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Genes have been lost or weakened from cultivated rice during rice domestication
and breeding. Weedy rice (Oryza sativa f. spontanea) is usually recognized as the
progeny between cultivated rice and wild rice and is also known to harbor an gene
pool for rice breeding. Therefore, identifying genes from weedy rice germplasms is
an important way to break the bottleneck of rice breeding. To discover genes from
weedy rice germplasms, we constructed a genetic map based on w-hole-genome
sequencing of a F2 population derived from the cross between LM8 and a cultivated
rice variety. We further identified 31 QTLs associated with 12 important agronomic traits
and revealed that ORUFILM03g000095 gene may play an important role in grain length
regulation and participate in grain formation. To clarify the genomic characteristics from
weedy rice germplasms of LM8, we generated a high-quality genome assembly using
single-molecule sequencing, Bionano optical mapping, and Hi-C technologies. The
genome harbored a total size of 375.8 Mb, a scaffold N50 of 24.1 Mb, and originated
approximately 0.32 million years ago (Mya) and was more closely related to Oryza sativa
ssp. japonica. and contained 672 unique genes. It is related to the formation of grain
shape, heading date and tillering. This study generated a high-quality reference genome
of weedy rice and high-density genetic map that would benefit the analysis of genome
evolution for related species and suggested an effective way to identify genes related to
important agronomic traits for further rice breeding.

Keywords: weedy rice, genetic map, QTL mapping, reference genome, comparative genomics

INTRODUCTION

Cultivated rice is one of the most important staple crops worldwide. The breeding of rice varieties
with improved yield, quality, resistance to diseases and pests, and tolerance to abiotic stresses
is significant to meet the increasing food demand in China and the world (Khush, 2001; Yang
and Hwa, 2008; Xu et al., 2021). However, many genes have been lost from cultivated rice due
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to the long-term domestication and artificial selection, which
hinders the breeding of advanced rice varieties. To the contrary,
wild rice growing in natural environments is resistant or tolerant
to different biotic and abiotic stresses and therefore retains a
natural gene pool containing a large number of genes that have
been lost or weakened from cultivated rice (Sun et al., 2002).
Weedy rice has many characteristic traits similar to those of wild
rice, many studies indicated that weedy rice was originated from
wild rice and serves as a transition type between wild rice and
cultivated rice (Baker, 1974; Wet and Harlan, 1975; Cho et al.,
1995). Previous studies showed that weedy rice harbors the AA
genome and no reproductive isolation was observed between
weedy rice and cultivated rice (Nadir et al., 2018; Sun et al.,
2019). Generally, the genes of weedy rice can be transferred to
cultivated rice through breeding techniques such as hybridization
and backcrossing (Lu et al., 2000; Stein et al., 2018). Weedy rice
has been usually used as the genetic materials for rice genetics
and breeding or to identify genes related to stress tolerance,
disease and pest resistance, high yield, and high grain quality for
improving modern rice varieties (Ishikawa et al., 2005; Shivrain
et al., 2010; Dai et al., 2013).

In the past decades, rice functional genomics research, which
focuses on technology platform construction and molecular
cloning and functional analysis of genes related to important
agronomic traits, has resulted in numerous achievements in
gene discovery (Han et al., 2007; Xu et al., 2021). Due to its
small genome and relatively simple structure, Oryza sativa (9311
and Nipponbare) became the first sequenced rice species in
2002 (Goff et al., 2002; Yu et al., 2002). These rice reference
genomes have enabled massive rice functional genomics research,
accelerated rice genetic improvement, and laid a foundation for
studying genomes of other crops such as Zea mays (Schnable
et al., 2009) and Triticum aestivum (International Wheat Genome
Sequencing Consortium [IWGSC], 2014). With the development
of sequencing technology, the time required for sequencing
has largely decreased while the sequencing quality has greatly
improved, therefore resulting in more high-quality reference
genomes of cultivated rice varieties such as MH63, ZH97, and
R498 (Zhang et al., 2016, 2018; Du et al., 2017). The focus
of rice research has also been gradually turned to elucidate
biological characteristics and evolution processes and to analyze
gene functions and related biological issues at the genomic level,
as well as to identify genes related to important agronomic traits
such as high yield, high quality, and stress resistance (Huang
et al., 2010, 2011, 2015; Xun et al., 2012; Wei et al., 2014;
Yano et al., 2016).

At present, numerous genes related to important agronomic
traits (e.g., grain size) have been located and cloned, such as
GS3 (Fan et al., 2006; Mao et al., 2018), GL3.1 (Qi et al., 2012),
DEP1 (Huang et al., 2009), GW2 (Song et al., 2007), qSW5
(Shomura et al., 2008), GW8 (Wang et al., 2012b), and GS5
(Li et al., 2011). Although the genome assembly of weedy rice
WR04-6 has been constructed (Sun et al., 2019), the progress of
identifying genes from weedy rice and the functional genomics
research remains hindered due to a lack of more high-quality
reference genomes. Generally, the morphological characteristics
of weedy rice is between wild rice (O. rufipogon) and cultivated

rice (O. sativa L.) (Sun et al., 2013; Cui et al., 2016). Our previous
taxonomic study showed that LM8 is a low heterozygous weedy
rice germplasm. The plants are homozygous and can be inherited
stably that is characterized by very small grains. To discover genes
from weedy rice germplasms of LM8, we constructed a genetic
map based on whole-genome sequencing of a F2 population
derived from the cross between LM8 and a cultivated rice
variety. In combination with the phenotypic data of 12 important
agronomic traits collected from the F2 population, we also tried to
identify some new genes from the weedy rice. Moreover, to clarify
the genomic characteristics from weedy rice germplasms of LM8,
we generated a high-quality genome assembly of LM8 based on
the Nanopore sequencing technology and characterized the LM8
genome to reveal its evolutionary relationship, which broadens
our understanding of weedy rice at the genomic level. Based on
our study, we found that the combination of genetic map and
genome map is critical to quickly discover candidate genes such
as plant-type, panicle-type, and gain-size in weed rice.

MATERIALS AND METHODS

Plant Materials
The weedy rice LM8 was obtained from the China National
Genebank. It shows erect and compact architecture similar to
cultivated rice and harbors typical characteristics, such as small
grain size and black hull. The cultivated rice variety Shen 08S
was provided by the Anhui Academy of Agricultural Sciences.
A F2 population (1229 samples) was obtained from a cross
between LM8 and Shen 08S and was planted in the experimental
fields under natural growth conditions in Nanning, Guangxi
Autonomous Region, China. In this study, the F2 population
were collected from one F1. Fresh and healthy leaves were
collected at seedling stage and stored at 80◦C for subsequent
genomic DNA extraction.

Population Sequencing and Genetic Map
Construction
Fresh leaves of randomly selected 199 samples of the F2
population and their parents (LM8 and Shen 08S) were used
to extract genomic DNA with the cetyltrimethylammonium
bromide (CTAB) method. The Illumina PE150 libraries were
constructed according to the manufacturer’s instructions and
sequenced on an Illumina HiSeq X Ten platform. The two
parental genotypes were sequenced at a higher depth (20 ×

coverage) to obtain 10 Gb data each, and F2 individuals were
sequenced at a lower depth (∼ 10 × coverage) to obtain 5
Gb data each. Low-quality reads were removed to obtain clean
reads, which were then mapped to the LM8 genome (LM8_v1)
using BWA (mem -t 4 -k 32 -M -R) (Li and Durbin, 2009).
SAMtools (sort rmup) (Li et al., 2009) was used to convert
and sort the mapping results and to remove PCR duplicate
reads. The clean reads of each F2 individual that passed the
quality control were mapped to the reference genome (LM8_v1)
for haplotype-based SNP calling. Development of polymorphic
markers was performed by GATK (McKenna et al., 2010) for
SNP identification and genotyping, and a total of 2,373,849 SNP
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markers were obtained. Then, these SNP markers were filtered
by removing abnormal bases, abnormal genotypes, incomplete
coverage markers, and segregation distortion markers, and
were sorted into LGs (Yang et al., 2018). After filtering,
10,739 SNP markers were cluster into 12 LGs using JoinMap
v4.1 (Mapping algorithm—ML Mapping, Regression mapping—
Kosambi’s) (Stam, 1993).

Phenotypic Evaluation of the F2
Population
We collected the main culm of plant individuals at 25 days
after heading to measure the plant height (PH), tillering number
(TN), flag leaf length (FLL), and flag leaf width (FLW) using
a ruler. At maturity, the main panicles of plant individuals
were harvested to measure panicle length (PL) using a ruler,
and the primary branch number (PB) and secondary branch
number (SB) (Ma et al., 2016) were recorded. The filled grains
were used to calculate the grain length (GL), grain width (GW),
grain thickness (GT), length width ratio (LWR), and thousand-
grain weight (TGW) using an automatic seed analyzer with
three replicates (Wanshen Detection Technology, Hangzhou,
China). The analysis of variance (ANOVA) and correlations of
phenotypic characteristics collected from the F2 population were
conducted in R v3.6.2 (Langfelder and Horvath, 2012).

QTL Mapping and Candidate Gene
Prediction
QTL mapping was conducted using a permutation test (n = 1,000)
in MapQTL6.0 with the composite interval mapping method to
determine the limit of detection (LOD) value of each phenotype
(Ooijen et al., 2009). Then the CIM mapping method in Win
QTL Cartographer v2.5 software was used to locate the QTL
position, contribution rate, and additive effect (Wang et al.,
2012a). The 99% confidence interval of a QTL were determined
as a candidate region, in which genes harbored non-synonymous
coding mutations, premature or extended termination mutations
were regarded as functional genes.

Genome Library Construction and
Sequencing
Genomic DNA was extracted from the fresh leaves of LM8
using Genomic kit (13343, Qiagen, Germany). Total RNA was
extracted from five different tissues (root, leaf, stem, flower, and
spike) by using the TRNzol Universal Total RNA extraction
Kit (DP424, Tiangen, China). The total RNA was reserve
transcribed into cDNA using SMARTer PCR cDNA Synthesis Kit
(634926, Takara, China). PCR was performed using PrimeSTAR
GXL DNApolymerase (R050A, Takara, China). The purity,
concentration, and integrity of DNA and RNA were determined
using NanoDropTM One UV-Vis spectrophotometer (Thermo
Fisher Scientific, United States), Qubit

R©

3.0 Fluorometer
(Invitrogen, United States) and Agilent 2100 Bioanalyzer (Agilent
technologies, United States).

A library for Illumina paired-end sequencing with an
insert size of 350–500 bp was constructed and sequenced
on an Illumina HiSeq X ten platform (Illumina, San Diego,

CA, United States). Oxford Nanopore library preparation was
conducted according to the manufacturer’s instruction (13343,
Qiagen, Germany) and sequenced on a PromethION platform
(Oxford Nanopore Technologies, Oxford, United Kingdom).
Fresh young leaves were vacuum-infiltrated with formaldehyde
solution and used for cross-link action. The Hi-C library was
prepared following the manufacturer’s protocol and sequenced
on an Illumina HiSeq X ten platform. SMRTbell library of
RNA-seq was constructed from a pooled cDNA sample of
five different tissue (root, leaf, stem, flower, and spike) using
SMRTbell template prep kit 2.0 (100222300, Pacific Biosciences,
United States) and sequenced on a PacBio Sequel sequencer
(Pacific Biosciences, Menlo Park, United States) to obtain full-
length transcriptome data.

Genome Assembly
The Illumina short reads were filtered using fastp v0.20.0 with
default parameters (Chen et al., 2018). The abundance of 17 nt
K-mers (-C -m 17 -s 400M) was used to estimate the genome size
and heterozygous rate (Marçais and Kingsford, 2011; Liu et al.,
2013; Koren et al., 2017). Correction of long reads generated
from the Oxford Nanopore PromethION platform and de novo
assembly were performed by NextDenovo v1.1.1 (read_cuoff = 2
k, seed_cutoff = 23 k, blocksize = 1 g, pa_raw_align = 20,
pa_correction = 35) and SMARTdenovo (-e dom -J 5000 -k
17) (Loman et al., 2015; Cali et al., 2018). The Illumina short
reads were mapped to the initial sequence assembly using BWA
v0.7.12-r1039 with default parameters, which was then iteratively
polished with three rounds of correction using NextPolish v3.0.1
(-max_depth 100 cluster_optons = -w n -l vf = {vf} -q all.q -pe
smp {cpu} genome_size = auto) (Walker et al., 2014; Hu et al.,
2020). Purge Haplotigs software was used to generate a contig-
level assembly with only one copy of each of the contigs from
heterozygous regions. The completeness of the draft genome was
assessed by BUSCO v3 with the embryophyta_odb9 database
(Simão et al., 2015).

Ultra-high-molecular-weight (uHMW) DNA (DNA
length > 250 kb) were extracted using Bionano Prep Plant
DNA Isolation Kit (80003; Bionano Genomics, United States)
according to the manufacturer’s instructions. uHMW DNA
molecules were labeled with the DLE-1 enzyme and loaded onto
a Saphyr Chip and scanned for images on a Bionano Saphyr
system (Bionano Genomics, San Diego, CA, United States).
The raw molecules generated were quality-controlled and
filtered (molecules with a size < 150 kb were removed). An
optical map was generated using Bionano Solve package v3.4.
The generated optical map was used to construct scaffolds
using the Hybrid Scaffold pipeline of Bionano Solve package
v3.4 (CL.py -d -U -N 6 -y -i 3 -F 1 -a opt Arguments_non-
haplotype_noES_noCut_saphyr.xml) and Bionano Access v1.5.2
(Bionano Genomics, San Diego, CA, United States) with a more
stringent (1e-13) merging p-value threshold (Xiao et al., 2007;
Reisner et al., 2010; Mostovoy et al., 2016). The Hi-C raw reads
were filtered by fastp v0.12.6 with default parameters and then
mapped to the scaffolds with Bowtie2 (Langmead and Salzberg,
2012; Chen et al., 2018). We used Lachesis (ligating adjacent
chromatin enables scaffolding in situ) to cluster, order, and
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anchor scaffolds onto the chromosomes (Burton et al., 2013;
Dudchenko et al., 2017).

Annotation of Genome
The repeat sequences and elements were annotated by a
combination of de novo and homology-based methods.
LTR_FINDER (Haas et al., 2008) and RepeatModeler (Haas et al.,
2003) were used to generate a dataset of repetitive sequences
with default parameters. This dataset was BLAST against the
Plant Genome and Systems Biology (PGSB) repeat element
database to classify the repeats (Spannagl et al., 2016), and then
RepeatMasker was employed to annotate these repeats based
on the Repbase database (Bao et al., 2015). Further, tandem
repeats finder software was used to identify tandem repeats
(Benson, 1999).

The protein-coding genes of the LM8 genome were predicted
through a comprehensive strategy that combined results
obtained from de novo, homology-based, and transcriptome-
based predictions. Augustus was used for de novo prediction
with Hidden Markov Model (Stanke et al., 2008). Homologous
proteins from six plant genomes (Arabidopsis thaliana, O. sativa,
Zea mays, Hordeum vulgare, Physcomitrella patens, and Triticum
aestivum) were downloaded from Ensembl plants1 and used for
homology-based prediction by GeMoMa (Jens et al., 2016). The
non-redundant full-length transcripts obtained from the PacBio
Sequel platform were aligned to the LM8 genome assembly for
transcriptome-based prediction using PASA (Haas et al., 2003).

Gene structures were determined based on a combination
of results from the three prediction methods using
EvidenceModeler (Haas et al., 2008). Functional annotation
of protein-coding genes was achieved by BLASTP searches
against the Swiss-Prot database (Stanke and Waack, 2003).
Protein domains were annotated by searching against the
InterPro database using InterProScan (Zdobnov and Apweiler,
2001; Hunter et al., 2009). Non-coding RNA genes, including
miRNA, snRNA, and rRNA genes were predicted according
to the Rfam database, while tRNA genes were identified
using tRNAscan-SE (Lowe and Eddy, 1997; Griffiths-Jones
et al., 2005). The completeness of the predicted gene set was
assessed by BUSCO v3 with the embryophyta_odb9 database
(Benson, 1999).

Collinearity Analysis
Protein sequences of LM8, japonica var. Nipponbare, and
indica var. R498 were aligned by BLASTP v2.6.0 with default
settings. Syntenic gene blocks within the genome were detected
by MCScanX (Wang et al., 2012c) and visualized using the
jcvi python module.

Identification of Gene Families
Gene family identification was performed across LM8 (O. sativa
f. spontanea), O. aus (AUS), 5 cultivated rice varieties, and 11 wild
rice species. The 5 cultivated rice varieties included O. sativa ssp.
indica (IND), O. sativa ssp. japonica (JAP), O. sativa ssp. indica
var. Minghui63 (MH63), O. sativa ssp. indica var. Zhenshan97
(ZS97), O. sativa ssp. indica var. Shuhui498 (R498). The 11 wild

1http://plants.ensembl.org

rice species consisted of O. glaberrima (GLA), O. barthii (BAR),
O. glumaepatula (GLU), O. meridionalis (MER), O. rufipogon
(RUF), O. nivara (NIV), O. longistaminata (LON), O. punctata
(PUN), O. brachyantha (BRA), O. rufipogon var. JX-6 (JX-6), and
O. rufipogon var. Z59 (Z59). PUN and BRA belong to the BB
and FF genomes, respectively, while the others belong to the AA
genome. Across all species, the longest transcript of each gene
was used in further analyses. Orthologous and paralogous gene
clusters were identified using BLASTP (-e 1e-5 -F F). Clustering
analysis of protein sequences from the 18 Oryza genomes was
conducted with OrthoMCL (Li et al., 2003).

Phylogenetic Analysis
Multiple sequence alignments of the protein-coding sequences
of the 4,241 single-copy orthologous genes obtained from the
above analysis these protein sequences were performed by
MAFFT (Katoh and Standley, 2013). Phylogenetic relationships
were resolved using RAxML (-m GTRGAMMA -p 12345
-T 8 -f b -t -z) among these 18 Oryza genomes with all
single-copy genes concatenated into an ultra-long aligned
sequence, where O. brachyantha was designated as an outgroup
(Stamatakis, 2014). Divergence times were estimated by
MCMCtree (Puttick, 2019) with parameters of “RootAge ≤ 0.21,
rgene gamma = 23.52254, burnin = 100,000, sampfreq = 100,
nsample = 50,000, model = 7” in the PAML package (Nikolau
et al., 2003) based on a known divergence time (∼ 0.4 Mya)
between O. nivara and O. rufipogon.

Expansion and Contraction of Gene
Families
A random birth-and-death model was used to estimate changes in
gene families between the ancestor and each species using CAFE
with conditional likelihoods as the test statistics (-p 0.05 -t 10 -r
10000 lambda -s) (De Bie et al., 2006). A probabilistic graphical
model (PGM) was used to calculate the probability of transitions
in each gene family, and then all the gene families were classified
into three types (expanded, contracted, and unchanged). Finally,
GO enrichment was performed for further functional analysis of
the expanded genes.

Positive Selection Analysis
All orthologous genes identified in the LM8 genome were tested
for positive selection. The phylogenetic tree generated by RAxML
was used as the input, and the branch-site test was conducted with
CodeML (model = 2, NSsites = 2, fix_omega = 0, fix_omega = 1,
omega = 1) in the PAML package (Yang, 2007). Genes under
positive selection were determined based on the likelihood ratio
test (P < 0.01).

RESULTS

Genetic Map Construction and QTL
Analysis With a F2 Population
To further understand the mechanism of LM8 genome variation
in its special grain formation, a F2 population was generated from
the cross between LM8 and a cultivated rice variety Shen 08S.
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FIGURE 1 | Agronomic characteristics of LM8 and Shen 08S (parents) and the genetic map constructed based on the F2 population. (A) Plant height of LM8 (right)
and Shen 08S (left). Bar = 10 cm. (B) Panicle length of LM8 (right) and Shen 08S (left). Bar = 0.5 cm. (C) Branches of LM8 (right) and Shen 08S (left). Bar = 2 cm.
(D) Grain size of LM8 (bottom) and Shen 08S (above). Bar = 1 cm. (E) Genomic locations of 12 agronomic trait associated QTLs are illustrated on the 12 linkage
groups. PH, plant height; TN, tillering number; FLL, flag leaf length; FLW, flag leaf width; PL, panicle length; PB, primary branch number; SB, secondary branch
number; GL, grain length; GW, grain width; GT, grain thickness; LWR, length to width ratio; TGW, thousand-grain weight.

The two parents, LM8 and Shen 08S, showed obvious differences
in plant height, panicle length, and grain size (Figure 1 and
Supplementary Table 1). We sequenced the genome of F2
individuals as well as that of the two parents. A total of 10,739
high-quality SNPs were obtained and used to generate a genetic
map. The total genetic distance of the constructed genetic map
was 12,171.13 cM, and the average genetic distance between
two SNPs was 1.13 cM (Figure 1). The SNPs were distributed
throughout the 12 linkage groups (LGs) with the highest SNP
number (1,754) occurring on LG1 (1,510.48 cM total size) and
the lowest (523) on LG12 (713.79 cM total size). Collinearity
analysis showed that the genetic map had strong collinearity
(99.69%) with the reference genome sequence (Supplementary
Figure 1), and the sources of most segments in F2 individuals
were consistent according to the monomer source analysis. These
results suggest that the constructed genetic map is of high-quality
and suitable for further analyses.

Besides, combining the phenotypic data (Figure 2) obtained
from the F2 population and the genetic map, we identified 31
quantitative trait loci (QTLs) with 607 genes related to 4 plant-
type traits, 3 panicle-type traits, and 5 grain-size traits (Figure 1).

Eight of the QTLs explaining more than 17% of the phenotypical
variation were identified as major QTLs, which were located
at 788.3–789.4 cM on chromosome 3 (chr3), 34.4–37.5 cM on
chr11, 782.9–786.6 cM on chr3, 787.6–788.2 cM on chr3, 244.6–
253 cM on ch11, 204.9–217.6 cM on chr2, 11.4–17.3 cM on
chr8, and 33.6–38 cM on chr11 (Supplementary Table 2 and
Supplementary Figure 2). Fourteen QTLs were identified to be
associated with grain-size traits, including 1 for grain length (GL),
3 for grain width (GW), 6 for grain thickness (GT), 1 for length
width ratio (LWR), and 3 for thousand-grain weight (TGW).
These results would help in further detecting the genes from
the weedy rice LM8.

Identification of Candidate Genes
Related to Grain Length
LM8 has evolved to form extremely small grains that may develop
new elite rice varieties to study grain shape or yield related traits.
Therefore, using LM8 as the material to discover genes related to
grain size is practical to enrich rice resources. We conducted a
correlation analysis among the grain-size traits QTLs, including
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FIGURE 2 | Frequency distribution of the 12 agronomic traits in the F2 population. (A) GL, grain length. (B) GW, grain width. (C) GT, grain thickness. (D) LWR, length
to width ratio. (E) TGW, thousand-grain weight. (F) PL, panicle length. (G) PH, plant height. (H) PB, primary branch number. (I) SB, secondary branch number.
(J) TN, tillering number. (K) FLL, flag leaf length. (L) FLW, flag leaf width.

grain length, grain width, grain thickness, length to width ratio,
and thousand-grain weight. Significant positive correlations
(P < 0.05) were observed among grain length, length to width
ratio, and thousand-grain weight, indicating that grain length
has significant impact on grain size (Supplementary Table 3 and
Supplementary Figure 3). One QTL related to grain length was
located at 788.3–789.4 cM on chr3, corresponding to a 60-kb

interval harboring seven putative genes, which included 3 RAPdb
annotated genes (ORUFILM03g000091, ORUFILM03g000095,
ORUFILM03g000096) and 4 unknown function
annotations (ORUFILM03g000090, ORUFILM03g000092,
ORUFILM03g000093, ORUFILM03g000094) were important
candidate genes controlling grain length (Figure 3 and
Supplementary Table 4).
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FIGURE 3 | QTL for grain length and prediction of candidate genes. (A) QTL mapping results for grain length and seven putative genes (ORUFILM03g000096,
ORUFILM03g000095, ORUFILM03g000094, ORUFILM03g000093, ORUFILM03g000092, ORUFILM03g000091, and ORUFILM03g000090) within the region.
(B) Gene structure of ORUFILM03g000095 (top), (C) grain length (GL) distribution in each genotype of ORUFILM03g000095, (D) corresponding GL phenotypes in
F2 individuals (lower right). Asterisks is correlation between genotype and phenotype, *P < 0.05. **P < 0.01.

OsCLG1 (Yang et al., 2021) mediate ubiquitin ligase to
regulate grain length. Therefore, the candidate genes among
seven candidate genes, ORUFILM03g000095 is a homologous
gene to Os03g0427900 of Nipponbare and belongs to the U-box
protein gene family, in which a U-box domain acts as a ubiquitin
ligase to participate in protein degradation during the cell cycle
and morphological development (Sharma and Taganna, 2020;
Yang et al., 2021). To further investigate the molecular basis of
the small grain phenotype in LM8, we analyzed the sequence
of ORUFILM03g000095 gene from LM8, Shen 08S, and their
progenies and revealed a C-T SNP site, located in the 12th exon
5,339 bp downstream of the ATG start site (Figure 3). Grain
length in the F2 individuals of LM8 and Shen 08S displayed a clear

pattern with an order of TT > CT > CC (P < 0.01; Figure 3).
ORUFILM03g000095 genotypes were significantly correlated to
the grain length variation, suggesting that this locus plays an
important role in grain size regulation. Our results suggest that
ORUFILM03g000095 are possible candidate genes controlling
grain length. However, the underlying mechanisms of how this
gene regulate grain formation remain elusive and need to be
further explored.

Genome Assembly and Annotation
There are major differences between the morphology of weedy
rice and cultivated rice (O. sativa L.). The current research
on cultivated rice is relatively clear, but the research on
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weedy rice does not yet have a reference genome with high
assembly quality. To clarify the genome characteristics of the
F2 population parent (weed rice LM8), we assembled a high-
quality genome. Before assembly, SOAPdenovo was used for
pre-assembly. K-mer analysis (k = 17) estimated its genome size
to be around 362.7 Mb, with a moderate heterozygous rate of
0.20% (Supplementary Figure 4). However, the completeness
and quality of the assembly are not ideal if the genome is
assembled using the second-generation sequencing data alone.
Thus, the LM8 genome was sequenced and assembled by
applying a combination of diverse technologies, including Oxford
Nanopore long-read sequencing, Illumina short-read sequencing,
Bionano optical mapping, and Hi-C technology (Supplementary
Table 5 and Supplementary Figure 5). A total of 77.2 Gb
raw data (sequencing depth 100x) were collected from Oxford
Nanopore long-read sequencing, which were then self-corrected,
filtered, and polished to generate the final dataset (57.3 Gb) for
genome assembly (Table 1 and Supplementary Figure 6). The
contig-level assembly (LM8_contig) comprised 375.3 Mb, with a
contig N50 of 17.9 Mb (Table 1 and Supplementary Table 6).
Approximately 98.1% ubiquitous genes in embryophyte were
detected by the Benchmarking Universal Single-Copy Orthologs
(BUSCO) analysis (Supplementary Table 7), indicating that the
assembled contig was of high-completeness.

TABLE 1 | Summary of the sequencing, assembly, and annotation
of the LM8 genome.

Stat type Number

Assembled genome size (Gb) 77.2

Contig N50 (Mb) 17.9

Scaffold N50 (Mb) 30.5

Longest scaffold (Mb) 31.3

Anchored to chromosome (Mb) 375.8

Number of predicted protein-coding genes 36,561

Average gene length (bp) 3545.1

Average CDS length (bp) 1129.6

Average exons number per gene 4.4

Average exon length (bp) 255

Average intron length (bp) 705

Number of rRNAs 81

Number of snRNAs 772

Number of miRNAs 2,551

Next, using 476.2 Gb of molecules (> 150 kb) collected
from Bionano Saphyr system, we generated an optical map
for the LM8 genome, with a total size of 370.3 Mb and
an N50 of 24.2 Mb. With the aid of this optical map, we
further assembled LM8_contig into scaffolds (LM8_scaffold),

FIGURE 4 | The morphology and genome features of LM8. (A) Whole plants, bar = 10 cm. (B) Panicles, bar = 2 cm. (C) Grains, bar = 1 cm. (D) Genome features of
LM8. Circles from inside to outside are transposable element (TE) content, repeat density, gene density, and GC density.
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FIGURE 5 | Comparative genomics analyses of LM8 with other Oryza genomes. (A) Statistics of gene families in 18 Oryza genomes. (B) Core and dispensable
genes from five reference genomes. The numbers in the species section and overlapping section indicate the numbers of specific and shared gene families,
respectively. IND, O. sativa ssp. indica. JAP, O. sativa ssp. japonica. RUF, O. rufipogon. NIV, O. nivara. and LM8, O. sativa f. spontanea. (C) Phylogenetic
relationships and grain phenotypes of LM8 and other Oryza genomes. Pie charts represent total gene families, consisting of contracted gene families (red), expanded
gene families (green), and unchanged gene families (blue). The numbers of genes in expanded (+) and contracted (–) gene families in each rice variety are shown with
the rice variety name farthest to the right. The lineage divergence times are indicated on the nodes and nodes marked in red are known fossil time points.
O. brachyantha was used as the outgroup. MRCA, most recent common ancestor. AUS, O. aus. IND, O. sativa ssp. indica. JAP, O. sativa ssp. japonica. GLA,
O. glaberrima. BAR, O. barthii. GLU, O. glumaepatula. MER, O. meridionalis. RUF, O. rufipogon. NIV, O. nivara. LON, O. longistaminata. PUN, O. punctata. BRA,
O. brachyantha. JX-6, O. rufipogon var. JX-6. Z59, O. rufipogon var. Z59. MH63, O. sativa ssp. indica var. Minghui63. ZS97, O. sativa ssp. indica var. Zhenshan97.
R498, O. sativa ssp. indica var. Shuihui498. and LM8, O. sativa f. spontanea.

Frontiers in Plant Science | www.frontiersin.org 9 November 2021 | Volume 12 | Article 775051

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-775051 November 15, 2021 Time: 13:59 # 10

Li et al. Whole-Genome Sequencing Facilitates Genes Identification

FIGURE 6 | Collinearity between LM8 and two cultivated rice (JAP and R498) genomes. (A) Collinearity between JAP and LM8. (B) Collinearity between R498 and
LM8.

with a total size of 375.8 Mb and a scaffold N50 of 24.1 Mb
(Supplementary Table 6). After applying high-throughput
chromosome conformation capture (Hi-C) data to orient, order,
and phase these scaffolds, a total of 375.3 Mb sequences
(99.85%; Supplementary Table 8) were anchored onto the 12
chromosomes and the final chromosome-level genome assembly
(LM8_v1) was obtained. The Hi-C heatmap separated different
chromosomes and showed that the interaction intensity in the
diagonal-position was higher than that in the off-diagonal-
position (Supplementary Figure 7). BUSCO analysis showed
that 97.9% of the core embryophyte genes were complete in the
LM8 genome assembly (Supplementary Table 7). In addition,
87.1% (31,810) of the predicted genes were expressed according
to the transcriptome data. The above results suggest that the LM8
genome assembly is of high-quality and -completeness.

Repeat annotation results showed that 47.72% of the LM8
genome is composed of repetitive sequences, including 26.87%
retrotransposons and 20.85% DNA transposons. About 94.08%
of retrotransposons are long terminal repeats (LTRs), accounting
for 25.28% of the genome. The two most frequent types of LTRs
are Copia and Gypsy, accounting for 2.99 and 19.62%, respectively
(Figure 4 and Supplementary Table 9). Besides, through a
comprehensive strategy combining results obtained from de
novo, homology-based, and transcriptome-based prediction,
36,561 protein-coding genes were annotated in the LM8 genome.
These protein-coding genes have an average length of 3,545.1 bp,

an average coding sequence length of 1,129.6 bp, an average
exon length of 255.2 bp, an average intron length of 705.1 bp,
and an average exon number per gene of 4.4 (Table 1).
Among these annotated genes, 34,773 (95.91%) were functionally
annotated by at least one of the Swiss-Prot, KEGG, and InterPro
databases (Supplementary Table 10). In addition, homology-
based annotation of non-coding RNAs (ncRNAs) predicted 2,551
microRNAs (miRNAs), 81 ribosomal RNAs (rRNAs), and 772
small nuclear RNAs (snRNAs; Supplementary Table 11).

Comparative Analysis
To reveal the evolutionary relationship of the weedy rice LM8,
4,241 single-copy orthologous genes of LM8 and those from
other 17 Oryza genomes were used to construct a phylogenetic
tree by the maximum-likelihood (ML) method (Figure 5 and
Supplementary Table 12 and Supplementary Figure 8). The
phylogenetic tree demonstrated that LM8 diverged from the
ancestor O. rufipogon ∼ 0.32 million years ago (Mya; Figure 5)
and was clustered into a group with japonica, indicating LM8 is
more closely related to japonica compared to indica. Additionally,
genome collinearity analyses conducted between LM8 and two
cultivated rice varieties revealed that the LM8 genome had more
collinear genes with japonica var. Nipponbare (47,439/78,939;
60.1%) than indica var. R498 (34,750/74,110; 46.89%; Figure 6
and Supplementary Figure 9). Collectively, we speculate that
LM8 belongs to japonica-type weedy rice.
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FIGURE 7 | Venn diagrams showing specific and shared gene families between LM8 and other Oryza genomes in the same cluster of the evolution tree. (A) JAP,
RUF, JX6, Z59 and LM8. (B) LON, MER, PUN, BRA and LM8. (C) MH63, R498, ZS97 and LM8. (D) AUS, NIV, IND and LM8. (E) BAR, GLU, GLA, and LM8. AUS,
O. aus. IND, O. sativa ssp. indica. JAP, O. sativa ssp. japonica. GLA, O. glaberrima. BAR, O. barthii. GLU, O. glumaepatula. MER, O. meridionalis. RUF, O. rufipogon.
NIV, O. nivara. LON, O. longistaminata. PUN, O. punctata. BRA, O. brachyantha. JX-6, O. rufipogon var. JX-6. Z59, O. rufipogon var. Z59. MH63, O. sativa ssp.
indica var. Minghui63. ZS97, O. sativa ssp. indica var. Zhenshan97. R498, O. sativa ssp. indica var. Shuihui498. and LM8, O. sativa f. spontanea.

By comparing LM8 with four other rice species including
O. nivara (NIV), O. sativa ssp. indica (IND), O. sativa
ssp. japonica (JAP), and O. rufipogon (RUF), we found that
68.4% (17,403/25,430) of the gene families in LM8 were
shared among all five species, while approximately 12.4%
(3,143/25,430) were specific to LM8 (Figure 5). The closer
the relationship indicated by the phylogenetic tree, the more
the shared gene families (Figure 7). Among the 18 Oryza
genomes, 2,875 unclustered genes and 672 unique genes were
observed in the LM8 genome (Supplementary Table 12 and
Supplementary Figure 8). The proteins encoded by these
unique genes related to the formation of grain length, heading
date and tillering number including serine/threonine-protein
phosphatases (ORUFILM03g000947), photosystem II reaction
center proteins (ORUFILM08g001423), and zinc finger MYM-
type proteins (ORUFILM03g000136).

Gene Family Analysis
Gene family expansion/contraction has been shown to be
associated with domestication and ecological adaptation

(Peng et al., 2019; Zeng et al., 2019). To characterize the
LM8 genome, a genome-wide comparative genomics analysis
was performed among 18 Oryza genomes (Supplementary
Table 13). We assigned 36,561 LM8 genes to 25,430 gene
families (Table 1 and Supplementary Table 14). Relative
to the common ancestor of rice (O. rufipogon), 16.06%
(4,086/25,430) expansion and 28.73% (7307/25,430) contracted
gene families were observed (Figure 5 and Supplementary
Table 14). The expansion gene families included 12793
expansion genes, of which 213 QTL mapping genes
belonged to the expanded gene family. In the expanded
gene families, Gene Ontology (GO) enrichment analysis
revealed 295 GO terms involving biological process (BP),
cellular component (CC), and molecular function (MP).
Sixty-seven pathways were significantly enriched, including
carbohydrate metabolic process, signal transduction, and
cell growth (Figure 8). The significantly enriched genes
may contribute to the adaptability of LM8 to complex
environments during evolution. Meanwhile, we found 57
genes among the QTL mapping were detected by GO enrichment
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FIGURE 8 | Statistics of the GO enrichment analysis of the expanded gene families. The x-axis represents the percentage of enriched genes to the total annotated
genes. The y-axis indicates the entry of each enrichment category. The size of the dots corresponds to the number of enriched genes, and the color panel on the
right indicates the q-value. The lower the value, the more significant it is.

and enriched into 20 pathways including catalytic activity,
proteolysis, and transmembrane transport protein activity
(Supplementary Table 15). A total of 168 positive selection
genes (PSGs) were identified and annotated to be auxin
response proteins (e.g., ORUFILM02g003288), cell division
control proteins (e.g., ORUFILM01g004046), and ubiquitin-
protein ligase E3 UPL4 (e.g., ORUFILM05g002772), which may
participate in the regulation of grain growth process and grain
formation (Luo et al., 2013; Basunia et al., 2021). Nevertheless,

whether these PSGs can explain the difference in the grain size
need to be further explored.

DISCUSSION

With the development of sequencing techniques and
corresponding analysis approaches, the sequencing speed
and quality have greatly improved, while the cost has decreased
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tremendously, allowing a growing number of genomes to be
sequenced and applied to related studies. The combination of a
specific chromosome-level genome assembly and a high-density
genetic map has been verified to be effective to map QTLs or
locate genes associated with important agronomic traits (Luo
et al., 2020) and has been widely applied to various important
crops including cotton (Wang F. et al., 2020), peanut (Agarwal
et al., 2018), Cucumis melo (Hu et al., 2018), pear (Li et al.,
2019). In rice, Li et al. (2018) constructed a high-density genetic
map through performing whole-genome resequencing and
identified a candidate gene (DEP1) in determining panicle
length. Later, Sun et al. (2019) constructed a genetic map
and located a region on chr1 contributing to seed shattering,
awn length, and plant height. In this study, we generated
a chromosome-level genome assembly and constructed a
high-density genetic map with the help of high-throughput
sequencing approaches, we identified ORUFILM03g000095
gene on chr3 that may regulate grain length (Figure 3). We
have analyzed the candidate gene based on 3K genome data
which is important research in rice genomics research (Wang
et al., 2018; Wang C. et al., 2020), but the same haplotype as
LM8 was not found in 3K data, so we did not further analyze
it (Supplementary Table 16). This study would not only lay
a foundation for rapid discovery of genes from weedy rice
but also broaden the understanding of weedy rice utilization
on rice genetic improvement. Large number of candidate
genes were obtained in this study and those excellent gene
could improve the breeding value of cultivated rice. Next
step studying of the function of the candidate gene can use
gene knockout, mutation analysis, overexpression analysis,
genetic complementation, and other experiments to further
verify whether the candidate gene can be used to improve
cultivated rice.

The Oryza genus is generally believed to include 22 wild and
2 cultivated rice species based on morphological characteristics
(Jacquemin et al., 2014). Asian cultivated rice (O. sativa L.),
an important staple crop, is widely planted around the world
and has formed extremely rich genetic diversity during the
long evolutionary process. In O. sativa, the two subspecies
(i.e., indica and japonica) differ in morphology, anatomical
structure, physiological and biochemical characteristics, and
genome sequence, and their origins remain controversial
(Shinobu et al., 2002; Vaughan et al., 2007). The single-origin
theory believes that indica and japonica both derived from
O. rufipogon and diverged during the long-term domestication
and artificial selection (Chang, 1976; Zhu and Ge, 2005). By
contrast, the multi-origin theory believes that indica originated
from O. nivara in eastern India, while japonica originated
from O. rufipogon in the Yangtze River region of China
(Oka, 1974; Londo et al., 2006; Huang et al., 2012; Sun
et al., 2015), and the divergence between indica and japonica
subspecies occurred 0.4 Mya (Kumagai et al., 2010; Chen
et al., 2012). Our phylogenetic analysis showed that O. nivara
and O. rufipogon were present in two separate branches,
supporting the evolutionary model of multiple origins. LM8 was
originated approximately 0.32 Mya and harbors morphological
characteristics specific to wild rice such as shattering, hard

glumes, and small grains (Figure 5). Thus, it could be concluded
that LM8 is a kind of japonica-type weedy rice from a cross
between japonica and wild rice, which confirmed the result of
taxonomic study.

Chromosome-level genome assemblies may generally
accelerate gene discovery in crops to improve yield, quality,
and disease resistance (Rao et al., 2014; Qian et al., 2016; Bai
et al., 2018). As genome assemblies of Asian cultivated rice
varieties such as MH63, ZH97, and R498 become available, a
large number of structural variations have been successfully
obtained, which would have a wide-range impact on crop
genetic improvement (Zhang et al., 2016; Du et al., 2017).
For example, Zhang et al. (2014) assembled five AA-genome
rice species and identified 14 PSGs that are closely related to
rice flowering, development, reproduction, biotic and abiotic
resistance through comparative genomics analyses. Although
many genomes have been assembled in the Oryza genus, only
one of them belongs to weedy rice (WRAH), which was used
to discuss the origin of weedy rice (Sun et al., 2019). In this
study, we reported another weedy rice (LM8) genome for the
purpose of identifying genes. This chromosome-level genome
assembly contains 672 unique genes specific to weedy rice
compared with other 17 Oryza genomes (Figure 5). Besides,
the comparison of the contig N50 (6.09 Mb in WRAH and
17.86 Mb in LM8) and sequence gaps (94 in WRAH and
25 in LM8; Table 1) between these two weedy rice genomes
(Sun et al., 2019) indicates the high-quality LM8 genome
assembly is able to serve as a reference for accelerating the
identification of genes from weedy rice, thus improving the
cultivated rice varieties.
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