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Ribosomal RNA genes (rDNAs) are located in large domains of hundreds of rDNA units 
organized in a head-to-tail manner. The proper and stable inheritance of rDNA clusters 
is of paramount importance for survival. Yet, these highly repetitive elements pose a 
potential risk to the genome since they can undergo non-allelic exchanges. Here, we review 
the current knowledge of the organization of the rDNA clusters in Arabidopsis thaliana 
and their stability during meiosis. Recent findings suggest that during meiosis, all rDNA 
loci are embedded within the nucleolus favoring non-homologous end joining (NHEJ) as 
a repair mechanism, while DNA repair via homologous recombination (HR) appears to 
be a rare event. We propose a model where (1) frequent meiotic NHEJ events generate 
abundant single nucleotide polymorphisms and insertions/deletions within the rDNA, 
resulting in a heterogeneous population of rDNA units and (2) rare HR events dynamically 
change rDNA unit numbers, only to be  observed in large populations over many 
generations. Based on the latest efforts to delineate the entire rDNA sequence in A. 
thaliana, we discuss evidence supporting this model. The results compiled so far draw a 
surprising picture of rDNA sequence heterogeneity between individual units. Furthermore, 
rDNA cluster sizes have been recognized as relatively stable when observing less than 
10 generations, yet emerged as major determinant of genome size variation between 
different A. thaliana ecotypes. The sequencing efforts also revealed that transcripts from 
the diverse rDNA units yield heterogenous ribosome populations with potential functional 
implications. These findings strongly motivate further research to understand the 
mechanisms that maintain the metastable state of rDNA loci.
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INTRODUCTION

The central importance of the rRNA genes for the biology of 
any organism is evident, as they are essential for survival and 
for all cellular processes. They are among the evolutionary 
oldest and also most highly transcribed genomic regions forming 
the RNA building blocks of ribosomes. Most eukaryotic genomes 
contain clusters with hundreds to thousands of rRNA gene 
copies arranged in tandem which are transcribed and processed 
within the nucleolus.

In eukaryotes, the 18S, 5.8S, and 25S rRNAs form the 
scaffold for the small and large ribosomal subunits and all 
three are encoded together in functional units and transcribed 
as a single polycistronic 45S precursor transcript by RNA 
polymerase I  (Wallace and Birnstiel, 1966; Moss et  al., 2007; 
Layat et  al., 2012). The 45S rRNA gene units (also termed 
rDNA units) are arranged in a head-to-tail manner in large 
clusters known as nucleolus organizing regions (NORs; Ritossa 
and Spiegelman, 1965; Wallace and Birnstiel, 1966). In the 
Arabidopsis thaliana reference ecotype Col-0, the 45S rDNA 
units are approximately 10 kb long and arranged in two clusters, 
each with ~400 repeats, at the top of chromosomes 2 and 4 
(Copenhaver and Pikaard, 1996; Sims et  al., 2021). A further 
component of the large ribosomal subunit, the 5S rRNA, is 
located on chromosomes 3, 4, and 5  in the A. thaliana Col-0 
ecotype, also arranged in clusters and transcribed by RNA 
polymerase III (Murata et  al., 1997; Layat et  al., 2012). One 
45S rDNA unit is also found in proximity of the 5S rDNA 
located on chromosome 3 (Abou-Ellail et  al., 2011). Although 
rRNA transcripts account for approximately 50% of all transcribed 
RNAs in a cell, only a fraction of the rRNA genes is transcribed 
at a given time (Warner, 1999; Grummt and Pikaard, 2003; 
Pontvianne et  al., 2010, 2012).

Recent studies have shown that individual 45S and also 5S 
rDNA units are not identical. Instead, they display a substantial 
amount of variability, not only within the intergenic regions 
but also in the genic regions transcribing the conserved ribosomal 
RNA subunits (Chandrasekhara et  al., 2016; Havlová et  al., 
2016; Rabanal et al., 2017b). These variants have been exploited 
as molecular markers to study rDNA cluster-specific expression 
(see below).

The high level of transcriptional activity leads to torsional 
stress in rDNA and requires the activity of topoisomerases to 
relieve the positive and negative torsions (French et  al., 2011). 
During replication, highly transcribed regions of the genome, 
such as the rDNA loci, may encounter frequent collisions 
between transcription and replication machineries, which need 
to be  resolved (Castel et  al., 2014; García-Muse and Aguilera, 
2016; Sims et  al., 2021). Both processes mentioned above are 
sources of DNA damage and genome instability in general. 
The unique nature of the rDNA loci not only makes them 
especially vulnerable to various types of DNA damage, it also 
demands special attention during DNA repair. The highly 
repetitive rDNA loci, with their hundreds of nearly identical 
rDNA units arranged head-to-tail, may undergo dramatic 
re-arrangements during homologous recombination (HR) DNA 
repair. HR may ultimately lead to lengthening or shortening 

of the rDNA arrays and in general to copy number instability 
(Warmerdam et al., 2016). Furthermore, the presence of rDNA 
clusters on multiple chromosomes adds the additional risk of 
inter-chromosomal recombination. As outlined in more detail 
below, during meiosis, a developmental program essential for 
the recombination of genetic traits, numerous DNA double-
strand breaks (DSBs) are introduced. In this context, the rDNA 
loci are sequestered away from the canonical HR pathway and 
a different DNA repair pathway is employed, termed 
non-homologous end joining (NHEJ; Sims et  al., 2019). NHEJ 
will less likely lead to genome re-arrangements and rDNA 
copy number loss, but may lead to the introduction of single 
nucleotide polymorphisms (SNPs) and short-range insertions/
deletions (InDels; Chang et  al., 2017; Wright et  al., 2018; Xu 
and Xu, 2020).

In this review, we summarize the recent findings concerning 
the stability of the rDNA loci and their inheritance from a 
perspective of meiosis. We  also provide a model, in agreement 
with the current data, that defines HR and NHEJ as the major 
determinants of rDNA cluster size and rDNA unit 
sequence variability.

DNA DOUBLE-STRAND BREAK 
FORMATION AND REPAIR

DNA damage, if not appropriately repaired, leads to loss of 
genetic material, genome re-arrangements, and cell cycle arrest. 
One of the most deleterious DNA insults are DNA DSBs which 
can for instance be generated by genotoxic agents or molecular 
tools like homing endo-nucleases, TALE nucleases, and CRISPR/
Cas9 (Wu et  al., 2014; Lopez et  al., 2021) by endogenous 
processes like the re-establishment of collapsed replication forks 
or by a dedicated machinery during meiosis. As mentioned 
above, DSBs can be  repaired by different repair pathways, the 
most prominent being NHEJ and HR. NHEJ has been found 
to be  active during all cell cycle stages, whereas HR is the 
dominant repair pathway during S and G2 and is briefly 
introduced below.

NON-HOMOLOGOUS END JOINING

Non-homologous end joining was first described in mammals, 
where it is the predominant mechanism for DSB repair in 
non-cycling, somatic cells. It is differentiated in c-NHEJ 
(canonical) and a-NHEJ (alternative) pathways, the latter 
including microhomology-mediated end joining (MMEJ), all 
with the direct ligation of processed DNA ends as common 
denominator. Re-joining of blunt ends or ends with a few 
overlapping bases occurs without regard for preserving the 
sequence or context integrity (Hays, 2002; McVey and Lee, 
2008; Chang et  al., 2017).

c-NHEJ is initiated with the recognition and the 
juxtaposition of the broken ends. In mammals, this step is 
promoted by the DNA-dependent protein kinase (DNA-PK), 
a complex composed of the KU heterodimer (Xrcc5/6) and 
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the kinase DNA-PK catalytic subunit (DNA-PKcs; Blackford 
and Jackson, 2017). It is important to note that DNA-PKcs 
have not been found to be  encoded in plant genomes, 
indicating that in plants NHEJ is orchestrated differently 
(Templeton and Moorhead, 2005; Yoshiyama et  al., 2013). 
The Artemis protein and the Xrcc4/DNA ligase IV heterodimer 
are subsequently recruited, with Artemis involved in the 
maturation of the DSB ends and the Xrcc4/DNA ligase IV 
complex catalyzing the resealing of the ends (Lees-Miller 
and Meek, 2003; Meek et  al., 2004; Bleuyard et  al., 2006). 
The KU heterodimer is composed of Ku70 and Ku80 and 
is involved in recognition, protection, and juxtaposition of 
the ends of a DSB. DNA-PKcs proteins are recruited to the 
DSB sites via interactions with the Ku/DNA complex and 
by phosphorylating various substrates (e.g.: Ku70, Ku80, 
Artemis, Xrcc4; Fell and Schild-Poulter, 2015). Artemis 
possesses both exo- and endo-nuclease activities and performs 
phospho-regulated maturation of the DSB ends as it cleaves 
DNA hairpins and other DNA structures (Lobrich and Jeggo, 
2017). The final step, consisting of the ligation of broken 
ends, is carried out by the Xrcc4/DNA ligase IV heterodimer, 
which is recruited by DNA-PK. The MRN complex, composed 
of the proteins Mre11, Rad50, and Nbs1, stimulates this 
ligase activity in vitro and is also implicated in the juxtaposition 
of the ends of the break (Grawunder et  al., 1997; Durdikova 
and Chovanec, 2017).

The alternative NHEJ pathway MMEJ is promoted in the 
absence of c-NHEJ factors and involves the alignment of 
microhomologies at the DSB site (Seol et  al., 2018). DNA 
ends are bound by PARP1 (potentially competing with Ku 
proteins; Wang et  al., 2006; Cheng et  al., 2011). Following 
DNA binding, PARP1 gets activated and poly-ADP-ribosylates 
itself and various targets in the vicinity leading to more accessible 
chromatin (Polo and Jackson, 2011; Beck et  al., 2014). 
Subsequently, the MRE11-complex is recruited to process the 
DNA and prepares them for ligation via Ligase I  or Ligase III.

The counterparts of most NHEJ proteins have been identified 
and characterized in plants (Bleuyard et  al., 2006; Charbonnel 
et al., 2011). For instance, LIGASE4 is a well-conserved hallmark 
factor, also in plants, in the c-NHEJ DNA repair pathway 
(Friesner and Britt, 2003). MRE11 and its complex partners 
have also been identified and characterized in plants, and they 
together are required for both HR and MMEJ. Importantly, 
no homologs of DNA-PK and Ligase III and some further 
factors have been identified in plant genomes (Manova and 
Gruszka, 2015; Yoshiyama, 2016), highlighting some fundamental 
differences in the DNA damage response in plants and 
other organisms.

HOMOLOGOUS RECOMBINATION

In contrast, DNA DSB repair via the HR pathway preserves 
sequence integrity. Following DSB formation (see above), 
initiation of HR depends on the localization of the Mre11-
Rad50-Nbs1/Xrs2 (MRN/X) complex and its partner CtIP/
Sae2/Com1 to the DSB sites (Wright et al., 2018). The MRN 

complex bridges the two ends, is involved in DNA end 
processing, and recruits further processing proteins (e.g., a 
5' to 3' exo-nuclease). The nucleolytic activities yield a 3' 
ssDNA overhang, competent to invade dsDNA to probe for 
a homologous repair template. In addition, the MRN/X 
complex recruits the DNA damage kinase ATM/Tel1 which 
phosphorylates a large number of downstream targets 
(including Rad9, Rad17, Rad53, Rpa1, Xrs1 Com1/Sae2, and 
Exo1) involved in DNA repair and checkpoint control (Clerici 
et  al., 2005; Roitinger et  al., 2015). The ssDNA ends are 
coated with the replication protein A (RPA), thereby 
stimulating the recruitment of recombinases [in yeast via 
Rad52; in higher eukaryotes via BRCA2 (Krogh and 
Symington, 2004)]. The recombinase Rad51 (and in meiosis 
its relative Dmc1; see below) mediates subsequent strand 
invasion to probe for homologue sequences, assisted and 
stimulated by a battery of accessory proteins (Sung et  al., 
2003; Chan et  al., 2019). In S/G2, the cell cycle stage during 
which HR is promoted, the sister chromatid and the chromatids 
of the homologous chromosome are available as repair 
templates. Following invasion and successful homology check, 
the invading strand is elongated and the displaced strand 
captured by the ssDNA overhang at the DSB site. Subsequently, 
the elongated strands are ligated yielding a double holiday 
junction (dHJ) that can lead, after resolution, to restoration 
of the original chromosome or to a cross-over and therefore 
a mutual exchange of chromosome arms. In case the sister 
chromatid has been used as a repair template, such an 
exchange is genetically neutral; in case a chromatid of the 
homologous chromosome has been used, such an exchange 
yields a chimeric chromosome. The latter is the desired 
repair product during meiosis to support meiotic chromosome 
disjunction and increase genetic diversity (Ohkura, 2015).

Alternatively, prior to second-end capture, the recombination 
intermediate can be dismantled by helicases and the invading, 
now elongated, strand anneals to the DSB site it originated 
from (also known as SDSA – synthesis dependent strand 
annealing). Subsequent DNA synthesis and ligation repairs 
the lesion, with the potential of some genetic information 
transfer (gene conversion) in case the template strand contained 
sequence polymorphisms, but without exchange of chromosome  
arms.

Different pathways have been identified to dismantle dHJs, 
utilizing structure-specific resolvases like GEN1, MUS81-EM1, 
or SLX1-SLX4 (or MLH1/3-EXO1  in meiosis; see also below; 
San-Segundo and Clemente-Blanco, 2020). Alternatively, dHJs 
can also be dissolved by a complex containing a helicase (BLM, 
bloom helicase) and a topoisomerase (TOP3-RMI1), to yield 
intact, but non-recombined chromosomes (Bizard and Hickson, 
2014). HR is a conserved process and plants encode all of 
the important mediators (Knoll et  al., 2014).

In this sense, in canonical non-repetitive regions of the 
genome, HR delivers a more faithful repair outcome with a 
high likelihood to re-establish the original DNA sequence, 
while NHEJ leads mostly to short-range deletions and to some 
extent to insertions and SNPs (Betermier et  al., 2014; Liu and 
Huang, 2014; Ceccaldi et  al., 2016).
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MEIOSIS

Meiosis is a specific developmental process required for the 
formation of gametes, carrying the genetic information for 
the next generation. Meiosis is characterized by two consecutive 
cell divisions that reduce the genome size by half and by 
recombination of the paternal and maternal genomes. Novel 
allelic combinations are created by the mutual exchange of 
genetic information between parental chromosomes. This 
depends on meiotic DNA DSBs which are enzymatically 
induced by the conserved SPO11 protein (together with less 
conserved partners; Hunter, 2015; Mercier et al., 2015; Robert 
et  al., 2016). About 250–300 DSBs are introduced in each 
individual meiocyte in Arabidopsis (Edlinger et  al., 2011), 
and they all have to be  reliably repaired for successful 
completion of meiosis. As mentioned, meiotic DSBs are 
introduced following DNA replication; therefore, cells are in 
G2-phase with HR being the predominant DNA repair pathway. 
Meiotic HR is specifically tuned to generate genetic diversity, 
preferentially using a chromatid of the homologue, and not 
the sister chromatid, as a repair template [inter-homolog (IH) 
bias]. Multiple such events along a chromosome ensure that 
homologous chromosomes recognize each other. At least one 
IH interaction per chromosome pair has to mature into a 
cross-over to ensure correct segregation of homologs during 
the first meiotic division (Gray and Cohen, 2016). In 
non-repetitive regions, recognition of the homologous partners 
works very reliably and non-allelic recombination events are 
not observed. This process is also aided by a meiosis-specific 
chromosome organization (“bouquet”), clustering telomers 
(and often also centromeres) to reduce the search space for 
the ssDNA nucleoprotein filaments (Harper et  al., 2004). 
Genomic loci that are comprised of repetitive sequences, like 
the rDNA clusters, create a liability during recombination 
since they can undergo non-allelic exchanges and are a potential 
source of deletions, duplications, inversions, or translocations 
(Sasaki et  al., 2010).

DSB FORMATION AND REPAIR AT THE 
rDNA LOCUS

Most of the studies concerning DSB repair at the rDNA region 
involve the use of induced DSBs by exogenous factors or the 
use of mutants that perturb the stability of the rDNA (Harding 
et  al., 2015; Sluis et  al., 2015; Warmerdam et  al., 2016). In 
plants, a recent study employed CRISPR-Cas9 to induce DSBs 
at the rDNA locus. This led to a large population of plants 
each containing a varying number of rDNA repeats ranging 
from about 20 to 200% of the wild-type copy number (Lopez 
et  al., 2021). While these plants represent a powerful resource 
to study rDNA dynamics in the future, the actual response 
to the Cas9-mediated DNA lesions has not yet been studied. 
In mammalian cells, it has been established that the DNA 
damage response at the rDNA and within the nucleolus depends 
on a critical threshold: low levels of DSB formation activate 
NHEJ, excessive DSB formation within the rDNA is repaired 

via HR, concomitant with transcriptional downregulation and 
nucleolus re-organization (van Sluis and McStay, 2017).

Studying rDNA repair in a meiotic environment is 
advantageous since a relatively defined number of endogenous 
DSBs are formed in a tightly regulated fashion. This allows 
monitoring DSB repair at the rDNA loci under physiological 
conditions (Sims et  al., 2019). In plants, only a handful of 
factors are known to be  involved in the repair process and 
stability of the rDNA in somatic and meiotic tissues after DSB 
formation. The RECQ/TOP3/RMI1 complex partner RMI2, the 
DNA helicases RTEL1, and FANCJ have been shown to 
be  independently needed for maintaining the stability of the 
45S rDNA loci in somatic tissues of some plants (Rohrig et al., 
2016; Dorn et al., 2019). Furthermore, several additional studies 
have shown the importance of the chromatin assembly complex 
CAF-1in preventing DSB formation at the rDNA loci and 
maintaining rDNA copy numbers (Mozgová et al., 2010; Pavlistova 
et  al., 2016). In addition, low amounts of 45S rDNA copies 
have shown to promote genomic instability in a genome-wide 
manner by generating large genomic re-arrangements (Picart-
Picolo et  al., 2020; Lopez et  al., 2021). In meiosis, c/a-NHEJ 
factors, such as LIG4 and MRE11, have been shown to 
be important for DNA repair within the rDNA region, whereas 
HDA6 and NUC2, which are involved in regulating rDNA 
transcription and nucleolus integrity, are essential for limiting 
HR at the rDNA (Sims et  al., 2019).

A BALANCE BETWEEN HR AND NHEJ

Studies in human cells, employing artificially induced DSBs, 
have described a re-organization of the nucleolus and a shift 
from NHEJ repair to HR upon reaching a certain threshold 
of DNA damage (van Sluis and McStay, 2017). This is concomitant 
with the formation of the nucleolar caps (Reynolds et al., 1964) 
and a shutdown of rRNA transcription while breaks in the 
rDNA persist. Nucleolar caps have not yet been described in 
other organisms other than humans and mice. In yeast, sites 
of DSBs within the rDNA re-localize to an extra nucleolar 
site for repair by HR (Horigome et  al., 2019).

Work performed in A. thaliana shows that in physiological 
conditions, such as meiosis, the DNA lesions in the rDNA 
are preferentially repaired by NHEJ. The nucleolus creates 
a HR-refractory zone with strongly reduced numbers of HR 
events at the NORs (Sims et  al., 2019). It is anticipated 
that sporadic events of HR can still occur, and they may 
leave noticeable traces, like rDNA unit duplication/
amplification/loss (copy number variation) and variable 
numbers of sequence repeats within the 45S rDNA units. 
Maintaining this unique HR-refractory domain depends on 
specific chromatin modifications which are distinct from 
the meiotic nucleus (Sims et al., 2019). In general, an increase 
in HR at the rDNA locus leads to the loss of units and 
reduced cell fitness. This is, for instance, well described in 
the FAS1 mutant background, in which an HR-dependent 
shortening of the NORs has been reported (Mozgová et  al., 
2010; Muchova et  al., 2015). Nevertheless, HR events likely 
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also occur in wild-type plants, since a dramatic divergence 
in rDNA copy numbers is detectable within tens of generations, 
suggesting the presence of low recurring HR events that 
lead to a change in NOR length (Rabanal et  al., 2017a). 
Furthermore, the presence of long segments of identical 
rDNA units is an indication of homogenization events at 
the rDNA locus, likely mediated by HR repair (Copenhaver 
and Pikaard, 1996; Sims et  al., 2021).

We suggest that DSBs within the rDNA, occurring at 
physiological levels (e.g., as a results of transcription/replication 
collisions or generated during the meiotic program), are repaired 
via NHEJ, preserving rDNA unit numbers and unit-internal 
repeat structures, but at the cost of producing errors. Currently, 
it is unclear whether there is a preference toward canonical 
or alternative NHEJ pathways (Sims et  al., 2019). However, 
there are indications that both pathways are necessary for 
repairing lesions within the rDNA since LIG4 and MRE11 
have an equal impact on rDNA stability. It is important to 
mention that DSBs generated within the rDNA by transcription/
replication conflicts or during meiosis are still rare events (Sims 
et  al., 2019).

In general, the errors produced by the NHEJ pathways have 
the potential to generate sequence diversity between the rDNA 
units, and one would expect for them to accumulate at the 
transcriptional start and termination sites of each unit, due 
to selection against mutations in the portions of the rDNA 
that yield rRNA integrated into ribosomes. In fact, the highest 
number of SNPs and InDels is found in the external transcribed 
sequences (ETS), particularly close to the promoter and 
terminator regions (Chandrasekhara et al., 2016; Rabanal et al., 
2017b). In contrast, very few SNPs/InDels are found within 
the portions transcribing the ribosomal RNA subunits (18S, 
5.8S and 25S). This correlates well with the suggested high 
levels of transcriptional stress in the rDNA, with purifying 
selection acting on the regions transcribing rRNA subunits 
and with DNA lesions being repaired via NHEJ.

Imbalanced accumulation of polymorphisms is also apparent 
between the two NORs of A. thaliana. A recent study 
combining long- and short-read sequencing technologies to 
define the nucleotide composition and organization of 405 
individual rDNA units of NOR2 of ecotype Col-0 identified 
less SNPs/InDels on the transcriptionally less active NOR2, 
than on NOR4 (Sims et  al., 2021). To display the sequence 
diversity of these 405 rDNA units, we  utilized their data 
and generated a phylogenetic network. For the analysis, 
we  excluded the highly repetitive region of the SalI repeat 
boxes from each unit. The TCS network was inferred 
(Supplementary Figure S1) using the integrated method of 
the TCS approach (Templeton et  al., 1992; Clement et  al., 
2002), which is based on the concept of statistical parsimony 
in PopArt (Leigh and Bryant, 2015). The network shows a 
lack of phylogenetic structure in the data indicating that a 
lot of parallel and reverse mutations obscure the relations 
between the units and that the conservative nature of the 
rDNA units in general may possibly mask local phylogenetic 
information. To address this latter point, we  repeated the 
TCS analysis for short stretches of rDNA units (represented 

in the 59 BACs as published in Sims et  al., 2021). Indeed, 
the majority of the BACs show a clear tree-like structure, 
with only very little reticulation. Thus, locally, the evolutionary 
process follows a classical tree-like pattern. Moreover, directly 
adjacent units on a BAC tend to be  next to each other in 
the tree (data and visualization available upon request). The 
contigs identified in (Sims et  al., 2021) provide additional 
evidence of tree-like evolution of the NOR2 region (Figure 1). 
Though the tree-like relation breaks down, the more rDNA 
units are analyzed due to multiple identical units occurring 
along the NOR2 region.

A plausible explanation for the higher abundance of SNPs/
InDels on NOR4 could be  derived from the fact that in the 
ecotype Col-0, NOR4 is transcriptionally active in all analyzed 
tissues, while NOR2 is selectively silenced during development, 
and it is only active in certain tissue types (Chandrasekhara 
et  al., 2016; Rabanal et  al., 2017a). Transcriptional stress per 
se is a prime source of DSBs, and the rDNA is considered a 
hotspot of transcription and replication stress (Takeuchi et  al., 
2003). Since the pattern of NOR expression varies greatly 
among Arabidopsis ecotypes with some expressing predominantly 
one and some the other NOR (and some both), it would 
be  interesting to analyze whether rDNA polymorphisms are 
positively correlated with transcriptional activity in 
different ecotypes.

It is interesting to speculate that the nucleolus represents 
an HR-refractory sub-compartment within the nucleus during 
meiosis (and after pre-meiotic DNA replication). As stated 
above, both NORs are transcriptionally activated in order to 
be recruited to the nucleolus and embedded in its HR-refractory 
zone (Sims et  al., 2019). Perturbing the rDNA transcriptional 
activity or the nucleolar architecture generates an imbalance 
in the rDNA protective mechanism. In this sense, rDNA 
transcriptional activation, and subsequent recruitment into the 
nucleolus, could be  a key regulatory mechanism to determine 
the mode of rDNA repair after DNA damage. The recruitment 
into the nucleolus following transcription is a conserved feature 
of rDNA (Pontvianne et  al., 2013; Sims et  al., 2019).

The protective mechanisms surrounding the 45 rDNA regions 
could not be  limited to the nucleolus itself, since in certain 
tissues, the majority of 45S rDNA genes are not transcribed 
and excluded from the nucleolus. Inactive NOR4 rDNA genes 
are generally located at the nucleolar periphery, whereas NOR2 
rDNA genes are completely excluded from the nucleolus area 
(Pontvianne et  al., 2013).

It remains unknown whether the nucleolus plays a protective 
role in other plant tissues or in other organisms. In human 
cells, massive DNA damage of the rDNA leads to the formation 
of nucleolar caps. It has been shown that these caps contain 
broken rDNA which then becomes available to the HR machinery 
of the nucleus (Sluis et  al., 2015), lending support to the idea 
that the nucleolus represents a general and conserved 
HR-refractory sub-compartment. Hence, the nucleolus might 
have the intrinsic property of excluding HR-related proteins. 
In line with this idea, the nucleolar proteomes of Arabidopsis 
and of humans showed no evidence of the presence of HR 
proteins (Andersen et  al., 2005; Montacié et  al., 2017).
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CONTROLLING SEQUENCE 
HOMOGENEITY AND HETEROGENEITY

The repetitive rDNA loci are considered intrinsically unstable 
genomic regions since they are prone to various types of 
DNA damage and repair events. The sequence variations 
identified in individual rDNA units (Chandrasekhara et  al., 
2016; Havlová et  al., 2016; Rabanal et  al., 2017b; Sims et  al., 
2021) may represent past DNA repair events following an 
error-prone pathway (NHEJ). Taking into consideration rDNA 
copy numbers, it is possible to evaluate the history of DNA 

repair events following an error-free pathway (HR). While 
sequence variations of rDNA units can readily be  analyzed 
in individual plants, the evaluation of rDNA unit copy 
number variations demands the analysis of large populations 
or multiple successive generations (Rabanal et  al., 2017b; 
Sims et  al., 2021).

The rDNA copy number can also be  considered as a 
genetic trait and studied in pedigrees. Indeed, when analyzing 
the trait of “rDNA copy number” over a few generations 
(two generations in F2s, about eight in recombinant inbred 
lines – RILs), it appears stable enough that it can be mapped 

FIGURE 1 | The TCS networks were inferred from rDNA units of the contigs F2N4-F1B23-F2G13, F1F17-F2C3-F2J17, F1F11-F1N27 and F2G18-F19A6 identified 
in (Sims et al., 2021). The first unit of BAC F2N4 and the fourth unit of BAC F1F11 were excluded from the analysis. Furthermore, the highly repetitive SalI boxes 
were not taken into account for this data analysis. In the network, each node represents a unique sequence and its size is proportional to its frequency within the 
data. Short vertical bars on the lines connecting similar sequences represent the number of variations between them. Visualizations of the analyses of the 59 
individual BACs are available upon request.
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to either NOR in segregating populations. Moreover, the 
apparent lack of F1-like rDNA copy number phenotypes 
after several generations of inbreeding in a RIL population 
further strengthens the notion that the NORs of homologous 
chromosomes rarely recombine, in agreement with the idea 
that the nucleolus is a HR-refractory sub-compartment of 
the nucleus. Importantly, analyzing a wider generational time 
window, a progressive divergence in the number of rDNA 
units in single seed descent A. thaliana plants was apparent 
within tens of generations. As a consequence of this unstable 
inheritance, and in spite of the fact that rDNA unit numbers 
vary considerably in natural A. thaliana populations (Davison 
et  al., 2007; Long et  al., 2013), genome-wide association 
studies failed to map the source of the variation to either 
of the NORs (Long et al., 2013). This means that rare events 
of HR might take place, only evident in large populations 
or when observing multiple successive generations, which 
lead to dramatic rDNA unit number variations.

In contrast, within plants containing a small amount of 
45S rDNA units, the rDNA gene copy numbers can be quickly 
restored and amplified to wild-type levels. This indicated that 
there is mechanism in place to restore the 45S rDNA copy 
numbers within individuals with low amount of rRNA genes 
(Pavlistova et  al., 2016).

FUNCTIONAL AND EVOLUTIONARY 
IMPACT OF rDNA HETEROGENEITY

Different studies on different organisms (including humans, 
flies, worms, and plants) have shown that the rDNA genes 
are not identical either within or among individuals of the 
same species (Gonzalez et  al., 1985; Keller et  al., 2006; Stage 
and Eickbush, 2007; Pillet et  al., 2012; Bik et  al., 2013). 
Nevertheless, certain SNPs/Indels are stable and abundant 
enough in either of the two NORs in A. thaliana that they 
qualify to serve as reporters of NOR-specific expression 
(Chandrasekhara et  al., 2016; Rabanal et  al., 2017a). There is 
unequivocal evidence of selective silencing of one of the two 
NORs during vegetative development in A. thaliana, with the 
majority of all rRNAs being generated just from one locus. 
Nevertheless, there is also compelling evidence that (1) there 
is selective transcriptional activation of certain rDNA units 
from the otherwise silenced NOR locus in some tissues and 
(2) that not all rDNA units at the active NOR locus are 
transcribed at the same time (Pontvianne et  al., 2013). rDNA 
unit variants are not randomly distributed along the NORs 
[at least established for NOR2 (Sims et  al., 2021)], but rather 
in variant sub-clusters that share certain SNPs/Indels 
combinations. In some instances, these blocks of corresponding 
rDNA units are disrupted by rDNA units of a different subtype, 
but still are transcriptionally co-regulated (Sims et  al., 2021). 
These findings provide a solid base for the future dissection 
of the fine-tuned regulation of expression of rDNA variant 
units within a NOR.

It is tempting to speculate that the heterogeneous population 
of rDNA units and their regulated expression has an important 

impact on protein translation. The presence of expressed 
rRNA variants has been shown in various organisms by 
analyzing total RNA (Kuo et  al., 1996; Carranza et  al., 1999; 
Tseng et  al., 2008; Rabanal, Mandáková, et  al., 2017; Simon 
et al., 2018). Some of the identified SNPs/InDels were located 
within the genic regions that encode the 25S and 18S rRNA 
subunits which are integrated into ribosomes. Furthermore, 
several studies demonstrated that variant rRNAs are 
incorporated into polysomes, the ribosomal fraction actively 
committed to protein translation (Gonzalez et  al., 1988; 
Cloix et  al., 2002; Mentewab et  al., 2011; Dimarco et  al., 
2012; Kurylo et  al., 2018; Parks et  al., 2018; Sims et  al., 
2021). Interestingly, various of these rRNA gene variants 
are differentially expressed in a tissue-specific manner. 
Furthermore, some sequence variations are located in regions 
that could have a functional impact on the biology of 
ribosomes. Most of the genic rRNA sequence variations are 
located in ribosomal expansion segments, that vary greatly 
between species, but could have an important impact on 
interacting proteins. A few SNPs/InDels occur in the rRNA 
core domains. For instance, one G to T transition present 
in A. thaliana is located between the H74 and H88 ribosomal 
domains at the peptidyl transferase site and thus has the 
potential to impact ribosomal translation directly. In the 
parasite Plasmodium, two structurally distinct 18S rRNAs 
are differentially expressed during its life cycle (Gunderson 
et  al., 1987; Waters et  al., 1989). And more recently, the 
expansion segment 9S has been shown to selectively recruit 
Hox9 mRNA via its 5' UTR stem-loop (Leppek et  al., 2020).

In addition, it has been shown that in the bacteria Vibrio 
vulnificus, from a heterogeneous population of ribosomes, it 
primarily uses ribosomes containing a particular ribosomal 
RNA variant to translate stress-related mRNA (Song et  al., 
2019; Leppek et  al., 2020). Similarly, in Escherichia coli, a 
specific branch of the stress response utilizes a truncated 
rRNA to selectively bias translation of stress response proteins 
(Vesper et  al., 2011).

CONCLUSIONS/PERSPECTIVES

The most current sequencing technologies, in combination with 
detailed and large-scale population studies and in-depth analyses 
of ribosomal RNA variants, have generated novel and 
exciting insights.

Without any doubt, the NORs cannot be  regarded as stable, 
rigid domains comprised of – nearly – identical rDNA units 
anymore, but rather as dynamic chromosomal loci with high 
variation in rDNA unit copy numbers and sequences. 
We  consider a delicate balance of the HR and NHEJ DNA 
repair mechanisms to be  responsible for the dynamic nature 
of the NORs. We  suggest that frequent (meiotic) NHEJ events 
generate abundant SNPs and InDels within the rDNA, resulting 
in a heterogeneous population of rDNA units. We also propose 
that rare HR events dynamically change rDNA unit numbers. 
The latter may only be  observed in large populations and/or 
over many generations (Figure  2).
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Furthermore, the ribosomes are no longer seen as invariant 
machines that translate proteins from available mRNAs but 
rather as a heterogeneous population of ribonuclear complexes, 
differing in rRNA and protein composition, with defined 
functions controlling protein translation (Figure  2).

In the future, it will be  interesting to generate the detailed 
sequence information of NORs from various organisms, ecotypes, 
and individuals. Knowledge of the precise rDNA unit sequences 
will allow detailed analyses of the dynamic changes of the 
NORs, their (potentially context dependent) differential 
transcriptional regulation, and the integration of rRNA variants 
into actively translating ribosomes (with the potential to impact 
protein translation).
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Supplementary Figure S1 |  TCS network was inferred from all sequences of 
the rDNA units of 59 BACs without the region of the highly repetitive SalI 
boxes. To build the network, the integrated method of the TCS approach, 
which is based on the concept of statistical parsimony, in PopArt was used. In 
the network, each node represents a unique sequence, its size is proportional 
to its frequency within the data, and its color indicates from which BAC a 
rDNA originated from. In other words, a big, multicolored node is a collection 
of different rDNA units which are identical and come from different BACs (and 
therefore different locations within the NOR2). Short vertical bars on the lines 
connecting similar sequences represent the number of variations between 
them. Furthermore, sequences, not present in the data, were inferred and 
represented as small black dots. The TCS network contains 39 nodes which 
comprise more than one rDNA unit. In total, 238 rDNA units occur in the 39 
nodes. The biggest node includes 62 rDNA units.

A B

FIGURE 2 | (A) Illustration of transcription of variant rRNAs from non-identical 45 rDNA units and their integration into translating ribosomes. The concept of 
heterogeneous ribosomes has been introduced considering different protein compositions. Here, this concept is extended, also considering different rRNA variants. 
(B) Diagram illustrating the occurrence of non-homologous end joining (NHEJ) and homologous recombination (HR) as DNA repair modes in the highly repetitive 
nucleolus organizing regions (NORs) during meiosis. NHEJ is considered to be the commonly deployed repair pathway, leading to short-range repair scars in the 
affected rDNA units, contributing to sequence heterogeneity and preserving the integrity of the NOR. Meiotic DNA repair events via HR are considered rare events 
and will only be evident in large populations, over multiple generations. HR may contribute to NOR size variability and rDNA unit homogenization.
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