
ORIGINAL RESEARCH
published: 04 January 2022

doi: 10.3389/fpls.2021.774068

Frontiers in Plant Science | www.frontiersin.org 1 January 2022 | Volume 12 | Article 774068

Edited by:

Gregorio Egea,

University of Seville, Spain

Reviewed by:

Orly Enrique,

University of Seville, Spain

Nguyen Quoc Khanh Le,

Taipei Medical University, Taiwan

*Correspondence:

Radek Zenkl

radek.zenkl@usys.ethz.ch

Specialty section:

This article was submitted to

Technical Advances in Plant Science,

a section of the journal

Frontiers in Plant Science

Received: 10 September 2021

Accepted: 05 November 2021

Published: 04 January 2022

Citation:

Zenkl R, Timofte R, Kirchgessner N,

Roth L, Hund A, Van Gool L, Walter A

and Aasen H (2022) Outdoor Plant

Segmentation With Deep Learning for

High-Throughput Field Phenotyping

on a Diverse Wheat Dataset.

Front. Plant Sci. 12:774068.

doi: 10.3389/fpls.2021.774068

Outdoor Plant Segmentation With
Deep Learning for High-Throughput
Field Phenotyping on a Diverse
Wheat Dataset
Radek Zenkl 1*, Radu Timofte 2, Norbert Kirchgessner 1, Lukas Roth 1, Andreas Hund 1,

Luc Van Gool 2, Achim Walter 1 and Helge Aasen 3

1Group of Crop Science, Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich,

Zurich, Switzerland, 2Computer Vision Lab, Department of Information Technology and Electrical Engineering, ETH Zurich,

Zurich, Switzerland, 3 Remote Sensing Team, Division of Agroecology and Environment, Agroscope, Zurich, Switzerland

Robust and automated segmentation of leaves and other backgrounds is a core

prerequisite of most approaches in high-throughput field phenotyping. So far, the

possibilities of deep learning approaches for this purpose have not been explored

adequately, partly due to a lack of publicly available, appropriate datasets. This study

presents a workflow based on DeepLab v3+ and on a diverse annotated dataset of

190 RGB (350 x 350 pixels) images. Images of winter wheat plants of 76 different

genotypes and developmental stages have been acquired throughout multiple years

at high resolution in outdoor conditions using nadir view, encompassing a wide range

of imaging conditions. Inconsistencies of human annotators in complex images have

been quantified, and metadata information of camera settings has been included.

The proposed approach achieves an intersection over union (IoU) of 0.77 and 0.90

for plants and soil, respectively. This outperforms the benchmarked machine learning

methods which use Support Vector Classifier and/or Random Forrest. The results show

that a small but carefully chosen and annotated set of images can provide a good

basis for a powerful segmentation pipeline. Compared to earlier methods based on

machine learning, the proposed method achieves better performance on the selected

dataset in spite of using a deep learning approach with limited data. Increasing the

amount of publicly available data with high human agreement on annotations and further

development of deep neural network architectures will provide high potential for robust

field-based plant segmentation in the near future. This, in turn, will be a cornerstone of

data-driven improvement in crop breeding and agricultural practices of global benefit.

Keywords: deep learning, breeding, machine learning, remote sensing, random forrest, support vector

classification, high resolution image analysis, benchmark

1. INTRODUCTION

The growth of the human population, global climate change, and detrimental effects of
agriculture on the environment exerts an increasing pressure to address challenges in crop
production and breeding (Pretty et al., 2010; Reynolds and Langridge, 2016). Wheat is
one of the most important staple crops and, therefore, methods assessing its performance
in various management conditions and methods improving breeding pathways are urgently
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required. Phenotyping and thereby the quantification of plant
properties from images is a core bottleneck to achieving this
(Fiorani and Schurr, 2013; Walter et al., 2015).

Reliable and automated segmentation of wheat canopy under
field conditions is a premise to quantify canopy cover and to
derive traits, such as crop emergence, leaf growth, tillering,
and other traits subsequently (Roth et al., 2018, 2020). Also,
the classification between crops and weeds and the distinction
between healthy and diseased plant tissue are based on this
essential first step: how to detect the crop organ of interest in any
given image?

A reliable organ detection is a challenging task due to diverse
and dynamic lighting conditions, changing optical properties of
the soil due to wetting and drying, and diverse spatial patterns
which result in highly complex and constantly changing scenes
(refer to Figure 1 for a collection of random samples from the
same field).

With current methods, a significant amount of manual work is
still required to run and evaluate the experiments. Thus, research
groups are limited in the number and size of experiments
that they can operate. This has led to the emerging trend of
high-throughput phenotyping, increasing analysis throughput by
focusing on scalable experiments with a high level of automation
which should improve the genetic gain of breeding programs
(Araus and Cairns, 2014). In recent years, different platforms
for automatic data acquisition have been developed in hope of
attaining all the relevant information for the crop assessment
(Hund et al., 2019). This includes Unmanned Aerial Vehicle
(UAV) (Candiago et al., 2015; Aasen et al., 2018; Burkart et al.,
2018), moving platforms (Andrade-Sanchez et al., 2013; Bai et al.,
2016), autonomous rovers (Ruckelshausen et al., 2009, Agerris1),
and large-scale, fixed platforms (Kirchgessner et al., 2017; Virlet
et al., 2017).

The evaluation of the acquired data is a delicate task due to the
variance in the scene as described above. There is an enormous
amount of possible scenarios, in which classical approaches
such as manual and/or automatic visual indices thresholding
often achieve their limits since they need to be tuned for every
individual scenario. This makes their deployment for outdoor
canopy segmentation tedious and offers limited generalization
capabilities. Thus, the data evaluation of these experiments
has experienced penetration of data-driven approaches through
machine learning and deep learning techniques. The use of data
driven approaches for phenotyping is very promising as it enables
higher analysis throughput and removes potential human error,
theoretically leading to better results as the evaluation is data-
driven and not hand-engineered (Kamilaris and Prenafeta-Boldú,
2018).

1.1. Related Work
The challenge to be addressed can be abstracted to a semantic
segmentation task. Most prominent approaches for semantic
segmentation, such as Encoder-Decoder Networks, Pyramid
Networks, R-CNN based models and Dilated CNN models
(Ronneberger et al., 2015; Yu and Koltun, 2015; He et al., 2017;

1https://agerris.com/

Chen et al., 2018; Wang et al., 2020) incorporate the concept of
fully convolutional networks. These networks do not contain any
dense, fully connected layers but leverage the notion of stacking
convolutional layers with up- and downsampling. This concept
preserves the spatial information throughout the network as
the data is being propagated. Besides the improvement in
performance, one practical benefit is that the networks can
operate on varying image sizes. Typically, the used encoders are
slightly adjusted standalone deep convolutional neural networks
(CNNs) that have been pretrained on classification tasks in
order to leverage large scale datasets for additional generalization
performance. Prominent examples of such networks are He et al.
(2016), Huang et al. (2017), and Xie et al. (2017).

Segmentation for agricultural applications is receiving more
attention over the years as it repeatedly appears as a challenge
in major computer vision conferences such as Chiu et al. (2020)
or CVPPA212. In our experience, under uncontrolled outdoor
conditions, outdoor plant segmentation is currently an unsolved
problem that appears to be a bottleneck for increasing the degree
of automation in agriculture. Research has been conducted in
the scope of enabling robots to distinguish different plants in
order to apply precise local treatments (Milioto et al., 2018) or
to detect diseases for further analysis and adjusted mitigation
strategies (Singh andMisra, 2017). In addition, segmentation has
also found its use in phenotyping, as it is used for leaf counting
(Aich and Stavness, 2017), ears counting David et al. (2020), and
plant-soil segmentation on multiple scales which are ultimately
leveraged for growth tracking. Furthermore, segmentation can
be leveraged for roots analysis (Smith et al., 2020) and post
harvest quality control (Wu et al., 2020). Sensor carriers range
from satellites imagery that allows segmenting on a field-scale
(Ulmas and Liiv, 2020) to drones (Torres-Sánchez et al., 2015;
Fuentes-Pacheco et al., 2019), ground vehicles (Liu et al., 2017)
and stationary facilities (Sadeghi-Tehran et al., 2017) that allow
segmenting individual plants. The paradigm of segmentation in
agriculture is moving from empirical threshold based models
(Carlson and Ripley, 1997; Zheng et al., 2009; Bai et al., 2014)
and decision-tree based approaches (Guo et al., 2013) toward
machine learning (Sadeghi-Tehran et al., 2017; Yu et al., 2017;
Rico-Fernández et al., 2019) and deep learning (Milioto et al.,
2018; Abdalla et al., 2019). The most significant change in general
is that deep learning approaches are implicitly utilizing spatial
context information in addition to color information.

The trend of moving toward data driven models requires an
increasing amount of labeled data. Unfortunately, the number
and size of publicly available agricultural datasets are very
limited. These datasets are often designed for niche applications,
such as detection of specific diseases. This complicates the
creation of standard benchmarks and hinders the collaboration
of different research groups which results in small dataset
sizes. The most similar plant segmentation datasets to the
Eschikon wheat segmentation (EWS) dataset are the Leaf
Segmentation Challenge3 and Sugar Beets 2016 dataset4.

2https://cvppa2021.github.io/
3https://www.plant-phenotyping.org/CVPPP2017-challenge
4https://www.ipb.uni-bonn.de/data/sugarbeets2016/
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FIGURE 1 | Overview of variance in images from the Eschikon wheat segmentation (EWS) dataset of images taken between 2017 and 2020 with a Canon 5D Mark II

full-frame RGB camera integrated into the sensor head of the field phenotyping platform of ETH Zurich (Kirchgessner et al., 2017).

However, both datasets have controlled diffuse lighting, and the
Leaf Segmentation Challenge data originates from an indoor
experiment. It is worth noting the Global Wheat Head Detection
dataset (David et al., 2020) which is taken under the same
conditions but offers only bounding boxes for wheat ears and not
pixel-wise labels for plants.

1.2. Focus of This Work
This work focuses on establishing an analysis pipeline for plant
and soil segmentation in RGB images. Images and metadata were
taken in the Field Phenotyping Platform (FIP) 5 at the Research
Station for Plant Sciences in Eschikon, Switzerland (Kirchgessner
et al., 2017), and used to create a manually labeled segmentation
dataset. Images were captured with a nadir-oriented DSLR
camera that photographs different winter wheat genotypes. The
annotation process was distributed and coordinated amongst two
annotators which resulted in a feasible, subsampled, and stratified
dataset. The experience gained by creating this novel annotated
dataset will be used in future dataset extensions.

Methods to mitigate the limited dataset size were tested and
their influence on the performance was quantified. Possibilities
of using some of the provided metadata of the dataset were
explored. The results of the algorithm were compared with
respect to the quality of the annotations. The annotations’
quality was assessed in form of agreement evaluation of multiple
annotations attempts of same and different annotators.

5https://kp.ethz.ch/infrastructure/FIP.html

2. MATERIALS AND METHODS

2.1. EWS Dataset
Within the scope of this work, a new dataset for the segmentation
of plants and soil was created. It consists of 190 manually chosen
and hand annotated image patches of 350×350 pixels. The
images were selected from a large unlabeled dataset that consists
of approximately 100,000 20Mpx RGB images of different winter
wheat genotypes. These images were collected between 2017 and
2020 with a Canon 5D Mark II (Canon Inc., Japan) - 35 mm set
to autofocus and mounted on the FIP in Eschikon (47◦27’01.9"N
8◦40’57.5"E). Distance to the ground was approximately 3 m,
resulting in a ground sampling distance of 0.3 mm

pixel
. ISO, aperture

and shutter speed were adapted to illumination conditions based
on aperture priority in 2017 and 2018 and shutter speed priority
in 2019 and 2020. The image set within each year covers the
whole growing period from emergence to harvest. As the images
are taken in the field, they show situations with widely varying
illumination and soil moisture conditions (refer to Figure 1).

To generate a training set, images of the wheat canopies
between emergence and stem elongation were selected. In order
to ensure a balanced sampling of the different imaging situations,
the following subsampling strategy was used: the first major
criterion for the selection of images was the growth stage.
On the one hand, only images starring recognizable seedlings
were selected. On the other hand, only the images until stem
elongation were considered. These growth stage restrictions
were chosen as they correspond to the critical phase of early
canopy development of winter wheat where yield components
are formed (Simmons, 1987). Different growth stages with
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TABLE 1 | Eschikon wheat segmentation (EWS) dataset overview of the

distribution of direct and diffuse light with respect to the number of different days.

Year Images Images Different Images

direct light diffuse light dates total

2017 32 16 12 48 (25%)

2018 25 27 13 52 (27%)

2019 35 29 16 64 (34%)

2020 11 15 7 26 (14%)

respect to plant pixel ratios with respect to soil can be seen
in Figure 1.

After this preselection, the images were grouped according
to the illumination conditions direct and diffuse light folds.
However, this was done on the image date level which is
a simplification of the lighting dynamics. Since the complete
data acquisition cycle can take multiple hours, the lighting can
change within one measurement campaign. The goal was to
produce a balanced set of lighting conditions and growth stages.
However, the direct light scenario is over-represented in the data,
which means that not enough samples for perfectly stratified
lighting and growth stage subset can be established. This lead to
approximately 55% of images being in the direct light category.
The wheat genotypes were selected as follows, one-half of the
genotypes was sampled at random, whilst the other half consists
of one planophile and one erectophile genotype. Table 1 shows
the resulting general partitioning of the EWS dataset.

The resulting subset of 190 RGB images was cropped into
patches of 350×350 pixels and then manually annotated in form
of binary masks for plants and soil, respectively. The crop size
of 350 × 350 pixels was determined so that atleast two wheat
rows are visible in the image. In this way, no matter the image
rotation or cropping at least one wheat row will be clearly visible
after augmenting the image. The labeling process took place
in GIMP6, executed by two annotators. The protocol was to
segment vegetative active material. Pixels, where the annotator
was certain that they belong to vegetative active material from
a wheat plant, should be labeled as such. Everything else (soil,
rocks, dead plants, etc.) belongs to the class vegetative inactive
material. The segmented masks were then exported as lossless
8-bit monochromatic PNG images. The resulting 190 images
required approximately 80 h of combined annotation work.

Besides the images, multiple additional metadata is provided.
This contains the timestamps of the images, camera settings (ISO,
F-number, exposure), and measurements from a weather station
that logs temperature, soil moisture, and light flux. Based on
the temperature measurements, GDD metric is calculated and
provided as well (see Growing Degree Days in Appendix 2.2).
The distribution of data acquisition dates is bi-modal with a
main focus on spring and a secondary focus in late fall. This
distribution corresponds to the winter wheat growth cycle.
Winter wheat is sown in fall where weather conditions allow
for phenotyping and plant growth is significant. During winter,

6https://www.gimp.org/

insignificant changes in plant canopies occur, and measurement
conditions are unfavorable particularly due to very short,
dim days or snow cover. In spring, growth is restarted, and
measurement conditions improve and allow for phenotyping
again. The images were taken during different times of the day.
The acquisition times cover a great portion of a day, except for
late and early hours. The challenges with lighting conditions can
be seen in the different camera settings that should compensate
for the changes in the scene. The camera’s sensor gain (ISO) was
kept low when possible for achieving a maximal signal to noise
ratio. The movement of the camera platform and plants due
to the wind had to be taken into consideration when selecting
exposure time while the F-number had to be tuned based on the
growth stage of the plants, so that the depth of field is sufficient.
The histograms of date, time, ISO and combinations of exposure
time with respect to F-number can be seen in Figure 2.

2.2. Plant Segmentation With Deep
Learning
The basis of this work relies on CNN. The core principle of
CNNs is to piece-wise multiply of the convolutional kernel
with input. This simple operation is repeated and stacked into
layers, which form a network. With this operation, the spatial
information is incorporated into the computational algorithm as
a combination of multiple neighboring values from the input.
The research in this area has contributed to many different
variations of the convolution itself and also of the ways how
to combine the operations (for example, see He et al., 2016;
Chollet, 2017; Chen et al., 2018). As the input is passed through
multiple layers of the network, complex combinations of input
are created. Based on the application, the architectures have
varying forms. Fully convolutional image segmentation consists
of two major steps. First, a smaller set of high-level features is
extracted from the image input. Afterward, the extracted features
are used to make predictions with the original resolution for
every individual pixel. One of the approaches for this problem
is to use an encoder-decoder architecture. By its design, the
encoder is forced to compress the data into some high-level
representation while still preserving a link to the position in the
original images which is usually realized in a form of low-level
feature and/or spatial information propagation. In contrast, the
decoder is forced to restore the original resolution of the image
from high-level features.

For the encoder module, ResNet (He et al., 2016) has been
selected. It is a widely used deep learning architecture that
has been proved in a broad range of different scenarios (Jung
et al., 2017; Lin et al., 2018; Reddy and Juliet, 2019; Wang
et al., 2019). The key elements are the residual blocks where the
output consists of a sum of input passed through convolutional
layers and the original input. This approach helps with the
problem of vanishing gradient for deep networks as it yields
a more direct way of propagating information deeper through
the network. Based on the number and sizes of the underlying
convolutions multiple ResNet variants with different degrees of
complexity have been introduced. The choice of ResNet depth
directly influences the expressivity of the network and thus its
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FIGURE 2 | Histograms of EWS dataset. (A) Day of the year, (B) Time of the day, (C) ISO settings, (D) Exposure and F-number settings pair.

performance (He et al., 2016). Deeper networks are able to
learn more complex relations at the cost of increasing the total
number of parameters. Usually, this leads to a trade-off between
performance and speed. However, for small datasets, deeper
networks tend to overfit the data due to their larger amount
of parameters.

Deeplab v3+ (Chen et al., 2018) was selected as a segmentation
framework. It is a variation of the encoder-decoder architecture.
It uses Atrous Spatial Pyramid Pooling (ASPP) to extract
features at multiple scales at the same time. Additionally, it
leverages depthwise separable convolution which decomposes
a depth-wise convolution from a 3D convolution applied on
the spatial dimension and on the channels at the same time
into a 2D spatial convolution followed by a channel-wise 1×1
point convolution. This approach greatly reduces the number
of parameters required. The atrous convolution (also referred to
as dilated convolution) introduces a spacing for the convolution
kernel so that it is not necessarily applied to neighboring values
only, but with the same amount of parameters, it can be spread
out to a larger field. This offers a direct way to control the
resolution and receptive field of the features in the network.
This concept is leveraged in the ASPP module where features are
extracted at multiple scales by using multiple different rates for
the atrous convolution at the same time. The extracted low-level

and high-level features are then combined in the decoder module
where the original resolution and pixel-wise predictions as
achieved in multiple steps including bilinear upscaling two times.
Deeplab v3+ is a well-proven and extensively used architecture
for semantic segmentation. It has demonstrated state-of-the-art
performance on multiple datasets with diverse applications. This
has led to the high availability of the model with pretrained
weights. Since the target domain of this work offers a limited
dataset size only, the availability of pretrained models needs to
be considered during the selection.

2.3. Implementation Details
The proposed method was implemented in Pytorch Framework7

and trained on Nvidia RTX3070 with 8GB GPU memory, 16GB
RAM, 4 cores of AMD Threadripper 3960X. It is based on
DeepLab v3+ architecture with ResNet50 (He et al., 2016)
backbone pretrained on Imagenet (Krizhevsky et al., 2012)8. The
network was trained on data from the years 2018–2020 using
the crossentropy loss while reporting on 2017. This results in
154 images (75.0%) used for training and 24 images (12.5%)
for validation and 24 images (12.5%) for testing. Images for

7https://pytorch.org/
8https://download.pytorch.org/models/resnet50-19c8e357.pth
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validation and testing were split at random. SGD optimizer with
learning rate 0.1, the momentum of 0.9, and batch size of 16
was used to train with mixed precision for 150 epochs. The
architecture incorporates feature injection of additional inputs
and freezing of network parts (shown in Figure 3).

Random flipping, rotation by 20 degrees, and cropping
were used during image loading to generate images with the
size of 224 × 224 px. Additionally, jittering of saturation by
25%, contrast by 10%, and brightness by 1% were applied.
Next, the images are normalized to [0, 1] and standardized
with the mean of [0.485, 0.456, 0.406] and standard deviation
of [0.229, 0.224, 0.225] which were used during the pretraining
on the Imagenet. Finally, the images were upscaled to 448 ×

448 px using the bilinear transform and gaussian noise with
an SD of 0.001 was applied. The F-Number and exposure were
represented as a decimal number while ISO was first transformed
with log2(ISO/100).

2.4. Experiment Overview and Evaluation
Methodology
The very basis of metrics used in this case is to interpret the
vegetative active plant pixels as positives and the remaining
pixels (soil, vegetative inactive material, etc.) as negatives. Based
on this a confusion matrix and derived scores F1 score and
Intersection over Union (IoU) were calculated. As the plant pixel
ratio varies from image to image and the metrics are nonlinear,
the calculations were done with respect to individual images and
then averaged over the dataset. The dataset was split to training,
validation and testing fold, where 1 year is intentionally left out
for validation and testing in order to mitigate the potential bias.
The validation and testing splits have equal size andwere sampled
at random.

In order to explore possible improvements of plant
segmentation, different extensions and variations to the
classical deep learning approach were analyzed. These cover the
data augmentation pipeline, transfer learning with finetuning
for additional generalization, changes to the architecture,
and weighting of samples. These methods try to mitigate the
challenges of varying lighting conditions and external influences
which are typical to applications for outdoor plants.

2.4.1. EWS Dataset Benchmark
In order to quantify the difficulty of the dataset, the
following paragraph describes multiple methods used to
acquire a performance benchmark. The first reported
method is the unsupervised pre segmentation (refer to
Appendix 2.3) performance.

Next, a selection of different methods used for segmentation
in the scope of phenotyping is reported. This starts with Yu
et al. (2017) who used a decision tree with preliminary weather
state classification with Support Vector Classifier (SVC) (Platt,
1999) followed by another SVC for pixel classifications. This
method is trained on 5% of all available pixels selected at random,
as it did not converge when trained on more data. This is
followed by Sadeghi-Tehran et al. (2017) which used Random
Forest Classifier (Breiman, 2001) with 21 different color space
features as input. Furthermore, Rico-Fernández et al. (2019)

involved spatial context in a form of a 5 × 5 window around
the individual pixels transformed into CIE-Luv color space which
is fed into an SVC. This method was trained on 200 pixels per
image as proposed in the publication. However, in this case,
these 200 pixels were selected as random and not around plant
centers. Please note that none of the methods described above
included code for reproduction. Therefore, the methods had to
be reverse engineered and the reported results need to be taken
with caution.

Next, an out-of-the-box DeepLab v3+ with ResNet50 encoder
trained from scratch using the Stochastic Gradient Descent
(SGD) with a tuned learning rate of 0.1, the momentum of
0.9, batch size of 16, and crossentropy loss. This corresponds
to a straightforward strategy with basic hyperparameters
optimization which is then followed by its Imagenet-pretrained
twin. Finally, the proposed method consists of DeepLab v3+
with ResNet50 Encoder. The encoder is pretrained on Imagenet
and contains additional pathways for injection of ISO, F-
number and exposure time as supplementary inputs. Another
important element of the method is a tuned data augmentation
pipeline (refer to section 3.7). In addition, middle blocks
of the ResNet encoder were frozen during training. For
implementation details, refer to section 2.3 and particularly
Figure 3.

2.4.2. Human Annotations in Perspective
In order to properly evaluate an algorithm on the proposed EWS
dataset, the subjectivity and consistency of human annotations
need to be taken into account. Since this dataset is dealing with
a large amount of different visual scenarios (see Figure 1), the
performance of human annotators and tested algorithms varies
with the different cases.

An overlay of the 4 annotation attempts can be seen in
Figure 4. The first image represents the easy case with diffuse
light and medium sized plants. The second image shows a similar
scene as in the first image but under direct light. The next image
shows a low contrast scenario of small plants.

In order to quantify the consistency of the annotators, four
images were selected and annotated by two different annotators
two times. This resulted in four annotation, attempts for the
selected images. Based on these annotations different sets of
metrics can be computed by taking one set as ground truth
and the remaining three as performance benchmarks. This
process can be repeated for every annotation which results in 12
benchmark permutations.

In addition, the algorithm benchmarks can be computed
with respect to every annotation attempt. This leads to four
benchmarks per image for each tested method. Since the
benchmark metrics are non-linear, the benchmark results’
variations based on the selected annotation set are not
trivial. By comparing the performance of annotators and the
segmentation method, the theoretical buffer for improvement
can be quantified. Without having a perfect ground truth, the
theoretical performance is bounded by the quality of the labels.

Annotators’ agreement with respect to one another and to the
proposed method’s performance is reported in section 3.2.
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FIGURE 3 | Adjustments to ResNet encoder. Diagram denotes feature injection pathways and frozen layers during training. Blocks correspond to the blocks of

convolutions in the original ResNet architecture.
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FIGURE 4 | The first row depicts the agreement of four different annotation attempts. The second row shows the original images. Please zoom in for details at the

pixel level. Last row shows statistics of human annotations: Boxplot refers to 12 permutations of metrics resulting from 4 annotation attempts. Red and blue points

refer to annotator 1 and annotator 2, respectively. Green dots show the performance of the proposed method. Acc: Accuracy, F1: F1-Score, IoU: Plants Intersection

over union, prefix P stands for plants and prefix S for soil.

2.4.3. Architecture and Finetuning
In this experiment segment, elementary architecture concepts
should be tested. This covers the ResNet encoder depth
performance evaluated on two training sets with different sizes
and the influence of finetuning the middle encoder blocks (refer
to Figure 3). This experiment should provide some insights into
the appropriate architecture choice and allow for observations
with respect to the data volume used for training.

2.4.4. Feature Injection
Typically, only images are used as an input for image
segmentation. However, deep neural networks can utilize
additional information during training and/or predicting. The
design of neural networks creates increasingly high-level
information as the input passes through the network. In a typical
case, color or brightness gradients are detected at first. Deeper
in the network, edges will be recognized, and toward the end,

whole objects, such as leaves, in our case will be identified. If there
is some additional information available and this information is
correlated with the objective, it should theoretically improve the
performance of the network. The first problem that arises is to
know where to inject this additional information. Introducing
new information to the network at the wrong place can be
ignored by the network or can even lead to a performance drop.
This is due to the fact that the additional information has the
greatest impact when introduced at the similar complexity of
the features. The selected anchor points for feature injection
in the ResNet encoder are after each of its building blocks.
Which combination of blocks is the most suitable one needs to
be determined during hyperparameter search. Another question
that arises is how to add new inputs to a CNN, especially when
the new information does not have a spatial dimension. This is
solved by repeating the value up to the corresponding dimension
of according feature maps. Afterward, the newly created feature
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map can replace one of the original ones or it can be concatenated
at the end of the original feature maps. For the latter, the
concatenation is followed by a 1×1 point-wise convolution in
order to preserve the dimensions of the network.

2.4.5. Loss Selection
The selection of the loss function formulates the optimization
objective, it directly influences the convergence and resulting
performance. There are different variants of the loss functions
that can either optimize for a specific metric of interest or for
a latent function that is not directly measured. Examples for
the first case are the Jaccard loss (see Equation 1) or Dice loss
(see Equation 2). Note that in this work IoU is one of the main
performance metrics that are being tracked and is directly stated
by the Jaccard loss. The same applies to the Dice loss which is a
direct restatement of the F1 Score.

An example for optimization of a latent variable is the
crossentropy loss (see equation 3). Minimizing crossentropy
corresponds to maximizing the probability of predicting
a given class correctly while minimizing the probability
of misclassification.

Since a loss function is a general numerical objective, a
combination of losses is possible as well. For this scenario, the
Dice crossentropy loss (see Equation 4) was tested.

Jaccard loss = 1−
x[ctrue]

1+
∑N

i=0 x[i]− x[ctrue]
(1)

Dice loss = 1−
2 · x[ctrue]

1+
∑N

i=0 x[i]
(2)

Crossentropy loss = −log(x[ctrue])) (3)

Dice Crossentropy loss = Dice loss + Crossentropy loss (4)

where:

N = number of classes

ctrue = true class

x[i] = probability of class i

Note that the equations above are stated for one
individual sample.

2.4.6. Year Variability
Due to the small dataset size, a year-wise cross-validation
experiment was conducted. This means that 1 year was kept
for validation and testing while the remaining years were used
for training. The allocation of images can be seen in Figure 1.
Additionally, the validation and testing splits were rotated as well.
The split of validation and testing data was conducted at random.

The exact samemodel was then trained with the same parameters
on different folds of the dataset.

This experiment should provide insights into the variance of
the dataset with regard to its completeness and difficulty. In an
ideal case with sufficient dataset size, the performance should
however converge to the same value, as there would not be any
unexpected cases that did not appear in the training data.

2.4.7. Data Augmentation
As the dataset consists of mere 190 images, data augmentation
becomes an important part of artificially increasing the dataset
size. Altering the images can produce new samples that can
improve generalization as they leverage the prior knowledge
about the task. This can be realized in form of classical operations
such as random flipping, rotation, and cropping of the image.
For humans it is clear that the augmented image is the same
underlying data, but for the algorithm it is a brand new sample.

In addition, up- and down-scaling with bilinear interpolation
were tested. The reasoning was to simulate the data at multiple
scales, where down-scaling reduces the amount of data that
needs to be processed and up-scaling provides pseudo data at
higher resolution.

In order to address the changing lighting conditions, random
jittering of contrast, saturation and brightness was implemented.
Based on prior knowledge, small changes to these parameters
should not have an effect on the segmentation. One might
even argue that collecting more data will provide fluctuations to
contrast, saturation, and brightness naturally.

To make up for camera dynamics, especially the amount of
noise, Gaussian noise was applied to the input images at random.
This step should resemble the noise that is contained naturally in
the images and make the predictions more robust toward it.

All of the data augmentation methods are done randomly
on the fly during training when the data is being loaded.
Since training uses the data multiple times, it leads to different
variations of the same image. This means that the training data is
slightly altered every epoch. In the proposed setting, the network
is trained for 150 epochs. This leads to 150 sets of augmented
training images. As 154 images are used for training, this results
in 28,500 different images.

2.4.8. Transfer Learning and Finetuning
Models that are trained on different datasets tasks can still deliver
additional generalization even though the pretraining domain
and the target domain are unrelated. Since the complexity of
features increases with the network’s depth, some of the earlier
layers with low-level features such as gradients or edges do not
need to change much when changing the domain. The idea of
reusing the pretrained features while learning domain-specific
complex features is called finetuning. During training, this can
be enforced by freezing different layers while training parts of
the network only. The frozen layers are still incorporated in the
forward propagation of the input however their weights do not
get updated. Which layers exactly should be preserved and which
ones should be adapted, is a matter of finding the best performing
combination. Typically, the layers of a network are iteratively
being frozen by additionally freezing deeper layers and assessing
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TABLE 2 | Benchmarks on the EWS dataset.

Benchmark Pixel accuracy Plants IoU Plants F1 Soil IoU Soil F1

Presegmentation 0.836 0.568 0.657 0.782 0.873

Yu et al. (2017) 0.917 0.666 0.779 0.866 0.925

Sadeghi-Tehran et al. (2017) 0.903 0.638 0.760 0.845 0.912

Rico-Fernández et al. (2019) 0.909 0.691 0.805 0.839 0.908

DeepLab v3+ ResNet50 0.924 0.707 0.814 0.866 0.926

DeepLab v3+ Pretrained ResNet50 0.938 0.747 0.842 0.888 0.939

Proposed method 0.945 0.775 0.863 0.899 0.951

Trained on 2018–2020, reporting on the 2017 subset.

the overall performance. In this work, in order to decrease
the number of needed experiments, whole blocks of layers (see
building blocks in He et al., 2016) were iteratively frozen. In
addition, combinations of deep and shallow blocks were trained
and their performance was observed. This enables for the option
where not only the highly specific features need to be updated
but the low level features as well. The reasoning behind this is
that color is a crucial characteristic of plants and the optimal
color transformations which occur early in the network might
require adjustments for better performance. The overall depth of
the network and availability of training data also influences the
learning dynamics in terms of transfer learning and finetuning.
On the one hand, deeper networks are more prone to overfitting
when retrained finetuned on limited data. On the other hand,
deeper networks are able to transfer their larger generalization
capabilities from the original domain compared to their shallow
counterparts. Therefore, a trade-off in transferred generalization
and efficient adaptation to the new domain based on the selection
of the network depth and the finetuning mode is to be expected.

2.4.9. Input Data Transformation
Based on the methodology used in remote sensing andmanual or
automatic thresholding, a number of different hand engineered
features and visual indices are used to enhance the contrast
between the plants and soil. According to the contributions
of Milioto et al. (2018), a selection of these hand engineered
features can be used jointly with a deep convolutional network.
Therefore, a test with additional inputs to the proposed method
was conducted. In addition to the normal RGB inputs, different
sets of additional inputs were tested. Table S1 shows an overview
of different transformation sets. Also, note that stacking different
transformations of an image on top of each other greatly
increases the necessary GPU memory and therefore has to be
compensated with for example lower batch size. Additionally,
the exact implementation of feature transformation is unknown
therefore the results need to be taken with caution.

3. RESULTS

3.1. EWS Dataset Benchmark
The achieved benchmarks of the tested methods (see section
2.4.1) can be seen in Table 2. Additional numerical insights

to the statistical significance of individual metrics are reported
in Appendix 2.7.

The presegmentation method performs the worst on every
tracked metric. We see a major improvement when moving
toward (Sadeghi-Tehran et al., 2017; Yu et al., 2017). Both of
these methods use machine learning approaches on individual
pixels independently. Next, Rico-Fernández et al. (2019)
present another advance in performance. This method explicitly
incorporates pixel neighborhood and enables for neighboring
regions interactions.

Moving on to deep learning based methods that implicitly
use relations between neighboring pixels, another boost in
performance can be seen when training a DeepLab v3+ ResNet50
purely on the EWS dataset from scratch. The performance was
further improved by utilizing pretrained weights. Additionally,
implementing a combination of supplementary techniques which
represent the proposed method pushed the benchmark even
further. With respect to the performance of this method, various
sources of error can be linked to the quality of the labels and to
the algorithm (see Figure 5). Prediction examples can be seen
in Appendix 1.1. For the performance comparison of different
methods refer to section 3.1.

3.2. Human Annotations in Perspective
Human annotators deliver a solid, consistent performance when
dealing with diffuse light and high contrast images (shown
in 1st column in Figure 4). The only inconsistencies arise on
the boundaries of leaves or consider very thin parts of leaves.
The performance evaluated on IoU and F1 score is well above
0.95 with little overall variance in the metrics. As soon as
the complexity of the scene increases due to shadows, thinner
leaves, or ambiguous classification of vegetative active or inactive
material, the performance of annotations drops. Various degrees
of shadows in the images (shown in 2nd and 4th column in
Figure 4) lead to worse overall results but what is worth noting is
that a performance gap between the annotators becomes visible.
This occurs because the underexposed areas in the images are
hard to classify as plant or soil due to the low signal-to-noise
ratio. Another effect that can be observed in human annotations
is the different interpretations of plant parts in the image (shown
in 3rd column in Figure 4). The score of individual annotators
indicates that they exhibit higher consistency within the same
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FIGURE 5 | Examples of sources of error: (A) depicts cases linked to inconsistencies in labels, (B) shows failure cases of the algorithm. 1st row-original image, 2nd

row-evaluated predictions, 3rd row-underlying values of misclassified parts of the image. Please do zoom in for inspection on the pixel level. The highlighted areas will

be referred to in sections 3.2 and 4.
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TABLE 3 | Influence of different ResNet encoder depths and dataset sizes.

ResNet depth Training images Pixel accuracy Plants IoU Plants F1 Soil IoU Soil F1

18 142 0.945 0.760 0.849 0.904 0.948

18 76 0.937 0.740 0.836 0.893 0.942

34 142 0.945 0.763 0.852 0.906 0.942

34 76 0.940 0.756 0.849 0.896 0.943

50 142 0.945 0.757 0.843 0.905 0.949

50 76 0.943 0.761 0.851 0.900 0.946

TABLE 4 | Influence of finetuning different ResNet encoder depths.

ResNet depth Frozen layers Pixel accuracy Plants IoU Plants F1 Soil IoU Soil F1

18 No 0.945 0.760 0.849 0.904 0.948

18 Yes 0.944 0.754 0.842 0.908 0.950

34 No 0.945 0.763 0.852 0.906 0.942

34 Yes 0.945 0.762 0.850 0.905 0.949

50 No 0.945 0.757 0.843 0.905 0.949

50 Yes 0.947 0.767 0.853 0.908 0.950

annotator for both annotators. A plausible explanation for this is
that different annotators hold different but consistent opinions
on what should be considered a part of a plant. This can be
seen in the data because both annotators are in the upper
percentile of performance while the cross-annotator performance
is notably worse. However, these interpretations need to be taken
with caution due to the limited sample size of observations.
The success cases depicted in Figure 5A represent some of the
annotator uncertainty. The highlighted area of the first image
shows an area that was predicted as part of a plant and was
skipped by the annotator. The second and the last images show
a part of a plant that should not be annotated as vegetative
active material. The third image shows that in good lighting
conditions only minor disagreements along with the leaves’
boundaries are present. The failure cases of the proposed method
are presented in Figure 5B which shows problematic scenarios.
The first image corresponds to a bright scenario where the
plants’ shadows are misclassified. The second image points out
problematic underexposed areas due to the high dynamic range
of the image. The third image shows the difficulties of the network
when dealing with high sensor noise due to low light. Finally, the
last image demonstrates the scenario with limited contrast, where
stones get misclassified as parts of the plants.

3.3. Architecture and Finetuning
The commonly used DeepLab v3+ was selected as an architecture
of choice. The underlying backbone is the well-proven ResNet.
In order to mitigate the size of the dataset, imagenet-pretrained
ResNet weights were applied. The influence of different ResNet
architectures as backbones was analyzed and is reported
in Table 3. This has shown that more complex ResNet50

outperforms thinner ResNet18 on limited data and that ResNet34
performs the best when trained on the whole dataset.

Table 4 reports the performance with and without freezing
layers from middle blocks 2 and 3 of a ResNet. The results
show that ResNet50 benefits the most from freezing layers while
ResNet18 experiences even a performance drop. Meanwhile,
ResNet34 achieves comparable performance regardless of
freezing layers. These results can be interpreted as an improved
way to preserve the generalization capabilities from the
pretraining domain and reduce potential overfitting. Note that
results with freezing layers introduce a better score with
ResNet50 than training the whole ResNet34 network from the
previous experiment (shown in Table 3).

3.4. Feature Injection
In the following experiments, the potential of injecting various
metadata into the image segmentation network is shown. Data
from 3 different categories were included. It consists of sensor
data (ISO, F-Number, exposure time) and knowledge about
the scene (date, time, and GDD). Note that all these extra
inputs are available during the inference. The performance with
injected features according to the strategy depicted in Figure 3

is reported in Table 5. The most beneficial features to inject was
the combination of ISO, F-Number, and exposure, however, the
introduced benefits are limited. The inclusion of date and time
also led to a subordinate improvement. The benefits of using
GDD or ISO alone are limited.

3.5. Loss Selection
The selection of potential losses was based on the common
losses that are used by the scientific community. This covers
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TABLE 5 | Feature injection influence when using different metadata.

Additional inputs Pixel accuracy Plants IoU Plants F1 Soil IoU Soil F1

None 0.945 0.757 0.843 0.905 0.949

GDD 0.947 0.762 0.852 0.905 0.949

Date, Time 0.949 0.767 0.857 0.902 0.946

ISO 0.945 0.761 0.853 0.902 0.945

ISO, F-Number, Exposure 0.946 0.770 0.861 0.903 0.948

TABLE 6 | Testing of various losses.

Loss Pixel accuracy Plants IoU Plants F1 Soil IoU Soil F1

Dice loss 0.936 0.726 0.823 0.890 0.940

IoU loss 0.936 0.721 0.818 0.891 0.940

Dice crossentropy loss 0.946 0.766 0.852 0.906 0.949

Crossentropy loss 0.946 0.772 0.859 0.906 0.950

FIGURE 6 | Performance on different folds of the EWS dataset. The years in the Figure’s legend refer to the year used for validation and testing. The “v1” and “v2”

refer to the permutations of testing and validation subset within the selected year, respectively.

the crossentropy loss, dice loss, IoU loss, and dice crossentropy
loss. Their relative performance can be compared in Table 6. The
crossentropy loss achieved the best overall performance. Note
that it overperformed the IoU loss on the IoU metrics even
though IoU loss directly optimizes for those.

3.6. Year Variability
The results from training on both allocations and different folds
are reported in Table 6. The reported performance indicates
that the choice of a subset for validation and testing introduces
fluctuations to the model performance. The differences in
performance come especially from the distribution of the

challenging samples. The different folds of the dataset within
the same year were selected at random. The fact that a random
split into folds has an effect on the performance (shown for
example 2018 v1 in Figure 6) can be interpreted as insufficient
dataset size and/or insufficient representation of different lighting
conditions. In this case, the worst performing fold was negatively
influenced during testing by more difficult images with a slight
snow cover and high sensor noise due to low light.

3.7. Data Augmentation
In the following experiment, the influence of data augmentation
was analyzed. The benchmark consists of random horizontal and
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TABLE 7 | Data augmentation ablation study.

Augmentation method Pixel accuracy Plants IoU Plants F1 Soil IoU Soil F1

w/o upscaling 0.938 0.743 0.833 0.890 0.939

w/o rotation 0.945 0.757 0.845 0.903 0.947

w/o color jitter 0.947 0.767 0.859 0.908 0.951

w/o noise 0.947 0.772 0.860 0.907 0.949

Proposed method 0.945 0.775 0.863 0.899 0.951

TABLE 8 | Influence of pretrained weights from the Imagenet and 2016 Sugar Beets dataset for transfer learning.

Pretraining method Pixel accuracy Plants IoU Plants F1 Soil IoU Soil F1

No pretraining 0.939 0.750 0.8451 0.892 0.941

Imagenet 0.946 0.772 0.859 0.906 0.950

Imagenet + Sugar Beets 2016 0.943 0.767 0.857 0.895 0.943

vertical flipping, cropping to 224 × 224 px, and rotation up
to 20 degrees. Consequently, multiple different modules were
tested. The first one consisted of adding Gaussian noise to the
data. Afterward, different jittering of brightness, saturation, and
contrast was applied. Finally, upscaling the image to a higher
resolution was tested. The results of the module ablation study
can be seen in Table 7.

The greatest impact comes from upscaling to 200% size. This
positively impacts the performance of all the different encoder
depths. Since upscaling is a basic bilinear interpolation, the most
probable hypothesis is that the size of visual cues in the images is
at its limit. This can be interpreted as visual cues possibly being
too small. This is analog to the testimonies of annotators who
state that the resolution is too low to accurately label thin parts
of leaves.

The positive impact of randomly rotating the image can be
interpreted as an extension of the dataset size. However, one has
to note that due to the resolution limits, the rotation can worsen
the image quality on the critical parts of the image that are already
being on the edge of being correctly classified. So, the benefits of
extending the dataset can be at the cost of vague plant boundaries
during training.

Color jittering in the images has a positive influence on the
performance. The rationale is that this contributes to artificially
increasing the size of the dataset. However, during the selection of
individual jittering parameters, the performance of the network
started to suffer as the jittering became more aggressive. With
selected parameters of random jittering of brightness up to 1%,
saturation up to 25%, contrast up to 10%, and no jittering in hue,
the network becamemore robust to changes in lighting; however,
as themild performance difference suggests this cannot substitute
natural light changes, a larger dataset with more samples for
diverse lighting conditions.

Introducing a zero mean Gaussian noise with a SD of 0.001
should help to mitigate the noise coming directly from the
camera sensor. Since most of the images are taken with ISO 100
which means a relatively high signal-to-noise ratio (shown in
ISO histogram in Figure 2) introducing small noise fluctuations

to the images means should make the network more robust
toward sensor noise. However, it is decreasing the overall image
quality for the benefit of few images burdened with sensor noise
captured with high ISO. This yields a plausible explanation
why introducing noise is not particularly effective why further
increasing SD leads to a performance drop.

3.8. Transfer Learning
Since the number of images for training is limited, transfer
learning becomes an important part of the training pipeline
as it can yield additional generalization. The performance of
training from scratch and using a pretrained network was
compared. More accurately, two different datasets were used for
pretraining, namely, the ImageNet and the Sugar Beets 2016
dataset (Chebrolu et al., 2017). This has led to three different
pretraining methods which are compared in Table 8. The data
shows that there is an obvious benefit of using pretrained weights
compared to training from scratch. The difference between using
only ImageNet weights or ImageNet weights trained on Sugar
Beets 2016 dataset as a starting point results in slightly better
performance for using only the ImageNet. A possible explanation
for the cause of this behavior is differences between the datasets.
In contrast to Sugar Beets 2016 EWS dataset operates on denser,
uncovered plants where the plant and soil appearance changes
based on the weather, lighting conditions, and the date. This also
involves having different crops as the main objective, namely,
sugar beet and winter wheat. While Imagenet consists of a very
larger set of highly diverse classes, the Sugar Beets 2016 is highly
specialized in terms of the scene composition and objective.
Therefore, it is possible that pretraining on Sugar Beets 2016
starting with Imagenet weights might offer limited additional
knowledge about our task.

3.9. Input Data Transformation
The results from feeding stacked color transformations to the
network during training can be seen in Table 9. None of the
introduced transformations improved the performance. This
may be linked to the learning capability of the network, which can
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TABLE 9 | Input transformations, for overview of transformations refer to Table S1.

Input set Pixel accuracy Plants IoU Plants F1 Soil IoU Soil F1

RGB 0.947 0.777 0.863 0.905 0.948

Set 1 0.941 0.759 0.852 0.893 0.941

Set 2 0.944 0.759 0.851 0.900 0.945

Set 3 0.946 0.762 0.853 0.904 0.948

extract such transformations directly from the data when trained
end-to-end. Additionally, it may be linked to the fact that the
network uses weights that are pretrained on pure RGB dataset
and can therefore be re-learning features from scratch, overfitting
to the new inputs.

4. DISCUSSION

This section provides an interpretation of high-level concepts
resulting from the learnings gained during this work. The first
part of the discussion is dedicated to the dataset. It consists
of its potential, shortcomings, and proposed improvements for
future work. The second part is assessing the use of deep learning
for the segmentation of field-grown plants with a focus on the
methodology developed in this work.

4.1. Eschikon Wheat Dataset
The EWS dataset is a new field segmentation dataset that
offers various metadata in addition to the images. While some
of them were leveraged in this work (see section 3.4), others
(e.g., temperature, location in the field) remain unused. An
important asset of the EWS dataset is the uncontrolled lighting
conditions that the photographed canopies were exposed to over
multiple years in high temporal resolution and large number of
phenotypes. However, the vast majority of the acquired data still
remains unlabeled. The amount of annotated data is the biggest
shortcoming of the EWS dataset in its current form. As shown
in Table 3 increasing the dataset size resulted in a performance
boost of the image processing pipeline. This behavior is expected
to continue with further increases in dataset size. But increasing
the dataset size is not the full challenge. Human annotations can
become tricky as soon as the image quality decreases. Therefore,
the goal for a future expansion of EWS is gathering new data with
high quality human annotations.

4.1.1. Temporal Variance
Due to the long runtime of the field experiments, the introduced
dataset contains a high amount of different lighting conditions
settings. One of the repeating scenarios for failures in predictions
is different lighting. In general, this results in low contrast of
plants with respect to the soil, a large portion of underexposed
shadows, and a high amount of noise (see Figure 5B). This
behavior comes from the lighting distribution which is linked to
the different weather patterns occurring each year. Ideally, the
dataset would contain a sufficient amount of data so that the
performance is constant between the years. But as seen in Table 6
the performance of the different years is varying.With more data,
the metrics should ideally converge to similar results. When the

performance of the algorithm would converge to the same value,
it would indicate that the network is able to generalize well over
all relevant weather and plant patterns that are contained in the
data and that the dataset contains an adequate representation of
the data for every year.

4.1.2. Image Quality
Improving the exposure with techniques, such as HDR, would
also increase the quality and consistency of the data while
decreasing the semantic ambiguity of parts of the images due
to the high dynamic range of outdoor plants and soil. Addition,
in the current setting, when the leaves are not perpendicular
to the camera view but rather rotated in some direction, they
are very thin on the imaging plane leading to mixed pixels of
plants and soil in the extreme. The amount of mixed pixels can
be decreased by using a higher physical resolution. Alternatively,
multiple viewpoints could be used to prevent the very thin leaves
projections. However, multiple images would have to be taken
simultaneously due to the possible movement of the plants as a
result of external influences, such as wind. Also, the introduction
of a multi camera approach would allow for the extraction
of depth which would add another information layer to the
acquired data.

4.1.3. Dataset Expansion
Since it is expected to get better performance with larger dataset
size, annotation of new images is going to be a part of future
developments. As the dataset size increases, the optimization
of annotation workflow becomes a crucial element that can
potentially save a great part of the expensive annotation efforts.
The EWS dataset was created using approximately 80 human
annotation hours for 190 images. This amount of required
annotation time per image can be optimized in the future through
specialized annotation frameworks that offer fast workflows
and support pre-segmentation active learning with already
trained methods (for examples such as CVAT9, Lightly 10,
Labelbox11, Supervisely12).

However, the provided labels and the corresponding labeling
strategy can be improved based on the annotation artifacts
(shown in Figure 5A). The current labels contain small amounts
of high-frequency noise in form of holes or left out plant parts
that exhibit low contrast, sharpness, or are underexposed in
general. Besides that, the distinction between vegetative active
and inactive material is not always easily visible, the introduction

9https://cvat.org/
10https://www.lightly.ai/
11https://labelbox.com/
12https://supervise.ly/
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of more classes might show beneficial in the future. The
distinction between soil and plant material which is then further
divided into active and inactive material should decrease the
room for personal interpretation from the annotators. This two-
step classification should yield more consistent data as it would
not miss out on any plant pixels due to different annotator’s
interpretations and the second step of annotations can be easily
tuned during dataset revision. Ultimately, the misclassifications
of plants in favor of soil could be penalized differently when
inactive plant material is misclassified.

Fortunately, there is a vast number of images to choose for
future annotations. The most logical next step would be to keep
adding more different dates to the dataset in order to improve the
coverage of the varying outdoor conditions.

Another approach would be to keep adding images where the
prediction confidence (the difference between class probabilities)
is the lowest. These samples should be theoretically the most
beneficial ones as they provide information for the edge cases,
where the network is unsure about its predictions.

Furthermore, the fact that the images represent a growth
cycle can be leveraged for performance quantification. Since the
plant growth dynamics can be approximated to a canopy cover
measure which monotonically increases as the plants mature,
potential outliers can be identified by inspecting the canopy cover
development over time. These outliers can then be labeled and
used for training to improve the overall performance.

With the increasing size of training data, the dynamics
of the presented approaches will change. This effect can be
seen in section 3.3. First, more complex networks yield higher
generalization capabilities when trained on limited data (see
Table 3) due to their larger amount of already trained features.
However, when trained on all available data, this relationship
changed in favor of less complex networks and especially
ResNet34 because simpler networks are able to adapt faster and
with less potential overfitting to the new domain.

Nonetheless, the benefit of finetuning pretrained deeper
networks is expected to eventually decrease when the amount
of training data is increased (Soekhoe et al., 2016). When a
pretrained network is trained on a large dataset the importance
of preserving pretrained features will diminish as more relevant
and specialized features for the task can be extracted directly from
the data.

4.2. Deep Learning for Outdoor Agriculture
The proposed deep learning algorithm achieves a solid
performance on the EWS dataset even with its challenging
dataset size. It is hard to estimate how accurate is human
performance without labeling a major part of the dataset multiple
times. Looking at the performance of the proposed segmentation
algorithm (see green dots in Figure 4), multiple performance
patterns can be identified. The first image with good contrast
and diffuse light shows the consistently worse performance
of the algorithm compared to the human annotators, while
still achieving solid performance (around 0.95 on all tracked
metrics). During the direct light and good contrast scenario in
the second image, the different annotators and the algorithm
show performance with the high variance between the annotators

and between the algorithm based on which annotation attempt
is considered ground truth. For the remaining two samples,
the performance of the algorithm is well within the variance of
the human annotators. This means that the worse performing
samples show a similar agreement between the annotators and
the algorithm. Increasing the agreement of human annotations
would be beneficial to the method and would deliver more
consistent benchmarking as well.

Using deep learning based methods yields important
additional benefits besides the superior performance as described
in Table 2. First, the abundant expressivity of deep neural
networks leads to a buffer in their pattern learning capabilities.
Thus, their performance scales with the data as more complex
patterns (for example with regard to the growth stage or weather)
can be learned from the additional information. Furthermore,
neural networks are capable of dealing with large datasets by
design. This is further utilized by the contemporary deep learning
frameworks (such as Pytorch or Tensorflow) that are heavily
runtime optimized and yield scalable approaches. This can be
especially seen in the form of utilizing GPUs and distributed
learning and/or inference which scale with the available
hardware. This makes for a clear differentiation in comparison
to approaches like SVC as proposed in Rico-Fernández et al.
(2019) that struggle with larger data volumes due to their
current single threaded CPU implementation. In addition, the
proposed contextual information can be learned implicitly by
using convolutions in the neural net architecture that are capable
of extracting patterns not only in the color space input but in
the feature space as well. Ensemble methods such as Random
Forrest as proposed by Sadeghi-Tehran et al. (2017) offer better
paralellization capabilities as the individual predictors can be
trained simultaneously. However, their vanilla implementation
does not account for any spatial patterns. Thus, each individual
pixel is handled independently which misses out on any spatial
information and most probably contributes to the performance
gap. Spatial information in general is an additional layer of data
for prediction making. The benefits of incorporating spatial
information into the method would be even more important
for other tasks such as semantic segmentation of multiple plant
species as for example the shape of the leaves, plant center or the
amount of dead plant tissue are crucial species features.

4.2.1. Training on Limited Data
Deep neural networks are capable of extracting and learning
useful information from large datasets. When training on limited
data, they are prone to overfitting and thus can deliver poor
results. This issue can be mitigated by employing different
approaches such as fine tuning and data augmentation.

The use of fine tuning technique, where multiple layers were
frozen, was beneficial especially for ResNet50 (see Table 4) as
it limited the amount of parameters that were being optimized
and thus reduced the overfitting potential. A possible explanation
for the best performance with freezing the middle layers might
appear due to the strong visual color cues that plants exert. Color
cues should appear relatively early in the network, and it can
therefore be beneficial to retrain the early layers as well. In this
way, network can learn new low-level features, such as color
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transformations, from the target domain and combine them with
highly specialized features at the later stages of the network.

The data augmentation did indeed improve the performance
of the network (see Table 7) as it artificially alters the images and
thus increases the dataset size. The upscaling of the image showed
the greatest improvements, whereas the remaining modules
show only minor changes in performance. An interesting
phenomenon is the brightness, color, and contrast jittering as the
data augmentation method. From the problem description, the
lighting seems to be one of the key bottlenecks of performance.
However, its impact on the overall performance did not fulfill the
expectations of being the key element of the data augmentation
pipeline. This might be due to the number of lighting conditions
already contained in the dataset and the resulting generalization
of the network with respect to lighting. Another possible
explanation is that the color jittering does not greatly represent
the real changes in color and therefore might not be generating
accurate variations to lighting conditions.

4.2.2. Leveraging Metadata
The introduced dataset provides a lot of metadata in addition to
the images. The collected metadata is common in agricultural
applications, as camera parameters are stored as Exchangeable
Image File Format (EXIF) and weather station is a frequently
used equipment. The network benefits from using different
metadata as they can reveal high-level information about the
scene (see section 3.4). Using camera parameters as additional
inputs led to minor improvements. The camera parameters
correlate with the luminance of the imaged area and affect the
quality of the image along with the noise dynamics. The impact
of this approach with respect to dataset size is up to a discussion
as the network can either learn the information from the pure
image data or the benefits of injectingmetadata can becomemore
relevant as more data is provided for training.

Note that feeding additional inputs is not the only possibility
for leveraging the metadata. Alternative approaches, such
as sample weighting based on metadata, multitask learning
for additional generalization and/or pretraining for metadata
classification, regression, are good candidates for future work.

4.2.3. Future Opportunities and Remaining

Challenges
While Deep Learning methods can be applied on datasets with
limited data, a possibility of standardized benchmarking on a
large dataset is missing. This in fact makes the search for the
current state of the art in agricultural applications extremely time
intensive and replication difficult.

We see a great opportunity in broad collaboration of different
phenotyping research stations as it is a key for moving toward
a universal dataset. Since the imaging method of RGB imagery
from a nadir view is common in the phenotyping community, it
should be possible to combine partial datasets into a central one.
In addition, individual research groups usually operate in a fixed
locations. When multiple research groups would contribute to a
public dataset, the regional variance between the location would
be contained in the data. Afterward, researchers could optimize
their focus to keep improving the best performing methods.

Another opportunity is that in the discipline of high-
throughput field phenotyping, research stations typically produce
large amounts of images. The relevant analysis pipelines are
developed only using a small annotated subset of the available
data, with the rest of the data remaining unused in the
process. Therefore, exploring different modes of learning such
as semi-supervised learning, weakly supervised learning, and/or
sophisticated data curation might offer additional benefits as
a significantly larger amount of data could be used in the
development process.

One of the major challenges in this application is that when
the imaging method is updated and new data is being collected.
Multiple years are required in order to get at least a small
sample of the possible variances in the lighting conditions,
weather patterns. Therefore, the iteration cycle for the method
development is very long unless the old data can be reused in
spite of a different imaging method.

4.3. Conclusion
Semantic segmentation for phenotyping is yet another discipline
for contemporary deep learning research. This work provides
insights into the challenges of outdoor computer vision
applications in agriculture, ametadata-rich segmentation dataset,
and methods for an additional performance boost of typical
segmentation architecture. Due to the limited availability of large
scale datasets, training on a challenging amount of data needs to
be addressed.

An approach in form of the established DeepLab V3+
architecture with custom adjustments to the training pipeline and
mild changes to the architecture delivers a solid performance
close to human annotator variance, which was calculated on
an inspection dataset subset (shown in Figure 4). Failures
occur when the physical resolution of the camera is too low
and/or in extreme lighting conditions. The shortcomings due
to the limited dataset size can be mitigated with techniques
that utilize transfer learning (see section 3.3), augmenting the
training data (see section 3.7), or injecting additional information
as additional inputs (section 3.4). Even on a small dataset,
the deep learning based proposed method outperformed the
benchmarked machine learning based methods (see section 3.1).
The benchmarked machine learning based methods showed
a better performance with an increasing number of input
transformations and by considering neighboring pixels. The
superior performance of deep learning methods results from
learning the so far hand-selected relations implicitly and directly
from the data. The superior performance of deep learning is
expected to further scale with additional data and expand the
performance gap.

The presented dataset is the first dataset to cover the same field
over multiple years with a number of different lighting conditions
scenarios (shown in Table 1). The proposed method achieved
the best performance compared to the selected methods used
in the scope of phenotyping (shown in Table 2). Even at this
limited dataset size, the deep learning based approach is able
to outperform its machine learning counterparts and therefore
the dataset size threshold for feasible deep learning is lower
than one might think. Furthermore, the performance of the
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proposed method is expected to further increase when more data
is labeled and/or the shortcomings of the dataset are addressed.
In this context, high resolution images with a sufficient dynamic
range are the key for further development as human annotators
reach their limits due to ambiguous cases where the labels vary
throughout multiple attempts and lead to inconsistencies even
when labeled by the same person (see Figure 4).

A high quality, large-scale dataset would benefit the scientific
community as the high soil and lighting conditions variance is
the hardest problem that is yet to be solved (see Figure 5). In
addition, a standardized benchmark is currently missing in the
research cycle as most methods are reported on their own data
whilst code availability is a bottleneck for reproducibility and
method comparison.
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