost-effective and promising tools for discovering genetic architectures
of complex agronomic traits using large breeding populations. In recent years, there
has been significant progress in plant phenomics and genomics approaches for
generating reliable large datasets. However, selecting an appropriate data integration
and analysis method to improve the efficiency of phenome-phenome and phenome-
genome association studies is still a bottleneck. This study proposes a hyperspectral
wide association study (HypWAS) approach as a phenome-phenome association
analysis through a hierarchical data integration strategy to estimate the prediction
power of hyperspectral reflectance bands in predicting soybean seed yield. Using
HypWAS, five important hyperspectral reflectance bands in visible, red-edge, and
near-infrared regions were identified significantly associated with seed yield. The
phenome-genome association analysis of each tested hyperspectral reflectance band
was performed using two conventional genome-wide association studies (GWAS)
methods and a machine learning mediated GWAS based on the support vector
regression (SVR) method. Using SVR-mediated GWAS, more relevant QTL with the
physiological background of the tested hyperspectral reflectance bands were detected,
supported by the functional annotation of candidate gene analyses. The results of this
study have indicated the advantages of using hierarchical data integration strategy
and advanced mathematical methods coupled with phenome-phenome and phenome-
genome association analyses for a better understanding of the biology and genetic
backgrounds of hyperspectral reflectance bands affecting soybean yield formation. The
identified yield-related hyperspectral reflectance bands using HypWAS can be used as
indirect selection criteria for selecting superior genotypes with improved yield genetic
gains in large breeding populations.

Keywords: proximal sensing, support vector machine, hierarchical data integration, soybean breeding, recursive
feature elimination (RFE), genome-wide association study (GWAS), multi-omics
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INTRODUCTION

Soybean (Glycine max [L.] Merr.) can be considered one of
the super crops that is substantially used for food and feed,
green manure, biodiesel, and fiber (Seck et al., 2020). Soybean
breeders continually breed soybean genotypes with improved
desired traits of interest, such as yield (Yoosefzadeh-Najafabadi
et al., 2021a). However, yield is a complex trait affected by
intrinsic and extrinsic factors as well as their interactions
(Anuarbek et al., 2020; Yoosefzadeh-Najafabadi et al., 2021a).
Therefore, a sophisticated understanding of the biological aspects
of plant genomes is required for sustainable improvements
of yield potential in major crops (Somegowda et al., 2021),
such as soybean. Soybean breeding programs are moving to
implement new genomics, phenomics, and big data analysis
for a deeper understanding of soybean yield formation. Having
a phenotypic profile of a large plant population with high-
density genetic markers are two of the most important factors
for better understanding the phenotype and genotype of complex
quantitative traits that are usually controlled by various genes
with minor and major effects (Wang et al., 2020).

Proximal/remote sensing can be considered as one of the
promising high throughput phenotyping tools that can measure
the spectral properties of genotypes in a short time in a large
breeding population. Most of the spectral measurements are
focused on the visible (400–700 nm), red edge (680–780 nm),
and near-infrared (700–1100 nm) spectral regions (Alonzo
et al., 2014; Hennessy et al., 2020). The visible range can be
dissected into blue/blue-green edge (400–499 nm), the green peak
(550 nm), and the red (650–700 nm) regions (Rivard et al., 2008;
Hennessy et al., 2020). Most of the reflection in the visible region
is regulated by the absorption of different foliar pigments such as
chlorophyll a and b, carotenoids, and anthocyanins (Castro-Esau
et al., 2006; Pu, 2009; Peerbhay et al., 2013; Alonzo et al., 2014;
Hennessy et al., 2020). The red-edge region resides between the
red and the near-infrared (NIR) regions, which is correlated with
internal leaf structure and chlorophyll absorptions (Clevers et al.,
2002; Clark et al., 2005; Liu C. et al., 2021). The NIR plateau (780–
1327 nm) is another important hyperspectral reflectance region
that is dominated by the amount and interaction of water and air
within the intercellular spaces (Hennessy et al., 2020; Paulus and
Mahlein, 2020; Okubo, 2021).

Several studies reported the high potential of using spectral
reflectance to estimate and classify the yield (Yoosefzadeh-
Najafabadi et al., 2021a), leaf area index (Chen et al., 2020),
plant stress (Feng et al., 2020), and carbon and nitrogen contents
(Omidi et al., 2020). In a study done by Zhang et al. (2019),
significant association of red and NIR regions with yield are
reported. They also demonstrated R5 as the best growth stage
for predicting yield and the efficiency of using regression models
in predicting soybean yield from the selected hyperspectral
reflectance bands. This potential would allow breeders to
accurately predict complex traits such as yield, which are typically
controlled by several secondary correlated traits, in a short time at
early growth stages (Yoosefzadeh-Najafabadi et al., 2021a). While
hyperspectral sensors can measure hundreds of wavebands, most
of them are redundant due to their high correlation with the

adjacent ones (Omidi et al., 2020). Therefore, there is a dire
need to find the redundancy of wavebands not only based on the
correlation with adjacent bands but also with the estimation of
the interaction with other bands in different regions. Genome-
wide association studies (GWAS) can be considered as one of the
common genetic approaches used for discovering quantitative
trait loci (QTL) that are highly associated with a trait of interest
(Eltaher et al., 2021). By using GWAS, a QTL associated with a
trait of interest can be detected using linkage disequilibrium (LD),
which is the non-random association of alleles at specific loci
(Somegowda et al., 2021). The detected QTL can be implemented
in marker-assisted selection (MAS) for screening large breeding
populations in a time- and cost-effective manner (Dababat et al.,
2021; Eltaher et al., 2021). Over the past two decades, several
statistical methods were used in GWAS to improve statistical
power and computational speed (Brachi et al., 2011; Xu et al.,
2018). The mixed linear model (MLM) and the fixed and random
model circulating probability unification (FarmCPU) approach
are known as two of the most common GWAS methods that
are currently used in a wide range of genetic studies (Brachi
et al., 2011; Lee et al., 2020; Singh et al., 2020). Also, Bonferroni
correction and false discovery rate (FDR) are commonly used
to set up a threshold for selecting associated QTL with major
effects (Brachi et al., 2011; Xu et al., 2018; Lee et al., 2020;
Singh et al., 2020).

The application of GWAS was reported in different plant
species such as soybean (Brown et al., 2021), maize (Xu et al.,
2018), wheat (Tsai et al., 2020), rice (Zhong et al., 2021), and
sorghum (Somegowda et al., 2021). While there is no report
on the genetic dissection of soybean yield-related hyperspectral
reflectance bands, genetic dissection of vegetation index was
previously reported in wheat (Wang, 2019; Galán et al., 2020;
Wang et al., 2021). Several detected candidate genes related
to NDVI, SPAD, and LR in durum wheat (Wang et al., 2021)
overlapped with dry biomass, grain yield, and chlorophyll
contents. Although GWAS can be considered as a powerful
tool to detect the associated genomic regions with major effects,
there are several barriers in applying conventional statistical
methods in GWAS for identifying genomic regions associated
with complex traits (Szymczak et al., 2009). One of the major
challenges in GWAS is the high possibility of a false-positive
rate that is due to the stochastic noise arise when the population
structure is not well defined (Platt et al., 2010) or a high false-
negative rate because of the unappropriated way of selecting the
threshold (Kaler and Purcell, 2019). Another challenge associated
with using the conventional statistical procedures is the “large
markers (p), small samples (n)” problem that habitually happens
in GWAS when these methods are applied to datasets where
the number of markers (i.e., single nucleotide polymorphisms
(SNPs)) is significantly larger (p � n) than the number of
genotypes (Kaler et al., 2020; Mohammadi et al., 2020; Xavier and
Rainey, 2020). It is well documented that current conventional
GWAS methods are only powerful to detect common SNPs with
large effects on the target traits that can reach the minimum level
of significance (Lee et al., 2020). Therefore, current conventional
GWAS approaches may not be well-suited for discovering minor
effect SNPs associated with the target traits, especially in plants
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with a significantly narrow genetic background (Zhou et al.,
2019). For example, several crops, such as soybean, suffer from
narrow genetic diversity mainly due to the genetic bottlenecks
associated with their domestications and the lack of introducing
new sources of genetic diversity (Mikel et al., 2010). While recent
advances in sequencing technologies facilitate the accessibility of
high-density genetic markers in a short time at a reduced cost,
using sophisticated big data analysis methods combined with
accurate and rapid large scale phenotyping methods, especially
for complex traits, represent major bottlenecks (Hennessy
et al., 2020; Yoosefzadeh-Najafabadi et al., 2021a). Recently,
Machine Learning (ML) algorithms were shown to be promising
computational strategies when applied to plant sciences because
of their potential to analyze complex multivariable and nonlinear
biological processes, which are commonly observed in complex
traits in plants (Jafari and Shahsavar, 2020; Hesami et al., 2021;
Yoosefzadeh-Najafabadi et al., 2021a). In general, ML algorithms
can be programmed based on existing patterns present in the
dataset. Recent studies showed the effectiveness of using ML
algorithms to predict complex traits using secondary traits that
are highly correlated with the trait of interest (Pantazi et al.,
2016; Liakos et al., 2018; Palanivel and Surianarayanan, 2019;
Yoosefzadeh-Najafabadi et al., 2021a). Based on the type of
problems they solve, ML algorithms can be characterized in
four categories as follows: (i) identification, (ii) classification,
(iii) quantification, and (iv) prediction. These four categories
could be used to identify important variables from multi-
dimensional datasets (Liakos et al., 2018; Hesami et al., 2020;
Sharifi, 2021). Variable selection methods are commonly used to
improve the prediction performance and avoid overfitting rates
for classification and prediction problems in high-dimensional
datasets (George, 2000). The variable selection methods are, in
general, classified into three distinct groups: wrappers, filters,
and embedded methods (George, 2000; Heinze and Dunkler,
2017). In filter methods, subsets of variables are selected based
on selection criteria that are independent from those used for
the final classifier (Chowdhury and Turin, 2020). However, both
wrapper and embedded methods implement variable selection
based on individual learners (Albashish et al., 2021). For example,
recursive feature elimination (RFE) is a representative wrapper-
type variable selection algorithm widely used to extract important
features from phenomics and genomics data (Gupta and Gupta,
2020; Albashish et al., 2021; Yoosefzadeh-Najafabadi et al.,
2021a). RFE discards in an iterative fashion the weak and unstable
variables until a target number of variables is reached and
thus retains independent variables from the dataset resulting in
significant improvements in performance and reduced overfitting
of ML algorithms (Sanz et al., 2018).

In addition to the proper ML algorithm choice, adopting
an accurate data integration strategy is required for a better
understanding of the structure of complex multidimensional
traits at different omics levels (Tarazona et al., 2021). These days,
more and more data are generated using different omics such as
genomics and phenomics, and several data integration strategies
such as early, intermediate, late, mixed, and hierarchical strategies
are available (Jamil et al., 2020; Picard et al., 2021). A hierarchical
data integration strategy is built upon prior knowledge about

the relationship between and among different tested omics layers
(Picard et al., 2021). For instance, a hierarchical data integration
strategy can be used for a better understanding of soybean yield
formation by having prior knowledge about the physiological
concept of each hyperspectral reflectance in explaining the overall
yield variation. The effectiveness of using RFE was reported
previously by Yoosefzadeh-Najafabadi et al. (2021a) to extract
the important wavelengths for predicting soybean seed yield.
In addition, a few studies used ML algorithms in GWAS for
detecting QTL associated with complex traits (Zhou et al., 2019;
Xavier and Rainey, 2020; Najafabadi et al., 2021). In a GWAS
study, Xavier and Rainey (2020) investigated the potential use of
Random Forest (RF) for detecting QTL associated with soybean
yield components, such as the number of pods and nodes. In
addition, the use of RF for detecting QTL with minor effects
was reported in a study by Asif et al. (2020). However, using
other promising ML algorithms such as support vector regression
(SVR) and implementing a hierarchical data integration strategy
for better understanding soybean yield using hyperspectral and
genome-wide association studies is long overdue. Therefore, this
study aimed to: (1) investigate the use of RFE for selecting
hyperspectral reflectance wavelengths influencing soybean yield,
(2) evaluate the potential use of SVR- mediated GWAS for
genetic dissection of important hyperspectral reflectance bands
affecting soybean yield, and (3) discover candidate genes linked to
identified hyperspectral reflectance bands associated with yield.
To the best of our knowledge, this study is the first report where
GWAS was used to discover hyperspectral reflectance bands
associated with soybean yield. This study also demonstrates the
benefits of using ML algorithms and variable selection methods
in phenome-phenome and phenome-genome association studies
for discovering yield-related physiological traits and genomic
regions associated with these traits in soybean. The results of this
study can be useful for selecting high yielding soybean genotypes
at early growth stages and, therefore, increasing the rate of genetic
gain for yield in cultivar development programs.

MATERIALS AND METHODS

Genome-Wide Association Studies Panel
and Experimental Design
The GWAS panel was consisted of 227 diverse soybean genotypes
that were grown and evaluated for the target traits in Ridgetown
(42◦27′14.8′′N 81◦52′48.0′′W, 200 m above sea level) and
Palmyra (42◦25′50.1′′N 81◦45′06.9′′W, 195 m above sea level),
Ontario, Canada, over two consecutive years, 2018 and 2019. The
experimental design was conducted based on the randomized
complete block design (RCBD) in four environments (two
locations× two years) with two replications in each environment.
Each phenotypic plot for each genotype was consisted of five
rows, each 4.2 m long with a row spacing and seedling rate of
43 cm and 57 per m2, respectively. Overall, there were 1000
soybean plots per year and 500 soybean plots per environment.
Also, nearest-neighbor analysis (NNA), as one of the most
common error control methods, was used to estimate the
accuracy of the phenotypic evaluations and control the spatial
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variability in the field (Stroup and Mulitze, 1991; Bowley, 1999;
Katsileros et al., 2015).

Seed Yield and Hyperspectral
Reflectance Data Collection
Soybean seed yield (t ha−1) was estimated for each plot after
harvesting of three middle rows and adjusting for day to maturity
and the seed moisture to 13%.

Previous studies reported that environmental stresses at the
seed development growth stage (R5), where seeds are 1/8 inches
long in pods at one of the four uppermost nodes (Yoosefzadeh-
Najafabadi et al., 2021a), in compared to other growth stages,
could have greater damage to the soybean yield. It can be
because of the fact that plants have no time to recover the yield
before physiological maturity (Zhang et al., 2019; Yoosefzadeh-
Najafabadi et al., 2021a). Therefore, the R5 growth stage in
soybean can be considered as a reliable growth stage for
measuring hyperspectral reflectance, if the goal is to predict the
overall seed yield (Zhang et al., 2019; Yoosefzadeh-Najafabadi
et al., 2021a). The hyperspectral reflectance was measured at the
beginning of the R5 stage. Hyperspectral reflectance bands were
measured via UniSpec-DC Spectral Analysis System (PP Systems
International, Inc., 110 Haverhill Road, Suite 301 Amesbury,
MA, United States), which covers 250 bands from 350 to
1100 nm with a 3 nm bandwidth. In general, the measured
hyperspectral reflectance consisted of three main regions: visible,
red-edge, and near-infrared (NIR) regions. Spectralon panels and
a dark reference background were used to adjust incoming solar
radiation and calibrate the dual channels, respectively. For each
plot, three measurements were recorded at the same spot in order
to reduce the noise, and their average, calculated by the best linear
unbiased prediction (BLUP) model, was used as the reflectance
band datapoint. All of the measurements were conducted close to
solar noon to reduce the signal-to-noise (SNR) ratio.

Hyperspectral Data Pre-processing
The pre-processing step is one of the most important steps in
hyperspectral reflectance analysis, which reduces the possible
electronic fluctuations and sensor noises in datasets. By checking
the quality of hyperspectral reflectance data for the tested
panel and the result of sensor-specific artifacts, hyperspectral
reflectance data of 1,005–1,100 and 350–395 nm, were removed
from the original data. The number of reflectance bands was
decreased from 250 bands to 62 by increasing the bandwidth
from 3 to 10 nm. In order to improve the signal-to-noise ratio,
a Savitzky–Golay filter was applied for each reflectance band and
data scaling, centering, and principal component analysis (PCA)
was conducted in order to detect potential outliers in the dataset.
All the pre-processing steps were performed using R software
(version 3.6.1).

Statistical Analyses
In order to estimate the genetic values of each soybean genotype,
the BLUP was used as one of the most well-known mixed models
(Goldberger, 1962). For this aim, ‘environment’ and ‘genotype’
factors were considered as fixed and random effects, respectively.

Based on the protocol developed by Bowley (1999), all outliers
were detected and treated the same as missing data points in
further analysis. Overall, the statistical model used in this study
is as follows:

Y = Xb + Zg +Wi + e (1)

where Y is the vector of trait of interest (selected hyperspectral
reflectance bands), b is the vector of block effects, encompasses
all the replications and locations, added to the overall mean
(assumed fixed), g in the vector of genotype effects (assumed
random), in which g ∼ N(0, σ2

g), i is the vector of random GxE
interaction effects, in which i ∼ N(0, σ2

int), and e is the vector
of residuals, in which e ∼ N(0, σ2

e). X, Z, and W represent the
incidence matrices of b, g, and i effects, respectively.

Also, the heritability (Eq. 2) of each tested trait was calculated
based on the following equation:

H2
=

σ2
g

σ2
g + σ2

int/n + σ2
e/nr

(2)

where σ2g is the genotypic variance; σ2int is the variance of GxE;
σ2e is error variance; n is the number of locations; r is the number
of replications.

Hyperspectral Wide Association Study
With respect to the genome-wide association study, we proposed
the term of hyperspectral wide association study (HypWAS)
for detecting hyperspectral reflectance bands associated with the
trait of interest. In order to detect the important hyperspectral
reflectance bands associated with the trait of interest, RFE, as one
of the most common variable selection methods (Guyon et al.,
2002), was used in this study. The main basis of the RFE is to
eliminate variables with low importance scores and select the
high importance score variables that explain the trait of interest.
In RFE, the first step is to build a model on the complete set of
the inputs and computing the importance of each input based
on sequential selection strategy (Guyon et al., 2002). The next
step is to remove the least important inputs and rebuilding the
model to recursively repeat the process. In general, RFE shows
how important is a feature for a model with respect to predicting a
value and it is strictly describing the prediction power of a feature.
In this study, we implemented RFE, considering reflectance
bands as input variables and soybean yield as an output variable.
All the analyses were done using the caret package (Kuhn, 2008)
in R software version 3.6.1.

Genotyping
For extracting DNA, young trifoliate leaf tissue was collected
from the first soybean phenotyping plot of each genotype at
the Ridgetown location and stored after freeze-drying using the
Savant ModulyoD Thermoquest (Savant Instruments, Holbrook,
NY, United States). DNA was isolated using NucleoSpin
Plant II kit (Macherey–Nagel, Duüren, Germany) as per the
manufacturer’s instructions, and the quality of DNA was
checked with Qubit R© 2.0 fluorometer (Invitrogen, Carlsbad,
CA, United States). The extracted DNA were sent to Genomic
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Analysis Platform at Université Laval (Laval, Quebec, Canada)
for genotyping-by sequencing (GBS) based on the enzymatic
digestion with ApeKI (Sonah et al., 2013). GBS for each genotype
was done via the Fast-GBS pipeline (Torkamaneh et al., 2020),
using Gmax_275_v2 reference genome. After imputing the
missing loci by the Markov model using Beagle v5 pipeline and
removing markers with a minor allele frequency less than 0.05,
a total of 17,958 high-quality single-nucleotide polymorphisms
(SNPs) from 227 soybean genotypes used for genomic analysis.

Population Structure Analysis
A total of 17,958 high-quality SNPs were used to conduct the
population structure analysis using fastSTRUCTURE (Raj et al.,
2014) with K values from 1 to 15. Afterward, the optimum
number of subpopulations was calculated using the K tool in the
fastSTRUCTURE software.

Association Studies
In this study, MLM and FarmCPU, as the two conventional
GWAS methods, were compared with the developed SVR-
mediated GWAS method. All the conventional GWAS methods
were implemented using the MVP (Yin et al., 2021) package
in R software version 3.6.1. The popular Caret package
(Kuhn et al., 2020) in R, was used to develop the SVR-
mediated GWAS method.

Mixed Linear Model
One of the most common methods for GWAS is the MLM
method developed by Yu et al. (2006). This method has been
widely used in GWAS because of its effectiveness in controlling
the bias in the population and correcting the inflation from
different small genetic effects caused by polygenic background
(Bulik-Sullivan et al., 2015; Wang S.-B. et al., 2016; Wen et al.,
2018). While the likelihood ratio is not specific to the MLM
method, this method is based on the likelihood ratio between
the full model (with a marker of interest) and the reduced model
(without a marker of interest) (Wen et al., 2018). If we considered
Y as the phenotypic value, the MLM equation would be as follows
(Eq. 3):

Y = Xb + Zu + e (3)

where Y is the vector of phenotypic observations; b is the vector
of SNP markers and population structure effects (assumed fixed);
u is the vector of additive genetic effects for genotypes (assumed
random); e is the vector of residuals (assumed random). X and Z
represent the incidence matrices of b and u effects, respectively.

Fixed and Random Model Circulating Probability
Unification
This GWAS method was first introduced by Liu et al. (2016)
in order to reduce the shortcoming and false discoveries that
existed in previously proposed GWAS methods. FarmCPU takes
advantage of using the random-effect (REM) and fixed-effect
(FEM) models iteratively (Liu et al., 2016). In brief, FEM was

used to test the S number of SNPs, simultaneously, based on the
following equation (Eq. 4):

Yi = Si1B1 + Si2B2 + Si3B3 + ...+ SitBt +MijKj + ei (4)

Where Yi stands for the observation on the ith sample, Si1,
Si2,..., Sit stand for the genotypes of the t pseudo-QTNs, B1, B2,
B3, . . ., Bt is the corresponding effect for the pseudo-QTNs, Mij
is the genotype of the jth SNPs and ith sample, Kj is known as the
corresponding effect of the jth SNPs, and ei is the residual.

The REM model is used in the FarmCPU method to optimize
the selection of the genetic markers based on the p-values as
follows (Eq. 5):

Yi = Ui + ei (5)

Where Yi stands for the observation on the ith sample, ei is the
residual, and Ui is the total genetic effect of the ith sample.

Also, false discovery rate (FDR) was used for
MLM and FarmCPU to set the significant threshold
(Benjamini and Hochberg, 1995).

Support Vector Regression
Support vector regression represents a support vector machine
(SVMs) approach used to solve regression problems (Awad
and Khanna, 2015). SVR is characterized by the use of the
Vapnik-Chervonenkis (VC) theory, sparse solution, and kernels
for controlling the number of vectors and margin (Smola and
Schölkopf, 2004; Awad and Khanna, 2015). This algorithm is
trained by implementing an asymmetrical loss function that
equally penalizes low and high misestimates (Vapnik, 1998). The
association statistics for SVR can be obtained by evaluating the
feature importance, which is previously proposed by Weston et al.
(2001). In this study, SNPs were considered as inputs, and the
selected hyperspectral reflectance bands were selected as output
variables for evaluating the feature importance using the SVR
algorithm. In brief, the following equation was used to determine
SVR (Eq. 6):

Y =Wβ(c)+ b (6)

Where Y is the output, W stands for the weights for each high
dimensional input (β) that is constructed non-linearly on the
input space of (c). The upper and lower borderlines are presented
as Y =Wβ (c)+ b+ e+ and Y =Wβ (c)+ b− e, respectively.

The five-fold cross-validation strategy (Siegmann and Jarmer,
2015) was used to run the variable importance analysis with
ten repetitions. The impurity index was selected as the common
metric to evaluate the importance of each SNP in explaining
the trait of interest. After implementing the variable importance,
the achieved scores were scaled to a 0–100% scale. After fitting
the algorithm, high variable importance was stored during 1000
times repetitions. Then, all significant SNPs were selected based
on a confidence level α = 0.05. The global empirical threshold was
used for estimating the significant threshold of SNPs associated
with selected hyperspectral reflectance bands (Churchill and
Doerge, 1994; Doerge and Churchill, 1996).

Frontiers in Plant Science | www.frontiersin.org 5 November 2021 | Volume 12 | Article 777028

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-777028 November 22, 2021 Time: 15:4 # 6

Yoosefzadeh-Najafabadi et al. Soybean Yield-Related Spectral Reflectance Bands

FIGURE 1 | LD decay plot and the flanking regions of each detected SNP in 227 soybean genotypes.

Extracting Candidate Genes Underlying
Detected Quantitative Trait Locis
The potential candidate genes for the tested GWAS methods
were extracted from the Glycine max William 82 reference gene
models 2.0 using the SoyBase database1. The flanking regions
of associated peak SNPs with the trait of interest were obtained
based on the LD decay distance (Figure 1). Also, Gene Ontology
(GO) enrichment analysis (see text footnote 1), and previous
studies were used to detect genes associated with the trait
of interest and investigate their system biology functions for
each trait. Finally, the Electronic Fluorescent Pictograph (eFP)
browser for soybean2 and transcriptomics data from Severin
et al. (2010) were included to generate further information about
the candidate genes, including developmental- and tissue-stage
dependent gene expression levels.

Data Integration Strategy
In this study, the hierarchical data integration strategy was used
to accommodate the using the of HypWAS results as prior
knowledge for GWAS analyses. By using a hierarchical data
integration strategy, genomic regions that are directly associated
with the selected hyperspectral reflectance bands and indirectly
related to the overall soybean yield can be detected. Afterward,

1https://www.soybase.org
2www.bar.utoronto.ca

the associated candidate genes with the tested hyperspectral
reflectance bands can be identified based on the results of the
GWAS analysis (Figure 2).

RESULTS

Yield Statistics and Hyperspectral
Reflectance Profile
The average seed yield for all soybean genotypes evaluated
in four environments ranged from 2.6 to 5.7 t ha−1 with
a standard deviation and mean of 0.57 and 4.22 t ha−1,
respectively. The results of analysis of variance for yield as
well as heritability are represented in Supplementary Table 1.
Overall, the heritability of yield in the tested panel was 0.24.
The complete hyperspectral reflectance profile measured for
the tested soybean panel is presented in Figure 3. The visible
and NIR regions showed the highest variation among the
genotypes with a range of 0.40 and 0.56, respectively, whereas
the red-edge region had the lowest variation among all the
hyperspectral regions with a range of 0.11 (Figure 3). Within
the visible region, the highest variations were present in the
green, and red regions ranged from 0.12 and 0.13, respectively,
while other reflectance bands in the visible region had lower
variations (Figure 3). The reflectance bands greater than 770 nm
showed larger variations among soybean genotypes compared
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FIGURE 2 | The schematic workflow of the hierarchical data integration strategy of HypWAS and GWAS in Soybean.

to reflectance bands in the red-edge region (Figure 3). The
results of analysis of variances for each selected hyperspectral
reflectance band are presented in Supplementary Tables 2–6.
Among all the tested hyperspectral reflectance bands, 660 and
730 nm had the highest and lowest heritability with values of
0.85 and 0.28, respectively (Supplementary Tables 2–6). All
the selected reflectance bands showed a significant difference
among genotypes.

Hyperspectral Wide Association Study
The association between reflectance bands and soybean seed yield
was assessed using the RFE method. Among all the 62 reflectance
bands, five were found to be significantly associated with the
soybean yield (Figure 4). The selected reflectance bands were
390, 550, 660, 730, and 820 nm with the importance score of
99, 29, 94, 38, and 41%, respectively. Based on the number of
important reflectance bands, the visible region was the most
informative reflectance region associated with soybean yield by
having three out of five important bands, namely, 390, 550, and
660 nm (Figure 4). Among all the reflectance bands located
in the red-edge and NIR regions, the 730 and 820 nm bands
were associated with soybean seed yield in the red-edge and NIR
regions, respectively (Figure 4). Only the selected reflectance
bands were chosen for further analysis. As it can be seen in
Figure 5, all selected reflectance bands had a normal distribution.
The 390 nm, as the hyperspectral reflectance band with the
highest importance score, had a mean of 0.1 in the tested
panel across different environments. The second hyperspectral

reflectance band with high importance score was the 660 nm
band with a mean of 0.05 (Figure 5). As the lowest importance
score among all the selected hyperspectral reflectance bands, the
550 nm band had the mean and standard deviation of 0.24 and
0.02, respectively (Figure 5).

Pearson Product-Moment Correlation coefficients of
all the selected reflectance bands with soybean yield were
estimated and are shown in Figure 6. The only positive
correlation with yield was found in 820 nm band with the
r = 0.19 (Figure 6). The highest negative correlation with
yield was observed in the 660 nm band with a correlation
coefficient (r) of −0.80, and the lowest negative correlation
was found between the 730 nm band and seed yield with
r =−0.16 (Figure 6).

Genotyping Evaluations
High-quality SNPs were obtained for the tested GWAS panel
from 210M single-end Ion Torrent reads that were proceeded
with Fast-GBS.v2. After the filtering process, 17,958 out of 40,712
SNPs were detected as polymorphic and then mapped onto 20
soybean chromosomes. In the tested GWAS panel, the maximum
number of SNPs was 1780 on chromosome 18, and the minimum
number of SNPs was 403 on chromosome 11. The average
number of SNPs was 898 across all the 20 chromosomes, with the
mean density of one SNP for every 0.12 cM across the genome. As
illustrated in Figure 7A, the tested soybean panel was composed
of four to seven subpopulations. Therefore, the K = 7 was used
as the optimum K for the tested association panel. Also, the
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FIGURE 3 | The hyperspectral reflectance profile of the tested 227 soybean genotypes.

kinship was calculated between soybean genotypes to reduce the
confounding effect (Figure 7B).

Genome-Wide Association Studies
Analysis
In this study, we conducted GWAS analysis for dissecting the
genetic control of the yield-related reflectance and identified
SNPs that are linked to selected bands from HypWAS. According
to the GWAS analysis of the 390 nm band, using the MLM
method, 10 SNPs located on chromosomes 3, 6, and 10 were
found to be associated with this band (Figure 8). Using

FarmCPU, 13 SNPs on chromosomes 3, 6, 10, and 13 were
identified, and exploiting the SVR-mediated GWAS, 12 SNPs on
chromosomes 2, 3, 6, 9, 15, 16, and 20 were found to be linked to
this band (Figure 8). Based on the results, chromosomes 3 and 6
are two chromosomes that were found associated with the 390 nm
band using all three GWAS methods. Most of the detected QTL
on chromosomes 3 and 6 were co-localized with previously
reported QTL such as ureide content, resistance to Phytophthora
sojae, internode length, and pubescence color (Table 1).

Genome-wide association studies analyses on the 550 nm band
resulted in discovering 5 and 10 SNPs to be associated with this
band using the MLM and the FarmCPU methods, respectively.
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FIGURE 4 | Hyperspectral wide association analysis (HypWAS) of yield in the tested soybean panel. The threshold for significant importance values was indicated as
the red dash line.

Among all the associated SNPs using the MLM method, four of
them were located on chromosome 5, and one on chromosome 3.
The 10 SNPs identified using the FarmCPU method were located
on chromosomes 1, 3, 5, and 13 (Figure 8). Using SVR-mediated
GWAS analysis, we identified nine SNPs linked to the 550 nm
band, of which two were located on chromosome 6, three on
chromosome 9, and one SNP on each of the chromosomes 5, 15,
18, and 19, respectively (Figure 8). Comparing the results of the
three GWAS methods, chromosome 5 was consistently found to
be associated with the 550 nm band. Most of the detected QTL
on chromosome 5 were co-localized with previously reported
QTL such as oil-related traits, water use efficiency, and full
maturity (Table 2).

According to Figure 8, a total of 9, 14, and 15 associated SNPs
were detected using MLM, FarmCPU, and SVR, respectively.
Out of 9 detected SNPs using the MLM method, four SNPs
were located on chromosome 3, three SNPs were located on
chromosome 7, and two SNPs were located on chromosome 18
(Figure 8). All the detected SNPs using FarmCPU were located
on chromosomes 3, 6, and 18 (Figure 8). GWAS analysis of the
660 nm band using the SVR-mediated GWAS method detected
13 SNPs on chromosome 15 and one SNP on chromosomes
14 and 19 (Figure 8). Most of the detect QTL for the 660 nm
band were related to first flower, water use efficiency, soybean
cyst nematode resistance, seed yield, pod number, and plant
height (Table 3).

Genome-wide association studies analyses on the 730 nm band
resulted in discovering 10, 15, and 10 associated SNPs using
MLM, FarmCPU, and SVR, respectively (Figure 8). Using MLM,
10 SNPs were located on chromosomes 1, 2, 5, 14, 15, 17, and 18
(Figure 8). By using the FarmCPU method, five associated SNPs
with the 730 nm band were located on chromosome 5, three SNPs
were located on chromosome 2, two SNPs were on chromosomes

1 and 18, and one SNP was located on chromosomes 14, 15,
and 17 (Figure 8). Using SVR-mediated GWAS, 10 SNPs were
located on chromosomes 1, 4, 6, 9, and 10 (Figure 8). Based
on these results, chromosome 1 was unanimously determined
to be associated with the 730 nm band by all three GWAS
methods. Most of the detected QTL for the 730 nm band were
related to water use efficiency, seed oil and protein-related traits,
reproductive stage length, and pod number (Table 4).

Using MLM, FarmCPU, and SVR methods for GWAS analysis
of the 820 nm band, a total of four, five, and seven SNPs
were detected to be associated with this reflectance band. The
associated SNPs were located on each of the chromosomes 1, 4,
6, and 16 using MLM (Figure 8). Using the FarmCPU method,
two associated SNPs were found on chromosome 16, and one
was found on chromosomes 1, 5, and 6, respectively (Figure 8).
Two associated SNPs using the SVR-mediated GWAS method
were located on chromosome 1, and one SNP was found on
chromosomes 2, 4, 6, 10, and 16 (Figure 8). Chromosomes 1,
6, and 16 were selected as the commonly detected chromosomes
among all the tested GWAS methods associated with the 820 nm
band. Most of the detected QTL for the 820 nm band were
related to first flower, soybean cyst nematode resistance, water use
efficiency, seed set, seed long-chain fatty acid, and seed width to
height (Table 5).

Extracting Candidate Genes Underlying
Detected Quantitative Trait Locis
The flanking regions of the QTL were determined within
the 150-kbp upstream and downstream of each peak
SNP for a given QTL, and these regions were searched
for identifying potential candidate genes associated with
the target bands (Figure 1). For the 390 nm band, five
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FIGURE 5 | The distribution, mean and standard deviation of the selected hyperspectral reflectance bands in the tested soybean panel.

peak SNPs (Chr2_858458, Chr3_3729245, Chr9_39344365,
Chr9_39344439, and Chr16_7313753) had the highest
allelic effects (Figure 9A). Based on the gene annotation and
expression data, the following genes were identified as selected
candidates governing the 390 nm band: Glyma.02G008900
(GO:0006979), Glyma.02G008700 (GO:0006970), Glyma.
03G033100 (GO:0019748), Glyma.03G033100 (GO:0031347),
Glyma.09G168700 (GO:0009624 and GO:0042742), and
Glyma.16G073100 (GO:0050660 and GO:0016491). These

genes have been annotated for oxidative and osmotic
stresses, secondary metabolic process, regulation of defense
response, response to nematode, defense response to bacterium,
flavin adenine dinucleotide binding, and oxidoreductase
activity, respectively. For the 550 nm band, two peak SNPs
(Chr3_22283256 and Chr5_40467080) had the highest allelic
effects compared to other detected peak SNPs (Figure 9B). There
was no previously reported QTL linked with Chr3_44326068,
while three QTL (water use efficiency and shoot macro- and
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FIGURE 6 | The Pearson correlation of the selected hyperspectral reflectance bands in the tested soybean panel. The heat map scale for values is provided by color
for the panel.

micronutrient concentrations) were linked to Chr5_40467080.
The candidate genes Glyma.03G081700 (GO:0010224) and
Glyma.05G226000 (GO:0009411, GO:0009813) were selected
candidates for the 550 nm band, which encode response to UV-B
and to UV, and flavonoid biosynthetic process, respectively.
Based on Figure 9C, the highest allelic effect for the 660 nm
band was found in one peak SNP (Chr19_36064225) detected
by the SVR-mediated GWAS, whereas no previously reported
QTL was linked to the detected peak SNP position. Based on
the gene ontology analysis, Glyma.19G108200 (GO:0009911,
GO:0048573, and GO:0009909) was the selected candidate gene
for the 660 nm band, which encodes positive regulation of
flower development, photosynthesis, flowering, light reaction,
and regulation of flower development. The allelic effect analysis
of the 730 nm band indicated a high allelic effect for two peak

SNPs at Chr2_42645195 and Chr18_6728432 (Figure 9D).
The selected peak SNPs were linked to water use efficiency
and seed protein contents (Figure 9D). There were two
selected candidate genes [Glyma.02G237700 (GO:0009853) and
Glyma.02G237400 (GO:0031347)] associated with the 730 nm
band, which encode photorespiration and regulation of defense
response. On the 820 nm band, the highest allelic effect was
found in two peak SNPs (Chr4_20000416 and Chr6_11029779)
that were detected by the SVR-mediated GWAS method
(Figure 9E). Gene ontology analysis of the selected peak SNPs
identified two candidate genes, Glyma.04G135300 (GO:0009658
and GO:0009055) and Glyma.10G033600 (GO:0015250
and GO:0005215), which encode chloroplast organization,
electron carrier activity, water channel activity, and transporter
activity, respectively.
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FIGURE 7 | Structure (A) and kinship (B) plots for the 227 soybean genotypes. The x-axis represents the number of genotypes used in this GWAS panel, and the y
axis represents the membership of each subgroup. SP1–SP7 stands for subpopulations 1 to 7.

DISCUSSION

Accurate predictions of the final performance of germplasm at
early growth stages is paramount for breeders to make early
selection decisions in germplasm advancement and cultivar
development programs (Maimaitijiang et al., 2020). The end-
season selection based on yield per se may result in overlooking
other factors such as selecting for other yield-unrelated traits
and environmental factors (Yoosefzadeh Najafabadi, 2021). Yet,
trait measurement in large breeding nurseries and working
with large phenotypic and genotypic data is still a bottleneck
in the genome-to-phenome analysis process (Parmley et al.,
2019). In recent years, the combination of high throughput

phenotyping and genotyping tools has greatly accelerated the
plant breeding progress (Yang et al., 2020). However, merging
different omics datasets for better characterization of the complex
traits extensively depends on an appropriate selection of a data
integration strategy (Picard et al., 2021). Extracting the biological
information from the secondary related traits that are in high
correlation with the trait of interest, detecting the associated
SNPs, and identifying candidate genes for each detected peak
SNPs provided a valuable complement for understanding the
biological mechanism of a trait of interest. The hierarchical
strategy is based on including prior knowledge of relationships
between different omics layers (Wang et al., 2013; Picard
et al., 2021). In this study, we used this strategy in a soybean
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FIGURE 8 | Genome-wide Manhattan plots for GWAS studies of the selected hyperspectral reflectance bands using MLM, FarmCPU, and SVR methods in the
tested soybean panel. MLM, mixed linear model; FarmCPU, fixed and random model circulating probability unification; SVR, fixed and random model circulating
probability unification.

hyperspectral reflectance-yield association study to acquire a
better understanding of the genetic architecture of soybean
yield using GWAS.

As one of the important high-throughput phenotyping tools,
hyperspectral reflectance has provided plant breeders with an
efficient plant evaluation strategy in a large population at early
growth stages for important agronomic traits (Yoosefzadeh-
Najafabadi et al., 2021a). The use of spectral reflectance
for predicting crop yield has been extensively investigated.
For example, Qiao et al. (2021) reported the efficiency of
using long-time series multi-spectral images for yield mapping
of different crop species using an automated spatial-spectral
feature extractor. The application of hyperspectral reflectance
in predicting the wheat grain yield was studied by Fei et al.
(2021), who reported the effectiveness of red and NIR regions in
predicting the grain yield in different irrigation regimes. The use
of hyperspectral reflectance in predicting yield was not limited to
agronomy crops and used for vegetables (Awika et al., 2021), trees
(Ali and Imran, 2021), and industrial plants (Holmes et al., 2020).
Therefore, breeders can use spectral data to establish phenome-
to-genome relationships by performing HypWAS and applying it
via phenomics selection. Genomic selection methods suffer from
the lack of consideration for environmental effects (Zhong et al.,
2009; Tong and Nikoloski, 2021). However, by using HypWAS,
both environmental and genetic effects can be considered in the
final decision. The proposed idea of HypWAS is novel, and, to
our best knowledge, there is no example in the literature.

The rationale behind the HypWAS is to increase the efficiency
of indirect selection for breeders and to offer them a strategy
to reduce noise and possible errors from the hyperspectral
reflectance data that is used in genetic studies. HypWAS makes

it possible to select reflectance bands with high importance
scores for complex traits such as yield. Therefore, plant breeders
and geneticists can investigate more aspects of the selected
reflectance bands to find the genomic regions, gene candidates,
and physiological processes behind each reflectance band.
Previously, we implemented one of the most common variable
selection methods, RFE, to select important reflectance bands
in association with soybean yield production (Yoosefzadeh-
Najafabadi et al., 2021a). However, there was no further
information about the genetic background of the selected
reflectance bands. In this study, we selected the five most
important reflectance bands and we used HypWAS to investigate
various aspects of the physiological and genetic background of
each reflectance band.

Among the five selected reflectance bands, three of them
were located in the visible range of the spectrum. Most of the
reflection in the visible region is significantly dominated by the
foliar pigments’ absorption (Hennessy et al., 2020). Chlorophyll
a and b have a stronger reflection in comparison with other
foliar pigments in the visible region (Fernandes et al., 2013).
Chlorophylls play a major role in photosynthesis due to all
the photosynthesis structures, such as the antenna systems of
photosystem I and photosystem II (Pettai et al., 2005; Hennessy
et al., 2020). Light energy absorbed by antenna systems of
photosystem I and II, is then rapidly transferred to the respective
reaction centers (Pettai et al., 2005). Several studies reported the
strong correlation of the 680–700 nm bands with photosystem I
and II (Ke, 2001; Pettai et al., 2005; Hoa et al., 2017; Hennessy
et al., 2020). In this study, the 680 nm band was selected as
one of the high-importance reflectance bands that explains the
total soybean seed yield. This can reveal the importance of
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TABLE 1 | The list of detected QTLs for 390 nm using different GWAS methods in the tested soybean panel.

GWAS Method Chromosome Peak SNP position Co-located QTL Environmenta References

MLM 3 44121448 Ureide content 1-g13.1 NA Ray et al., 2015
Ureide content 1-g13.2 NA Ray et al., 2015
Ureide content 1-g13.3 NA Ray et al., 2015
Ureide content 1-g13.4 NA Ray et al., 2015
Ureide content 1-g13.5 NA Ray et al., 2015

44198005 NA
44326068 NA
44328629 NA
45039908 NA

6 11953156 NA
11953223 NA

10 2906452 NA
2906459 NA
2906496 NA

FarmCPU 3 44121448 Ureide content 1-g13.1 NA Ray et al., 2015
Ureide content 1-g13.2 NA Ray et al., 2015
Ureide content 1-g13.3 NA Ray et al., 2015

44198005 Ureide content 1-g13.4 NA Ray et al., 2015
Ureide content 1-g13.5 NA Ray et al., 2015

44326068 NA
44328629 NA
45039908 Internode length 1-g3 NA Fang et al., 2017

Pubescence color 2-g1.1 NA Fang et al., 2017

6 11953223 NA
11953223 NA

10 2906452 NA
2906459 NA
2906496 NA
50548092 NA

13 30231980 Seed Yield 3-g5 NA Contreras-Soto et al., 2017
30232000 seed weight 6-g2 2 Sonah et al., 2015

Phytoph 3-g22 2 Chang et al., 2016
Phytoph 2-g4 2 Qin et al., 2017
Phytoph 2-g5 2 Qin et al., 2017

Phytoph 3-g23 2 Chang et al., 2016
Leaflet width 1-g1 2 Fang et al., 2017

SVR 2 858431 NA
858458 NA

3 3729245 Phytoph 3-g1 NA Chang et al., 2016
Phytoph 3-g2 NA Chang et al., 2016
Phytoph 3-g3 NA Chang et al., 2016
Phytoph 3-g4 NA Chang et al., 2016
Phytoph 3-g5 NA Chang et al., 2016
Phytoph 3-g6 NA Chang et al., 2016

6 38679976 NA
38787915 NA
36746367 NA

9 39344365 pod number 1-g4.1 NA Fang et al., 2017
pod number 1-g4.2 NA Fang et al., 2017

39344439 pod number 1-g4.3 NA Fang et al., 2017
seed thickness 2-g4 NA Fang et al., 2017

15 22232022 NA
22231908 NA

16 7313753 Sclero 3-g60 NA Moellers et al., 2017
ureide content 1-g43 NA Ray et al., 2015

20 22656999 NA
aDetected in separate environments in addition to the combined environment. (1) 2018Ridgetown, (2) 2019Ridgetwon, (3) 2018Palmyra, (4) 2019Palmyra, (NA) Not found
in any separate environment.
MLM, mixed linear model; FarmCPU, fixed and random model circulating probability unification; RF, random forest; SVR, support vector regression.
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TABLE 2 | The list of detected QTLs for 550 nm using different GWAS methods in the tested soybean panel.

GWAS Method Chromosome Peak SNP position Co-located QTL Environmenta References

MLM 3 22283256 NA

5 1115619 seed palmitic 4-g1 2 Zhang et al., 2018

seed palmitic 4-g1.2 2 Zhang et al., 2018

Seed long chain fatty acid 1-g21.2 2 Fang et al., 2017

Seed long chain fatty acid 1-g19.2 2 Fang et al., 2017

1115673 Seed long chain fatty acid 1-g14.1 2 Fang et al., 2017

Seed long chain fatty acid 1-g14.2 2 Fang et al., 2017

1115689 Seed long chain fatty acid 1-g1.2 2 Fang et al., 2017

seed stearic 3-g1 2 Zhang et al., 2018

41767154 Phytoph 2-g28 2 Qin et al., 2017

First flower 4-g18 2 Mao et al., 2017

Seed oil 4-g18 2 Bandillo et al., 2015

Seed oil 4-g17 2 Bandillo et al., 2015

Seed oil 4-g16 2 Bandillo et al., 2015

Seed oil 6-g1 2 Cao et al., 2017

Seed oil 6-g16 2 Cao et al., 2017

R8 full maturity 5-g1 2 Fang et al., 2017

Seed oil 4-g15 2 Bandillo et al., 2015

Seed oil 4-g14 2 Bandillo et al., 2015

Seed oil 6-g2 2 Cao et al., 2017

Seed oil 6-g4 2 Cao et al., 2017

FarmCPU 1 41281098

3 22283184

22283256

44326068 4

5 1115619 Seed palmitic 4-g1 2 Zhang et al., 2018

Seed palmitic 2-g1.2 2 Fang et al., 2017

seed long chain fatty acid 1-g21.2 2 Fang et al., 2017

1115673 seed long chain fatty acid 1-g19.2 2 Fang et al., 2017

1115673 seed long chain fatty acid 1-g14.1 2 Fang et al., 2017

1115689 seed long chain fatty acid 1-g14.2 2 Fang et al., 2017

1153958 seed long chain fatty acid 1-g1.2 2 Fang et al., 2017

1115689 seed stearic 3-g1 2 Zhang et al., 2018

41767154 First flower 4-g18 2 Mao et al., 2017

seed oil4-g18 2 Bandillo et al., 2015

seed oil 4-g17 2 Bandillo et al., 2015

seed oil 4-g16 2 Bandillo et al., 2015

seed oil 6-g1 2 Cao et al., 2017

seed linolenic 4-g5 2 Li et al., 2015

R8 full maturity 5-g1 2 Fang et al., 2017

seed oil 4-g15 2 Bandillo et al., 2015

seed oil 4-g14 2 Bandillo et al., 2015

seed oil 6-g2 2 Cao et al., 2017

seed oil 8-g4 2 Zhang et al., 2018

13 29190399 Phytoph 2-g30 2 Qin et al., 2017

seed set 1-g29-.2 2 Fang et al., 2017

seed weight 13-g8 2 Wang J. et al., 2016

SVR 5 40467080 WUE 2-g13 3 Kaler et al., 2017

Shoot p 1-g10.2 3 Dhanapal et al., 2018

shoot p 1-g10.1 3 Dhanapal et al., 2018

6 41477920 4

38960003 NA

(Continued)
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TABLE 2 | (Continued)

GWAS Method Chromosome Peak SNP position Co-located QTL Environmenta References

9 39366957 Pod number 1-g4.1 1 Fang et al., 2017

Pod number 1-g4.2 1 Fang et al., 2017

Pod number 1-g4.3 1 Fang et al., 2017

Seed thickness 2-g4 1 Fang et al., 2017

39372117 Seed Thr 2-g1 1 Li et al., 2018

Seed Sar 2-g1 1 Li et al., 2018

Seed Tyr 2-g1 1 Li et al., 2018

39659468 Seed Lys 2-g1 NA Li et al., 2018

Seed Leu 2-g1 NA Li et al., 2018

Seed LIu 2-g1 NA Li et al., 2018

Seed Ala 2-g1 NA Li et al., 2018

Seed Gly 2-g1 NA Li et al., 2018

15 11293240 Seed protein 7-g14 NA Zhang et al., 2017

18 11166966 NA

19 36064225 NA

aDetected in separate environments in addition to the combined environment. (1) 2018Ridgetown, (2) 2019Ridgetwon, (3) 2018Palmyra, (4) 2019Palmyra, (NA) Not found
in any separate environment.
MLM, mixed linear model; FarmCPU, fixed and random model circulating probability unification; RF, random forest; SVR, support vector regression.

photosynthesis components in determining the overall soybean
yield (Yoosefzadeh-Najafabadi et al., 2021c). The 660 nm band
can be used to screen a large population of plants in a short time
for selecting genotypes with a high potential for photosynthesis
activity. Similarly, another important reflectance band in this
study (390 nm) is located in the blue region of the spectrum,
which is highly correlated with the chlorophyll content (Richter
et al., 2016; Hennessy et al., 2020). The 390 nm band had
the highest importance value in predicting the final soybean
yield among all the selected reflectance bands, confirming
the importance of photosynthesis in the final soybean yield
formation. The third detected reflectance band in this study
(550 nm), represents the green peak in the visible spectrum
(Stommel et al., 2009; Liu et al., 2018). This reflectance band
was reported to be correlated with Chlorophyll and Anthocyanin
contents in plants (Hennessy et al., 2020). Anthocyanins are
known as a diverse class of flavonoid components that play a
significant role in protecting plants against abiotic and biotic
stresses (Gitelson et al., 2001; Hennessy et al., 2020). Since most
of the soybean fields in North America are grown in rainfed
areas, water deficit stress would be inevitable during the soybean
growing season in these areas.

Many studies reported the strong correlation between red-
edge and near-infrared regions and water content as well as
spongy mesophyll conditions in plants. Based on the HypWAS
analysis, the 730 and 820 nm bands were selected as the important
reflectance bands in predicting the overall soybean yield. The
730 nm band is located in the red-edge region and correlated
with the leaf water content, chlorophyll concentration, and leaf
layering (Horler et al., 1983). The 820 nm band is located
in the near-infrared region and reflects the spongy mesophyll
condition in leaves (Gao et al., 2014; Salvatori et al., 2015). The
major role of spongy mesophyll in plants is to interchange the
required CO2 for photosynthesis (Veromann-Jürgenson et al.,
2020). All spongy mesophylls are covered by a thin layer of water,

hence environmental stresses can significantly affect mesophylls
resulting in a reduced photosynthesis activity level in plants
(Veromann-Jürgenson et al., 2020; Liu M. et al., 2021). Therefore,
changes in the water and gas level in mesophylls is the first
sign of detecting stresses in plants, so the difference between
the reflectance of the 730 nm as well as the 820 nm band in
normal and stress conditions can be considered as a measurement
for abiotic and biotic stresses (Momayyezi et al., 2020). Overall,
adjusting breeding selection criteria based on the selected
reflectance bands might lead to select a genotype with significant
levels of tolerance against stresses and high photosynthesis
activity. This can be done by measuring those reflectance bands
by remote sensing tools in a short time in a less labor-intensive
manner. Also, understanding the genetic background of each
selected reflectance band would be helpful to design appropriate
genetic markers for the fast screening of genotypes.

Genome-wide association studies is currently considered
as an imperative approach for discovering genomic regions
associated with complex traits in diverse areas from human
genetics to plant and animal breeding (Alqudah et al., 2020;
Khanzadeh et al., 2020; Li et al., 2020; Tibbs Cortes et al., 2021).
Insufficient statistical power is the most fundamental challenge
when it comes to using conventional GWAS for characterizing
quantitative traits (Nicholls et al., 2020), especially in plants
with narrow genetic bases. In ML-mediated GWAS analyses,
the significance levels or thresholds for identifying SNP-trait
associations are estimated using variable importance methods,
which are different from statistical methods that are used for
estimating p-value in conventional GWAS (Szymczak et al.,
2009). The main advantage of using variable importance, rather
than p-values, for individual SNP-trait association tests, consists
in the ability of these approaches to consider the interaction
effects between SNPs (Szymczak et al., 2009; Asif et al., 2020).
In other words, ML algorithms are more practical in terms of
allowing for high-order interactions that are not pre-specified
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TABLE 3 | The list of detected QTLs for 660 nm using different GWAS methods in the tested soybean panel.

GWAS Method Chromosome Peak SNP position Co-located QTL Environmenta References

MLM 3 22283184 NA
22283218 NA
22283256 NA
44326068 NA

7 20220381 NA
20280812 NA
23349322 NA

18 56952847 pod number 4-g8 NA Hao et al., 2012
plant height 3-g14 NA Contreras-Soto et al., 2017

56952858 shoot K 1-g39 NA Dhanapal et al., 2018
WUE 3-g32 NA Dhanapal et al., 2018

FarmCPU 3 22283184 NA
22283218 NA
22283256 NA
44326068 NA

7 20220330 Shoot Mn 1-g2 NA Dhanapal et al., 2018
20220381 NA
20280812 NA
23317163 Ureide content 1-g9 NA Ray et al., 2015
23349322 shoot Mn 1-g3 NA Dhanapal et al., 2018
27492738 NA

18 56952847 pod number 4-g8 NA Hao et al., 2012
plant height 3-g14 NA Contreras-Soto et al., 2017

56952858 shoot K 1-g39 NA Dhanapal et al., 2018
WUE 3-g32 NA Dhanapal et al., 2018

57794992 NA

SVR 14 16425108 NA

15 13118545 NA
12895268 NA
12894320 NA
14174744 NA
14378690 1
12892003 seed coat color 3-g3 NA Vuong et al., 2015

seed yield, soyNAM 7-g14 NA Diers et al., 2018
18302021 NA
14406716 1
17877705 NA
17362699 NA
14088239 1
13163194 SCN 5-g33 NA Li et al., 2016

First flower 4-g58 NA Mao et al., 2017
First Flower 5-g29.1 NA Fang et al., 2017
First flower 5-g29.2 NA Fang et al., 2017
First flower 5-g29.3 NA Fang et al., 2017

14421366 1

19 36064225 1

aDetected in separate environments in addition to the combined environment. (1) 2018Ridgetown, (2) 2019Ridgetwon, (3) 2018Palmyra, (4) 2019Palmyra, (NA) not found
in any separate environment.
MLM, mixed linear model; FarmCPU, fixed and random model circulating probability unification; RF, random forest; SVR, support vector regression.

in the model using non-linear kernels (Sun et al., 2021).
Conventional statistical methods need to have pre-identified
parameters for the analysis of special traits of interest (Sun
et al., 2021). Conventional statistical methods are significantly

useful in the presence of inherent uncertainty, small signal-
to-noise ratio, insufficient training dataset, a small number of
variables, predefining the parameters involved in the variance
of the trait of interest. Therefore, conventional GWAS are
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TABLE 4 | The list of detected QTLs for 730 nm using different GWAS methods in the tested soybean panel.

GWAS Method Chromosome Peak SNP position Co-located QTL Environmenta References

MLM 1 41281098 NA

2 17694706 NA
17694726 NA

5 1115689 Seed palmitic 4-g1 NA Zhang et al., 2018
Seed palmitic 2-g1.2 NA Fang et al., 2017

Seed long-chain fatty acid 1-g21.2 NA Fang et al., 2017
1153958 Seed long-chain fatty acid 1-g19.2 NA Fang et al., 2017

Seed long-chain fatty acid 1-g14.1 NA Fang et al., 2017
Seed long-chain fatty acid 1-g14.2 NA Fang et al., 2017
Seed long-chain fatty acid 1-g1.2 NA Fang et al., 2017

Seed stearic 3-g1 NA Zhang et al., 2018

14 2259506 Reproductive stage length 1-g3.1 NA Fang et al., 2017
Reproductive stage length 1-g3.2 NA Fang et al., 2017

15 9020829 NA

17 31797213 NA

18 6686269 NA
6728432 Seed protein 7-g27 NA Zhang et al., 2017

FarmCPU 1 16343505 NA
41281098 NA

2 17694706 NA
17694726 NA
42645195 WUE 2-g6 4 Kaler et al., 2017

WUE 3-g4 4 Dhanapal et al., 2018
WUE 3-g5 4 Dhanapal et al., 2018
WUE 3-g6 4 Dhanapal et al., 2018

5 1115619 Seed palmitic 4-g1 NA Zhang et al., 2018
Seed palmitic 2-g1.2 NA Fang et al., 2017

Seed long-chain fatty acid 1-g21.2 NA Fang et al., 2017
1115673 Seed long-chain fatty acid 1-g19.2 NA Fang et al., 2017

Seed long-chain fatty acid 1-g14.1 NA Fang et al., 2017
1115689 Seed long-chain fatty acid 1-g14.2 NA Fang et al., 2017

Seed long-chain fatty acid 1-g1.2 NA Fang et al., 2017
1153958 Seed stearic 3-g1 NA Zhang et al., 2018
1467115 Seed palmitic 5-g2 NA Li et al., 2015

Seed palmitic 5-g1 NA Li et al., 2015
Seed palmitic 2-g1.3 NA Fang et al., 2017

Seed long-chain fatty acid 1-g21.3 NA Fang et al., 2017
Seed long-chain fatty acid 1-g19.3 NA Fang et al., 2017
Seed long-chain fatty acid 1-g1.3 NA Fang et al., 2017
Seed width to height ratio 1-g2.1 NA Fang et al., 2017
Seed width to height ratio 1-g2.2 NA Fang et al., 2017
Seed width to height ratio 1-g2.3 NA Fang et al., 2017

14 2259506 Reproductive stage length 1-g3.1 NA Fang et al., 2017
2259506 Reproductive stage length 1-g3.2 NA Fang et al., 2017

15 9020829 Seed coat luster 1-g1.1 NA Fang et al., 2017
WUE 3-g26 NA Dhanapal et al., 2018

WUE 3-g27.1 NA Dhanapal et al., 2018

17 31797213 NA

18 6686269 Seed protein 7-g27 NA Zhang et al., 2017
6728432 Seed protein 7-g27 NA Zhang et al., 2017

SVR 1 47953926 1

4 19007585 NA
18643026 NA

(Continued)
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TABLE 4 | (Continued)

GWAS Method Chromosome Peak SNP position Co-located QTL Environmenta References

6 41477920 NA

9 39659468 Seed Ser 2-g1 2 Li et al., 2018
Seed Thr 2-g1 2 Li et al., 2018

39664525 Seed Tyr 2-g2 NA Li et al., 2018
Seed Lys 2-g2 NA Li et al., 2018
Seed Leu 2-g2 NA Li et al., 2018
Seed Ala 2-g2 NA Li et al., 2018
Seed Gly 2-g2 NA Li et al., 2018

39366957 Pod number 1-g4.1 NA Fang et al., 2017
Pod number 1-g4.2 NA Fang et al., 2017

39372117 Pod number 1-g4.3 NA Fang et al., 2017
seed thickness 2-g4 2 Fang et al., 2017

40355403 NA

10 3054709 NA
aDetected in separate environments in addition to the combined environment. (1) 2018Ridgetown, (2) 2019Ridgetwon, (3) 2018Palmyra, (4) 2019Palmyra, (NA) Not found
in any separate environment.
MLM, mixed linear model; FarmCPU, fixed and random model circulating probability unification; RF, random forest; SVR, support vector regression.

appropriate approaches for detecting SNPs with large main
effects on complex traits. However, they are underpowered
to simultaneously consider a wide range of interconnected
biological processes and mechanisms that shape the phenotype
of complex traits (Lee et al., 2020). By using ML algorithms in
GWAS, the interaction and joint effect of multiple SNPs can be
estimated using variable importance methods, and the best set
of SNPs will be selected to give the best performance (Pahikkala
et al., 2012). Recent studies showed that the SNPs with high
importance scores are not necessarily the SNPs with significant
p-values resulted from single SNP analyses (Arshadi et al., 2009;
Grömping, 2009; Szymczak et al., 2009; Ziliak, 2017; Di Leo and
Sardanelli, 2020). Therefore, using variable importance values
estimated by ML algorithms for identifying SNP-trait associations
may improve the power of ML-mediated GWAS for discovering
variant-trait associations with higher resolution (Szymczak et al.,
2009). The variable importance methods based on linear and
logistic regressions, Support vector machines, and random forest
algorithms are well established in the literature (Grömping, 2009;
Wu and Liu, 2009; Chun and Keleş, 2010; Williamson et al.,
2020; Yoosefzadeh-Najafabadi et al., 2021b). In this study, we
found that SVR-mediated GWAS had the same performance
in detecting numbers of QTL when compared to conventional
GWAS methods. However, the detected QTL by SVR-mediated
GWAS was more related to the physiological background of
each tested hyperspectral reflectance bands. For instance, in
the 820 nm band, the SVR-mediated GWAS detected 5 QTL
related to water use efficiency, which is clearly in agreement with
the physiological background of this trait. The same scenario
happened in the 660 nm band, where most of the detected
QTL by SVR-mediated GWAS were related to flowing and
soybean cyst resistance. In all the tested hyperspectral reflectance
bands, several QTL related to the soybean seed protein, oil,
pod number, seed yield, and seed thickness were detected in
all GWAS methods. Meanwhile, seed protein, oil, pod number,
seed yield, and seed thickness can be considered as the yield
component traits, which directly and indirectly regulate the

final soybean seed yield. Therefore, the detected QTL confirmed
the efficiency of HypWAS and GWAS in indirect selection for
complex traits such as yield.

Furthermore, several candidate genes were detected by
SVR-mediated GWAS related to the oxidative and osmotic
stresses, regulation of defense response, response to nematode,
defense response to bacterium, and oxidoreductase activity. It is
well documented that the violet spectrum and UV radiation are
key factors in secondary metabolite production (e.g., terpenes,
alkaloids, phenolic compounds, glucosinolates, and carotenoids)
that can play a pivotal role in a plant’s defense systems (Schreiner
et al., 2012; Matsuura et al., 2013). It has also been shown
that these spectra lead to the activation of several signaling
pathways such as defense signaling, reactive oxygen species
(ROS), and photomorphogenic signaling (Schreiner et al.,
2012; Matsuura et al., 2013). These signaling can stimulate and
induce the specific gene expression patterns involved in different
secondary metabolism pathways, such as the isoflavonoid
biosynthesis pathway (Kim et al., 2014). MYB family is one of
the most important transcriptional factors that may interact
with light-responsive elements and thereby activate selected
genes involved in isoflavonoid biosynthesis (Du et al., 2010).
Moreover, a positive correlation was reported between the
expression profiles of the selected genes (Glyma.02G008700
and Glyma.09G168700) and the patterns of isoflavonoid
accumulation, which shows the biosynthesis of isoflavonoid
might be activated by violet spectra through the up-regulation of
these genes (Du et al., 2010). The spatiotemporal regulation of
chlorophyll metabolism is necessary for various cellular processes
such as chloroplast development, photosynthesis, plastid-derived
retrograde signaling (Chan et al., 2016), RNA metabolism
(Zhang et al., 2014), singlet oxygen-mediated signaling (Shen
et al., 2006), abscisic acid signaling, and programmed cell
death (Woodson et al., 2015; Dogra et al., 2019). Chlorophyll
metabolism can be categorized into four functional classes
including (i) Chlorophyll a synthesis through the branched
tetrapyrrole biosynthesis pathway (Tanaka and Tanaka, 2007;
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TABLE 5 | The list of detected QTLs for 820 nm using different GWAS methods in the tested soybean panel.

GWAS Method Chromosome Peak SNP position Co-located QTL Environmenta References

MLM 1 16343505 NA

5 1467115 seed palmitic 5-g2 3 Li et al., 2015
seed palmitic 5-g1 3 Li et al., 2015

seed palmitic 2-g1.3 3 Fang et al., 2017
seed long-chain fatty acid 1-g19.3 3 Fang et al., 2017
seed long-chain fatty acid 1-g1.3 3 Fang et al., 2017

seed long-chain fatty acid 1-g21.3 3 Fang et al., 2017
seed width to height ratio 1-g2.1 3 Fang et al., 2017
seed width to height ratio 1-g2.2 3 Fang et al., 2017
seed width to height ratio 1-g2.3 3 Fang et al., 2017

6 50187091 Sclero 3-g32 3 Moellers et al., 2017

16 36071599 Seed set 1-g21.2 NA Fang et al., 2017
Seed set 1-g21.1 NA Fang et al., 2017
First Flower 4-g66 NA Mao et al., 2017

SCN 5-g38 NA Li et al., 2016

FarmCPU 1 16343505 NA

5 1467115 seed palmitic 5-g2 3 Li et al., 2015
seed palmitic 5-g1 3 Li et al., 2015

seed palmitic 2-g1.3 3 Fang et al., 2017
seed long-chain fatty acid 1-g19.3 3 Fang et al., 2017
seed long-chain fatty acid 1-g1.3 3 Fang et al., 2017

seed long-chain fatty acid 1-g21.3 3 Fang et al., 2017
seed width to height ratio 1-g2.1 3 Fang et al., 2017
seed width to height ratio 1-g2.2 3 Fang et al., 2017
seed width to height ratio 1-g2.3 3 Fang et al., 2017

6 50187091 Sclero 3-g32 3 Moellers et al., 2017

16 36071599 Seed set 1-g21.2 NA Fang et al., 2017
Seed set 1-g21.1 NA Fang et al., 2017

36236254 First Flower 4-g66 NA Mao et al., 2017
SCN 5-g38 NA Li et al., 2016

SVR 1 39990647 NA
47953926 NA

2 42411031 WUE 3-g-2 4 Dhanapal et al., 2018
WUE 3-g-3 4 Dhanapal et al., 2018
WUE 2-g6 4 Kaler et al., 2017
WUE 3-g4 4 Dhanapal et al., 2018
WUE 3-g5 4 Dhanapal et al., 2018

4 20000416 NA

6 11029779 NA

10 3054709 3,4

16 17376063 NA

aDetected in separate environments in addition to the combined environment. (1) 2018Ridgetown, (2) 2019Ridgetwon, (3) 2018Palmyra, (4) 2019Palmyra, (NA) not found
in any separate environment.
MLM, mixed linear model; FarmCPU, fixed and random model circulating probability unification; RF, random forest; SVR, support vector regression.

Mochizuki et al., 2010), (ii) the ‘Chlorophyll cycle,’ which
catalyzes the interconversion of Chlorophyll a and Chlorophyll b
(Tanaka and Tanaka, 2011), (iii) the degradation of Chlorophyll
a to yield colorless through the pheophorbide a oxygenase
(PAO)/phyllobilin pathway (Christ and Hörtensteiner, 2014),

and (iv) Chlorophyll recycling pathway through dephytylase
1 (CLD1) (Lin et al., 2016). The combination of divinyl
reductase (DVR) and light-dependent protochlorophyllide
oxidoreductase (POR) produces chlorophyllide (Chlide)
a. Subsequently, Chlorophyll synthase (CHLG) catalyzes
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FIGURE 9 | The average effects of reference allele and alternative allele from the detected SNP’s peak for (A) 390 nm, (B) 550 nm, (C) 660 nm, (D) 730 nm, and (E)
820 nm in 227 soybean genotypes across four environments.

Chlorophyll a biosynthesis through the combination of Chlide
a and phytyl pyrophosphate (phytyl-PP) (Wang and Grimm,
2021). CLD1 can reversibly convert Chlorophyll a into Chlide a
during Chlorophyll recycling. Also, it is well documented that
high-light inducible proteins (Hlips) play an important role in
binding Chlorophyll a and β-carotene and consequently the
photosynthesis capacity (Chidgey et al., 2014; Staleva et al., 2015;
Shukla et al., 2018).

It has been well documented that three main families of
carbonic anhydrase (CA) genes, including α-CAs, β-CAs, and
γ-CAs, play essential roles in the conductance of inorganic carbon
through carbon fixation rates and the mesophyll (de Araujo et al.,
2014; Cano et al., 2019). They may also be involved in sensing
light, CO2, and water availability (Momayyezi et al., 2020).
Therefore, CAs can affect photosynthetic efficiency through
their impacts on stomatal response to light, CO2-facilitating

components (aquaporins), ABA signaling, and other signaling
pathways (de Araujo et al., 2014; Cano et al., 2019; Momayyezi
et al., 2020). ABA is a key phytohormone associated with stomatal
closure. ABA receptors (e.g., PYL, PYR, RCAR proteins) play
an important role in executing ABA’s function in water relations
(Cutler et al., 2010; Kim et al., 2010). ABA regulates the stress-
activated kinase signaling network that controls stomatal closure
(Mega et al., 2019). In reacting to water deficit, the level of ABA
increases, which regulates the ligand-receptor complex formation
that represses the clade A protein phosphatase 2Cs (PP2Cs)
activity, which is considered negative regulators for ABA signaling
(Fujii et al., 2009; Ma et al., 2009; Park et al., 2009). Because of
the central role of ABA receptors in transpiration regulation, they
can be considered as promising targets for breeding programs
in order to manipulate ABA sensitivity and water productivity
(Mega et al., 2019).
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CONCLUSION

Indirect selection of complex traits would be of paramount
importance in analytical breeding strategies. Nowadays, the
use of advanced high throughput phenotyping and genotyping
combined with big data analysis methods can ease the assessment
of large plant breeding populations in a very effective short time.
For the first time in this study, we are proposing the HypWAS
method for identifying hyperspectral reflectance bands associated
with complex traits such as yield. Based on this method, we were
able to discover, five hyperspectral reflectance bands significantly
associated with the soybean seed yield. The visible region of the
spectra was found to be the most informative region related to
the seed yield. The GWAS analyses of the selected hyperspectral
reflectance bands using MLM, FarmCPU, and a newly developed
SVR-mediated GWAS method revealed several QTL revealing
the bands that seem to be related to the soybean seed yield,
water use efficiency, and soybean cyst nematodes resistance
based on previous studies. In general, all of the tested GWAS
methods had acceptable performance. However, we were able
to detect more relevant QTL using the SVR-mediated GWAS.
Regarding the Gene Ontology of the selected traits, most of
the detected genes were reported to be related to the water
status, photosynthesis, and light intensity. The obtained genetic
results confirmed the physiological background of the selected
hyperspectral reflectance bands. The result of this study can be
used to accelerate the indirect breeding selection strategy for
selecting high-yielding genotypes based on specific hyperspectral
reflectance bands at early plant growth stages. In addition, the
genetic results can be employed to use the detected QTL in
each hyperspectral reflectance band for MAS selection in large
breeding populations.
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