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Training set construction is an important prerequisite to Genomic Prediction (GP),

and while this has been studied in diploids, polyploids have not received the same

attention. Polyploidy is a common feature in many crop plants, like for example banana

and blueberry, but also potato which is the third most important crop in the world

in terms of food consumption, after rice and wheat. The aim of this study was to

investigate the impact of different training set construction methods using a publicly

available diversity panel of tetraploid potatoes. Four methods of training set construction

were compared: simple random sampling, stratified random sampling, genetic distance

sampling and sampling based on the coefficient of determination (CDmean). For

stratified random sampling, population structure analyses were carried out in order

to define sub-populations, but since sub-populations accounted for only 16.6% of

genetic variation, there were negligible differences between stratified and simple random

sampling. For genetic distance sampling, four genetic distancemeasures were compared

and though they performed similarly, Euclidean distance was the most consistent. In the

majority of cases the CDmean method was the best sampling method, and compared

to simple random sampling gave improvements of 4–14% in cross-validation scenarios,

and 2–8% in scenarios with an independent test set, while genetic distance sampling

gave improvements of 5.5–10.5% and 0.4–4.5%. No interaction was found between

sampling method and the statistical model for the traits analyzed.

Keywords: training set construction, potato, sampling technique(s), genomic prediction (GP), auto-tetraploid

INTRODUCTION

The utilization of DNA marker information for selection in breeding programs has increased over
the last two decades and can be attributed to two factors: the decrease of genotyping costs, and
the advances in quantitative genetics methodology. Genomic prediction (GP) is an example of one
such methodological breakthrough that estimates breeding or genotypic values (depending on the
application) by regressing known phenotypes against high density molecular markers (Meuwissen
et al., 2001). GP allows the prediction of phenotypes frommarker information which speeds up the
breeding cycle, as the performance of new material can be assessed prior to phenotype expression
(Heffner et al., 2010).
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The potential genetic gains from GP hinge on its ability
to predict phenotypes accurately. This prediction accuracy is
dependent on various factors including but not restricted to:
trait heritability (Heffner et al., 2009), statistical models (de los
Campos et al., 2013), genetic architecture of traits (Daetwyler
et al., 2013), population structure (Asoro et al., 2011; Guo
et al., 2014) as well as the size and composition of the
training/calibration set (Pszczola et al., 2012; Rincent et al., 2012;
Bustos-Korts et al., 2016; Akdemir and Isidro-Sanchez, 2019).
This study focuses on the composition of the training set; those
individuals with both phenotype and genotype information, that
are used to train the model and estimate the marker effects
used to make future predictions. Having both input and target
information, the training provides the necessary data so that
statistical models can learn and estimate the relationship between
explanatory variables and the target (James et al., 2013). The
training set should be constructed in a way that it covers a space
which closely resembles the space occupied by future test sets.
This is important for GP because in more recent times, due
to relatively cheap genotyping, molecular marker information
(explanatory variables), can often be collected more efficiently
than phenotype information (target). The question is, which
individuals should be phenotyped and thus be used to calibrate
the model and generate reliable predictions for individuals
without phenotypic information?

Various sampling strategies are available for training set
construction. Simple random sampling allows each individual
in the population an equal probability of being in the training
set and does not utilize any prior information regarding
the material. If population structure exists and the material
is separated into sub-populations, this information can be
included in a sampling method known as stratified sampling.
Stratified random sampling selects individuals based on their
sub-population membership. Studies in diploids have shown that
this method is superior to simple random sampling, although
the improvement depends on the extent of the separation
between sub-populations (Isidro et al., 2015). When there is
little population structure, uniform coverage of the genetic space
may be more suitable, and this is achieved with genetic distance
sampling (Jansen and van Hintum, 2007). This methodology was
first introduced to define core collections for germplasm banks,
but the principle can be extended to construction of the training
set, because similar to core collections, the objective is to obtain
a subset of individuals that contain the genetic diversity present
in a larger population. Rincent et al. (2012) proposed another
method for sampling the training set that evaluates the quality
of prediction for a set of genotypes. An algorithm was developed
that chooses a training set that maximizes prediction accuracy,
based on prediction error variance (PEV) and coefficient of
determination (CD) measures (Rincent et al., 2012).

Numerous comparative studies have evaluated different
methods of training set construction (Asoro et al., 2011; Isidro
et al., 2015; Bustos-Korts et al., 2016; Akdemir and Isidro-
Sanchez, 2019). These past studies have been conducted on
diploids (2 copies of each chromosome) whereas in this study,
the focus is on tetraploids (4 copies of each chromosome). Plants
often exhibit polyploidy, as seen in potato (Solanum tuberosum),

which is an auto-tetraploid and the subject of this article. There
is potential for genetic gain in applying genomic prediction to
potato (Slater et al., 2016), and this was put into practice in
recent studies (Habyarimana et al., 2017; Sverrisdóttir et al., 2017;
Endelman et al., 2018). The current study seeks to investigate
the first step of GP not emphasized in the aforementioned
papers, which is the impact of training set construction on GP
accuracies in tetraploid potato. A secondary aspect of this study
is the investigation of genetic distance measures, as these will
be required to implement genetic distance sampling. Various
measures of genetic distance exist, and the effect it has on
selection accuracy has not yet been evaluated. There are some
proposedmeasures that are allegedly more suitable for polyploids
by accounting for allele dosage in polyploid heterozygotes, and by
considering the presence of unknown alleles, where the absence
of one allele does not necessarily imply presence of the other
(Dufresne et al., 2014).

To ensure that the training set construction method would be
robust for many GPmodels, three types of statistical models were
assessed to generate prediction accuracies. They belong to three
general categories of GP models: no marker selection, marker
selection and models that capture non-additive effects. This was
included in the study to investigate the presence/absence of a
relationship between the sampling method for constructing the
training set and the statistical model. The aim is to uncover
the most suitable method for constructing the training set when
GP for tetraploids is performed, and whether suitable methods
exhibit codependencies with other influences including statistical
model, sample size and trait architecture.

MATERIALS AND METHODS

Plant Materials
Phenotypic and genotypic data were collected and made publicly
available by The Solanaceae Coordinated Agricultural Project
(SolCAP). The SolCAP North American potato diversity panel is
a compilation of elite potato germplasm from breeding programs
across the U.S., as well as historical varieties from the NRSP-6
potato gene bank (Hirsch et al., 2013), and includes tetraploid
species, diploid species, wild species and some diploid and
tetraploid genetic stocks. For this study only the 190 cultivated
tetraploid lines that contained both phenotypic and genotypic
data were analyzed. Additional information about these lines was
provided including release dates and the classification of each
variety into one of six market classes: French Fry processing,
Chip Processing, Table Russet, Round White table, Yellow and
Pigmented (Hamilton et al., 2011). Genotyping was done with an
Infinium SNP array of 8303 markers, and analyses to determine
allelic dosages were performed with GenomeStudio. Poor quality
SNPs, and SNPs unable to distinguish between the heterozygous
classes were removed, leaving 3763 bi-allelic SNPs with reliable
information on allelic dosages (Hirsch et al., 2013). For all
calculations utilizing SNP information, the marker matrix was
coded categorically (AAAA, AAAB, AABB, ABBB, and BBBB) or
as a numerical measure of the number of alternate alleles present
(0,1,2,3, and 4), where “A” is the reference allele and “B” the
alternative allele.
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Genomic Prediction was conducted for the three quantitative
traits, especially important to the French fry and potato chip
markets: tuber length (millimeters), tuber fructose and sucrose
content (milligrams gram−1 fresh weight). Information on these
traits were reported in the study by Rosyara et al. (2016), and were
chosen so that for this study, we examine traits with high broad-
sense heritabilities like tuber length and fructose content (h2 =

0.91 and h2 = 0.85, respectively), and sucrose content, a trait
with intermediate heritability (h2 = 0.67) (Rosyara et al., 2016).
These traits, among others were measured in as many as four
environments (New York 2010,Wisconsin 2010, New York 2011,
and Wisconsin 2011) however not all traits were measured in
all environments. The trials consisted of a randomized complete
block design with two replicates in each environment and using
a linear model accounting for experimental design variables,
phenotypic values were generated as the best linear unbiased
estimator (BLUE) (Rosyara et al., 2016).

Analyses
Population Structure
To assess population structure for the definition of strata,
the marker data was analyzed using three methods: Principal
Components Analysis (PCA), Discriminant Analysis of Principal
Components (DAPC) and Analysis of Molecular Variance
(AMOVA). In a population with distinct sub-divisions, a
significant portion of the genetic variability of the population
can be attributed to the differences between sub-populations.
AMOVA estimates variance components of various factors,
including the contribution of subgroups to a population’s total
variability (Excoffier et al., 1992). Population structure can
also be visualized and quantified using Principal Components
(Jombart, 2008). Market classes were given for the SolCAP North
American diversity panel, and to visualize the extent of separation
between these classes, DAPC was implemented. Unlike PCA
which looks at overall variability (between and within classes),
DAPCmaximizes the between group variation with respect to the
variation within groups (Jombart et al., 2010).

Sampling Methods
To evaluate training set construction methods, prediction
accuracies were compared. Accuracy was defined as the
correlation between observed phenotypic values and genotypic
values of the validation/test set predicted by the corresponding
genomic prediction model. The underlying hypothesis is that the
prediction accuracy may be affected by the training set used to
calibrate the model; a training set that does not cover the design
space will result in poor predictions of the test set. In this study,
four methods for constructing the training set were compared:
simple random sampling, stratified random sampling, genetic
distance sampling and the CDmean method.

• Simple Random Sampling (SRS): Training set construction is
equivalent to taking a subset of a larger set. For simple random
sampling, members of this subset are chosen randomly and
completely by chance so that each individual from the panel
has an equal probability to be selected for the training set.

• Stratified Random Sampling (STRAT):Using the population
analysis results to define strata, this method randomly
selects individuals from each sub-population, ensuring that
every sub-population is represented in the sample, while
maintaining the same strata proportions.

nS =
n

N
× NS

For the above equation nS is the number of individuals in the
sample from stratum S, NS is the number of individuals in the
population from stratum S, while n and N are the total sample
size and total number of individuals, respectively.

• Genetic Distance Sampling (GD): This method requires as
input, the distances between genotypes calculated from the
marker data. From the initial pool, one individual is randomly
selected and all individuals within a radial distance r are
discarded and will no longer be candidates for sampling. This
ensures that the next individual sampled will not be genetically
similar to the first individual. From the remaining set, a second
individual is selected and again, all individuals within a genetic
distance of r are discarded. This process is continued until the
desired training set size is attained. The size of the sampling
radius r, is dependent on the desired sample size. A larger
sample size requires a smaller r and vice versa. The method
is described in more detail in Jansen and van Hintum (2007),
and is implemented in Genstat (VSN-International 2015). This
implementation requires a similarity matrix, with a diagonal of
1′s and the off-diagonals in the range of [0, 1].

This similarity matrix comprises of pairwise measures of
genetic similarity between individuals, which Jansen and van
Hintum calculated using the simple matching coefficient.
The authors go on to suggest the Jaccard’s similarity index
as a suitable alternative (Jansen and van Hintum, 2007).
Suggestions for calculating the genetic distance between
polyploids have been made in literature (Dufresne et al.,
2014), and include the Jaccard similarity index. As part of this
study, four genetic distance measures were compared. These
measures were chosen due to their suitability for SNP data,
polyploids and their frequency of use.

1. NEI’S GENETIC DISTANCE makes the biological
assumptions of an infinite alleles model and that genetic
distances are a result of mutation and drift (Nei, 1972). A
categorical marker matrix (AAAA, AAAB, AABB, ABBB,
and BBBB) was used as input, and the Nei’s distance
between two individuals X and Y was calculated using
the formula:

DXY = −ln

∑2
i=1

∑r
j=1 pij,xpij,y

√

∑2
i=1(

∑r
j=1 p

2
ij,x)

∑2
i=1(

∑r
j=1 p

2
ij,y)

where r represents the total number of markers and pij,x,

is the proportion of the ith allele present at the jth locus in
individual X. For example, a particular locus with genotype
AAAB has p = 0.75 for the reference allele “A.” This
study uses bi-allelic markers hence the summation over
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the number of alleles is limited to two terms (
∑2

i=1). The
distance matrix was converted to a similarity matrix by
subtracting from one, in accordance with the requirements
of the genetic distance sampling algorithm.

2. EUCLIDEAN DISTANCE makes no biological assumptions
as it is purely a geometric distance measure. Using the
numerical coding of the marker matrix (0,1,2,3, and 4) this
measure calculates the distance between two individuals X
and Y :

DXY =

√

√

√

√

r
∑

j=1

(Xj − Yj)2

In this equation Yj can be interpreted as the number of

alternate alleles at the jth marker in individual Y . The
Euclidean distance matrix was converted to the similarity
measure, and scaled to fit within the desired range [0, 1]
using the following transformation:

1−

(

DXY

max(DXY )

)

3. JACCARD’S SIMILARITY INDEX does not make any
biological assumptions and requires as input the numerical
representation of the SNP data. The distance between two
individuals X and Y is calculated as:

DXY =

∑r
j=1 |Xj ∩ Yj|

∑r
j=1 |Xj ∪ Yj|

In the above expression, |Xj ∩Yj| is the number of alternate

alleles common to both individuals X and Y at the jth

marker, while the term |Xj∪Yj| refers to the total number of
alternate alleles at this samemarker for individualsX andY ,
without repetition (for tetraploids the maximum value for
this term is 4). The resulting output was then converted to
a similarity matrix.

4. KOSMAN AND LEONARD’S GENETIC DISTANCE differs
from previously mentioned genetic distance measures as
it takes into account the ploidy level of the individuals
(Kosman and Leonard, 2005). With the numerical marker
matrix of allele dosages (0, 1, 2, 3, and 4) as input, this
measure calculates the similarity between two individuals
X and Y :

DXY =
1

r

r
∑

j=1

Xj ∩ Yj

q

In this equation, Xj ∩ Yj corresponds to the number of

shared alleles at the jth marker, which is divided by q
the number of chromosome copies (4 for tetraploid), and
averaged over all r markers.

• Generalized coefficient of determination (CDmean): The
generalized coefficient of determination is a training set
selection method based on the maximization of the precision
of the prediction of differences (or contrast) between the

average value of the entire population of candidate individuals
and each individual in the test set (Rincent et al., 2012).
Maximizing Equation 1 (below), leads to the maximization of
the precision of contrasts.

CD(c) = diag

[

c′(A− λ(Z′MZ + λA−1)−1)c

c′Ac

]

(1)

Where c is the matrix of contrasts between each individual
without phenotype information and the average of the
candidate individuals, λ is the ratio between the residual and
additive genetic variances, Z is a design matrix that will be
used in GP models to relate observations to genomic values
(seen in Equation 3 in a later section), andM is an orthogonal
projector on the subspace spanned by the columns of the fixed
effects design matrix, X (also seen in Equation 3), such that
M = I − X(X′X)−X′. A is the additive realized genomic
relationship matrix as calculated by VanRaden (2008):

A =
QQ′

2
∑r

j=1 pj(1− pj)
(2)

Where Q is a matrix calculated from Qij = Wij + 1− 2pj, with
i individuals (rows) and j markers (columns). The term pj is

the frequency of the reference allele of the jth marker andW is
the numerical marker matrix, centered and scaled such that
genotypes coded as allele dosages {0, 1, 2, 3, 4} now become
{−1,−0.5, 0, 0.5, 1}. The supporting literature (Rincent et al.,
2012) reports negligible differences in selected samples, when
different estimations of the genomic relationship matrix are
used. This was confirmed in a small preliminary analysis
where three different methods of calculating this matrix were
tested, as prediction accuracies were similar between methods.
Therefore, the VanRaden method was chosen as it is well-
known in the context of genomic prediction.

From the description of λ above, its calculation requires
an estimate of trait heritability (h2) and though we have
phenotypic data and can therefore estimate this value for
the traits in question, this may not always be the case in
practice. Often the decision of which genotypes are to be
put in the field to garner phenotypic measurements, is made
before estimates of heritability can be performed, as this
calculation requires phenotypic data. Secondly, the individuals
to be selected may not have to be chosen on the merit of one
single trait, but rather by more traits with varying degrees of
heritability. The supporting literature (Rincent et al., 2012),
suggests and provides evidence that the use of an intermediate
value of heritability (example 0.5), selects training sets very
similar to those using more extreme values of heritability. A
small preliminary analysis was performed and these results
confirmed that the heritability estimate had little to no impact
on prediction accuracy and therefore, for this study, the
heritability input for the CDmean method was set at 0.5 for
all traits.

The code for implementing both the CDmean method
and genetic distance sampler, can be found in the
Supplementary Material.
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Prediction Scenarios
The training set selection methods were compared by two cross
validation schemes: the training-validation (TV) scheme and the
training-test (TT) scheme. The TV scheme follows a typical
cross-validation approach where a portion of the individuals
are used to train the model (training set) and those not part
of the training set, used to evaluate model prediction accuracy
(validation set). The effect of training set size was assessed by
choosing 50, 75, 100, 125, and 150 individuals out of the total 190
with each sample size repeated 100 times. We must consider that
the training and validation sets are complementary, therefore the
size of the validation set depends on the size of the training set,
so comparisons across training set sizes are not equally precise
(see Figure 1). Additionally, when a diverse set of individuals are
chosen, an equally diverse set of individuals are left behind, which
may impose some bias. Another important consideration from an
application point of view, is that in a real situation a breeder will
have individuals that were not phenotyped at all, so we want to
assess the performance of the sampling methods assuming that
the information of some of the individuals is truly absent, which
the TV scheme does not fully represent.

Therefore, a second approach (TT scheme) was used where
the composition and size of the validation (test) set, is
independent of the composition and size of the training set. In
each realization of the TT scheme, we first randomly sampled
40 individuals as test set leaving the remaining 150 as the pool
from which to sample the training set. Following the different
sampling methods, we chose 25, 50, 75, and 100 genotypes from
the remaining 150, as training set (see Figure 2). In turn, the
sampling of the training set was repeated 50 times, making the
accuracy of a particular realization the average of 50 repetitions
of the same sampling method, that sample a certain number of
individuals to train a particular statistical model and predict a
given test set. This entire process was then repeated 50 times,
each time with a new test set. This methodology ensures that
all training set selection methods train a model that predicts the
same test set and gives better assessment of training set selection
methods. In addition, we investigated larger sizes of the test set
(70, 95). For a test set of 70 individuals, training set sizes are
the same as seen above (25, 50, 75, and 100), but for a test set
of 95 individuals, the training sets evaluated were of sizes 30, 45,
60, and 75.

Genomic Prediction Models
The purpose of this study was to uncover a superior training set
sampling method based on the accuracy of predictions. These
predictions were generated with three different whole genome
regression models, in order to investigate the presence/absence
of an interaction between training set selection method and
genomic prediction model.

• GBLUP:

y = Xβ + Zu+ ǫ (3)

For Equation 3, y is a vector of phenotypic BLUEs, β is a vector
of fixed effects (only the intercept in our case), u is a vector
of genotypic values with distribution u ∼ N(0,Aσ 2

g ). A is the

FIGURE 1 | Training-Validation (TV) Scheme: Out of 190 individuals, 50

individuals are sampled as the training set to train the model and validated

using the remaining 140 individuals in the green oval. This is repeated 100

times for each training set sampling method. The entire process was then

repeated for training set sizes 75, 100, 125, and 150 (which impacts the size

of the validation set).

genomic relationship matrix as calculated in Equation 2 and
σ 2
g is the additive genetic variance.X and Z are designmatrices

as described previously and ǫ is the vector of residuals with
distribution ǫ ∼ N(0, σ 2

ǫ ). σ
2
ǫ is the residual variance.

• RKHS: The model for Reproducing Kernel-Hilbert Spaces
(RKHS) is the same as Equation 3, with one difference in
that the genotypic values have a different distribution: u ∼

N(0,Kσ 2
g ). The genomic relationship matrix A, is replaced by

the kernel matrix,K = exp−
D
θ , where D is a Euclidean distance

matrix and θ a tuning parameter. The tuning parameter
controls how fast the relationship between two genotypes
decays as the distance between the corresponding pairs of
marker vectors increases (Jiang and Reif, 2015). To estimate
θ , a grid search was conducted between (0, 1] and the value
that gave the maximum log-likelihood was chosen (Endelman,
2011). Applying RKHS in this study allows for the implicit
modeling of non-additive effects.

• BAYES Cπ :

y = Xβ +Wb+ ǫ (4)
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FIGURE 2 | Training-Test (TT) Scheme: Out of the 190 individuals a test set of

40 individuals were randomly selected. The remaining 150 individuals were

now candidates for the training set and from this set, 25 individuals were

selected and used to train the model that predicts the test set. This was

performed 50 times for each training set sampling method. This process was

repeated for 50 different test sets. The analysis was performed at varying

training set sizes (25, 50, 75, and 100).

In Equation 4, where W is our matrix of marker information,
b is a vector of marker effects. Bayes Cπ assumes that marker
effects come from a mixture distribution with a proportion
of markers (π) having zero effect and the remainder (1 − π)
having non-zero effects, such that for the jth marker:

bj =

{

0 :with probability π

∼ N(0, σ 2
b
) :with probability 1− π

The proportion of zero effect markers π , was estimated from
the data. For this study, 5,000 iterations were performed with
2,500 discarded as burn-in, with the BGLR package (Prez
and Campos, 2014). In preliminary analyses, larger number
of iterations were tested and the outcomes were identical, in
terms of prediction accuracy and convergence diagnostics.

Prediction Accuracy
As mentioned in previous sections, the ranking of the training
set construction methods will be based on a measure of
prediction accuracy. For both the TV and TT schemes, the
observed phenotypic values of the training set are fed to the
statistical models to estimate marker effects, while the phenotypic
values of the validation (TV scheme) and the test set (TT
scheme), are hidden from the model. Predictions are made on
those individuals with hidden phenotypes, and the prediction
accuracy is defined as the Pearson correlation between observed
phenotypic values and the predicted genotypic values. Factors
that may influence prediction accuracy are sample size, statistical

model and the training set construction method, as well as
various interactions between these factors. To answer this
question, an Analysis of Variance (ANOVA) was carried out
where the correlation (prediction accuracy) is treated as the
response variable such that accuracy = f (size,model,method)
in a full factorial model. To conform to normality assumptions,
these correlations (accuracies) were transformed using Fisher’s z
transformation, z = 1

2 (ln(
1+r
1−r )).

All analyses were executed in R Core Team (2020), except for
genetic distance sampling which was performed in Genstat as
mentioned previously.

RESULTS

The 3,763 SNPs were reduced to 3,262 after the following filtering
steps. For the 190 phenotyped tetraploid lines, monomorphic
markers, unmapped markers, markers with a minor allele
frequency of<5% andmarkers withmissing values formore than
30 of the 190 individuals were removed.

Population Structure
The classification of the population into the six market classes,
gives two subpopulations with <20 individuals. This is not ideal
for stratified sampling as parameter estimates from these very
small subgroups will produce large standard errors. Furthermore,
based on past population structure results for this diversity panel,
there are indications that some of these sub-populations can
be merged.

PCA and DAPC results show that the six market classes can
indeed be reduced to a smaller number of groups (Figure 3).
Principal Components Analysis (Figure 3A) found that the first
two principal components account for <10% of the explained
variance with the 1st principal component capturing 5% of
the variability, while the 2nd component explains only 3.55%.
The decision on which classes should be merged were made
by inspecting the results from DAPC (see Figure 3B). For
this analysis, 100 principal components and three discriminant
functions were chosen. From here we see that the French Fry
processing and Table Russet market classes show considerable
overlap, as well as the Chip processing and Round White table
market classes.

The pigmented class is clearly separated but one question
arose: Where does the yellow market class belong? AMOVA
analyses found that genetic variation due to population structure
was the highest (16.6%), when the yellow class was placed with
chip processing and round white table classes, as suggested
by the DAPC plot (Figure 3B). Other population structure
configurations were analyzed, including each of the six separate
market classes as its own sub-population, as well as maintaining
the three clearly separated groups seen in Figure 3B, but
placing the yellow market group with the pigmented class (see
Appendix). Placing the yellow class with the chip and round-
white class, instead of the pigmented class was supported by both
AMOVA analyses and pairwise Fst statistics between the groups.
Between Yellow and Pigmented, Fst = 0.0165, while between
Yellow and Chip Processing-Round White table, Fst = 0.0098
(where Fst values closer to zero indicate populations that are
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FIGURE 3 | Illustration of the population structure explained by the first 2 principal components (PCA) and discriminant analysis of the principal components (DAPC)

showing the separation of the 6 market classes. (A) PCA with market classes. (B) DAPC of market classes.

TABLE 1 | Correlation between different genetic distance matrices.

Euclidean Nei Jaccard

Nei 0.989

Jaccard 0.927 0.941

Kos.&Leo. 0.967 0.975 0.977

more genetically similar). For the remainder of the study, the
discrete population structure used for stratification is defined by
the three groups suggested in Figure 3B, with the yellow market
class merged with the neighboring group of chip processing and
round white table potatoes.

Genetic Distance Measures
Four different genetic distance measures were used to perform
genetic distance sampling, and the sampled individuals were
used to train the model. Prediction was performed on the left
out individuals as described in the TV scheme. The similarities
(correlations) between the different genetic distance matrices
were assessed by a Mantel test (Table 1).

There is very little difference between the distance measures
for the material in this study. The lowest correlations (0.927 and
0.941) occurred with the Jaccard distance measure, however this
degree of similarity is still quite high.

The prediction accuracies from a common GBLUP model
were quantified for three different traits (tuber length, fructose
and glucose content), at sample sizes ranging from 50
to 150, for different genetic distance measures (Figure 4).
It can be concluded that the choice of distance measure
had a minor impact on prediction accuracy. Prediction
accuracy is expected to increase as sample size increases
and Euclidean distance was the most consistent measure
across all traits. The remaining three measures displayed
non-monotonically increasing prediction accuracies as sample
size increased. Additionally, the Kosman Leonard distance,

along with having very little application in literature, becomes
computationally heavy when there are more than 10,000
markers. For this study, the Euclidean distance will be used
henceforth when applying genetic distance sampling for training
set construction.

Genomic Prediction: TV Scheme
After determining a suitable distance measure for genetic
distance sampling, methods for acquiring the training set were
compared (Figure 5).

Each row of Figure 5 shows a single trait with the different
genomic prediction models, and compares the prediction
accuracies across sample sizes ranging from 50 to 150. For
all traits, a difference is clearly observed between training
set selection methods: with simple random and stratified
random sampling (random methods) behaving similarly while
genetic distance sampling and the CDmean method (analytical
methods) sampled training sets, gave more accurate predictions.
As expected, an increase in sample size increased prediction
accuracy, but this was at a higher rate when using the analytical
methods of selecting individuals. The lines above and below
the points indicate the standard errors of the estimate of
average accuracy, and the random sampling methods resulted
in larger standard errors than the analytical methods. For
all trait-statistical model combinations, the random methods
of selecting the training set were not significantly different;
stratifying the population before sampling, did not improve
the accuracy of genomic prediction, in comparison to a
simple random sample of the training set. Even though the
analytical methods consistently performed better than the
random methods, the comparative performance between the
two analytical methods varied with traits. For tuber length,
the genetic distance sampler selected a more optimal training
than the CD method at lower sample sizes (50 and 75),
but this difference diminished as the size of the training set
increased. The CD mean method generally outperformed the
genetic distance sampler in predicting fructose and sucrose,
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FIGURE 4 | Prediction accuracy under different distance measures for genetic distance sampling with a GBLUP statistical model. Each graphical window represents

a different trait, with varying sample sizes on the x-axis and the outcome variable, prediction accuracy on the y-axis. The different colored lines represent different

distance measures.

more noticeably so at higher sample sizes. Interestingly, at
sample size 50 and 75, genetic distance sampling led to more
accurate predictions of sucrose content, a result also observed
for tuber length. Despite these minor differences, the results
across all traits give clear support for utilizing analytical methods
of selecting the training set, and some indication that the
CDmean method is the better of the two analytical training set
selection strategies.

The results shown in Figure 5, include information about the
three different statistical models. The possibility of an interaction
between statistical model and training set selection method was
evaluated in this study, and results from anANOVA analysis were
used to quantify the impact of this interaction (Table 2).

The magnitude of the F-values in Table 2 indicate how
important a term is for predicting the outcome, which is the
accuracy of genomic predictions in this case. The most important
factor for driving genomic prediction accuracies is sample size,
followed by the training set selection method and then the
interaction between these two variables. The interaction of
interest, between samplingmethod and statistical model, explains
very little of the variation in prediction accuracy. There is no
particular combination of sampling method and statistical model
that results in more accurate predictions but rather, the main
effects of these two variables. Results inTable 2 are based on tuber
length, and these results were consistent across all traits, with
sampling method being highly significant, and its interaction
with statistical model, non-significant. An interesting result is
the significant interaction between sample size and sampling
method which was consistent across all traits. This means that

the sampling methods do not benefit equally from an increase in
sample size, a result also observable from Figure 5.

For fructose, when the sample size is tripled (from 50 to 150),
simple random sampling and stratified sampling improved by
19 and 23%, respectively, whereas genetic distance sampling and
the CDmean method resulted in improvements of 27 and 31%,
respectively. For sucrose, the CDmean method showed a 37%
improvement by tripling the sampling size while simple random
sampling improved by 25%. The relative improvement of using a
analytical sampling method was greater for sucrose and fructose
content. At the median sample size of 100, CDmean showed
an improvement in prediction accuracy of 4, 14, and 13% for
tuber length, fructose and sucrose content, respectively, when
compared to simple random sampling. The genetic distance
sampler for these traits (tuber length, fructose and sucrose
content, respectively), showed improvements of 5.5, 10.5, and
10.5% in comparison to simple random sampling.

Genomic Prediction: TT Scheme
As discussed before, the objectives for using Genomic Prediction
may vary. In many cases the objective is to predict new breeding
lines (or clones) and for this scenario we have randomly selected
a test set of 40 out of the 190 individuals. These 40 individuals
represent the independent test set, and all sampling methods will
construct the training set from the remainder of individuals. The
trained model then performs predictions for the test set. In this
way, each sampling method predicts the same test set.

Similar to the previous section, we looked at the prediction
accuracy for three statistical models with sample sizes ranging
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FIGURE 5 | Prediction accuracy for the 3 traits under the TV scheme (training and validation only). Each graphical window displays a different trait-statistical model

combination, with varying sample sizes on the x-axis and prediction accuracy on the y-axis. The different colored lines represent different training set selection

methods.
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TABLE 2 | ANOVA table showing the significance of the statistical model, sample

size, training set selection method, and interactions for the prediction accuracies

of tuber length (TV Scheme).

df SS MS F-value Pr(>F)

Method 3 0.278 0.0925 319 < 2× 10−16

Sample size 1 0.386 0.386 1,330 < 2× 10−16

Model 2 9.08 × 10−3 4.54× 10−3 15.7 1.27× 10−5

Method: sample size 3 0.0605 0.0202 69.6 4.66× 10−15

Method: model 6 5.58× 10−4 9.30× 10−5 0.321 0.922

Sample size: Model 2 9.42× 10−4 4.71× 10−4 1.63 0.211

Method: sample size: model 6 3.53 × 10−4 5.88× 10−5 0.203 0.974

Residuals 36 0.104 2.90× 10−4

from 25 to 100, and compared the impact of the sampling
method (Figure 6). The accuracies of the TT Scheme are a bit
lower and are accompanied by larger standard errors than those
observed in the TV Scheme, due to the application involving a
test set, which is usually more difficult to predict but represents
a more realistic scenario encountered by breeders. Nonetheless
the decrease in accuracy was not drastic. The differences between
sampling methods is still present, but less obvious than in
the TV Scheme, especially at higher sample sizes where the
accuracies of the various sampling methods converged as was
expected, due to the significant overlap of individuals sampled
in a limited population space of 150 varieties. This convergence
is not observed in the TV Scheme and will be discussed in
another section. At the lower sample sizes, where the potential
overlap of training sets is reduced, the analytical methods give
significantly higher accuracies than the random methods. For
tuber length, genetic distance sampling and the CDmean method
result in similar prediction accuracies for sample sizes ≥50,
but for sucrose content, this similarity was dependent on the
statistical model applied.

In comparison to the TV scheme, the results of the TT scheme
exhibit a more significant impact due to statistical model, and to
test whether there is an interaction with the sampling method an
ANOVA analysis was conducted.

Similar to the results from the TV scheme shown in Tables 2,
3 shows that for the TT scheme, sample size was the most
important factor driving prediction accuracy, and there was
no interaction between the statistical model and the sampling
method. It was noteworthy that the hierarchy of importance of
predictive variables was quite different between schemes. Our
factor of interest, sampling method, though still significant in the
TT application, was not the second most important variable as
seen before, but replaced by statistical model in the hierarchy.
Also different to the TV scheme, the TT scheme results show no
interaction between sample size and the sampling method. The
results in Figure 6 and Table 3 were similar to those observed
for fructose content, with CDmean only slightly outperforming
the rest, but with even less differentiation between sampling
methods. The ANOVA analysis for fructose content (not shown),
showed that there was little to no impact of different training set
construction methods.

Although this paper does not primarily focus on statistical
models, it is still interesting to observe the differences in
predictive performance (Table 4). For all traits, the GBLUP
model gave the lowest accuracy of predictions, while the Bayes
C model worked just as well as the RKHS model.

Application of the TT scheme to breeding programs, usually
involves a test set of hundreds or even thousands of new
potential cultivars. In this study it was impossible to emulate
this application, still the impact of increasing the test size was
investigated. For this investigation, we conducted the same
analyses as seen in TT scheme but used a larger test set (70
and 90 individuals). There were no changes in the findings; the
analytical methods, especially CDmean, sampled training sets
that predicted the test sets with greater accuracy than the random
methods (results not shown). Similar to the results seen above,
these differences disappeared at larger sample sizes and were only
evident at smaller training set sizes, where the overlap of sampled
individuals between methods was minimal.

DISCUSSION

Training set construction has been proven to be important for
GP in diploids and in this study, shown to be important for
GP in tetraploids. Both ploidy levels benefit from incorporating
genomic information into analytical methods of sampling the
training set, when compared to random methods that do not
directly utilize genomic information.

Only 190 varieties were included in this study which may limit
the extrapolation of results to traditional breeding programs.
Breeders often make selections within a particular market group.
In these scenarios, one must decide if to train models using only
individuals belonging to the target market group or allow for
the borrowing of information from other market classes. Our
study was too small to answer this question, however it has been
shown that combining individuals from both within and across
market classes, can lead to predictions that are as good as, and
often better than predictions made from exclusively within the
market class (Rio et al., 2019). This is especially valid when the
population structure is less definitive, as seen in this study.

As we are predicting heterogeneous populations, the use of
interaction models may be considered (Lehermeier et al., 2015),
where population structure induces heterogeneity of marker
effects. For the interaction models, sub-populations should be
large enough and definitive enough to estimate marker effects,
but in this study our sub-populations were small. As population
structure and size increase in magnitude, the Sparse Selection
Index is another promising alternative (Lopez-Cruz and Campos,
2021).

TV Scheme
For the training-validation scenario, results show a clear
differentiation between the random methods (simple random
sampling and stratified random sampling) and the analytical
methods (genetic distance sampling and CDmean method).
This separation between methods was not dependent on the
statistical model used to make predictions which was confirmed
by ANOVA analyses of prediction accuracies. As sample size
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FIGURE 6 | Prediction Accuracy for tuber length and sucrose content with a test set of size 40. Each graphical window represents a different trait-statistical model

combination, with varying sample sizes on the x-axis and prediction accuracy on the y-axis. The different colored lines represent different training set sampling

methods.

increased so did prediction accuracy due to the fact that the
estimation of marker effects is improved as the size of the training
set increases, a finding also reported in studies of diploid crops
(Rincent et al., 2012; Daetwyler et al., 2013; Bustos-Korts et al.,
2016; Akdemir and Isidro-Sanchez, 2019). The improvement in
accuracy awarded from a larger sample, is greater when applying
an analytical method of sampling the training set. This result
was supported by the significant interaction between sampling
method and sample size. In training set construction for the

TV scheme, we are essentially choosing a subset of individuals
(randomly or analytically), that would calibrate the model used
to make predictions on the subset of individuals not chosen
for training; in essence the training set and validation sets are
complements of each other. If we were to picture the population
space spread evenly over four quadrants, and during training set
construction, by chance all the members of a given quadrant
belonged to the training set, then this quadrant would not be
represented in the validation set. Our model would be trained
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TABLE 3 | ANOVA table showing the importance of the statistical model, sample

size and training set selection method and interactions for the prediction

accuracies of tuber length (TT Scheme).

df SS MS F-value Pr(>F)

Method 3 0.0136 4.52 × 10−3 5.94 0.00352

Sample size 1 0.213 0.213 280 9.75× 10−15

Model 2 0.404 0.202 265 < 2× 10−16

Method: sample size 3 8.79 × 10−4 2.93 × 10−4 0.385 0.765

Method: Model 6 3.71 × 10−4 6.18 × 10−5 0.0810 0.998

Sample size: Model 2 2.01 × 10−3 1.01 × 10−3 1.32 0.285

Method:sample size:model 6 3.45 × 10−4 5.75 × 10−5 0.0760 0.998

Residuals 24 0.0183 7.61 × 10−4

Higher F-values or Mean Sum Sq values indicate higher predictive power of a variable.

in a space where it is not making predictions, leading to poor
predictive potential. As the size of the training set increases using
random methods, there is a chance that we continue to calibrate
the model using redundant misrepresentative information, and
the gain from increasing sample size is contested by predicting
individuals that are genetically distant from the members of
the training set. For this reason, the predictive power gained
by adding one individual to the training set, is greater when
using an analytical method for selecting the training set over
a random sampling method. Analytical methods of training set
construction allow the space occupied by the training set to
be similar to that of the validation set, and as we increase the
size of the training set, the information provided for model
calibration continues to describe the entire genetic space in
more detail, and not randomly over-represent a few areas with
redundant information.

Taking a closer look at the random methods, we see that
stratifying our samples had very little impact on prediction
accuracy in comparison to simple random sampling. Diploid
studies have shown that stratification based on population
structure information may not be beneficial to constructing the
training set, when there is no extensive separation between sub-
populations (Isidro et al., 2015; Bustos-Korts et al., 2016). The
panel of tetraploid potatoes used in this study showed little
population structure, with only 16% of the total variation due
to population structure. Therefore, stratification before sampling
did not improve the accuracy of GP in comparison to simple
random samples, similar to the results of comparable studies of
diploid species with little sub-population separation (Isidro et al.,
2015).

For sucrose and fructose content, the CDmean method
sampled training sets that lead to more accurate predictions,
however for tuber length, the genetic distance sampler chose
an equally optimal training set. The extra information that is
incorporated by the CDmean method, may help in choosing a
training set, better equipped for traits that are harder to predict.
In a study comparing training set construction methods among
various diploid species and different traits (Bustos-Korts et al.,
2016), the results showed no significant difference between the
CDmean method and genetic distance sampler. Genetic distance

TABLE 4 | Marginal means and standard errors for prediction accuracy for varying

combinations of statistical model (columns) and trait (rows).

GBLUP RKHS BAYES.C

Tuber length (s.e. = 0.010) 0.708 0.792 0.792

Fructose (s.e. = 0.007) 0.450 0.580 0.571

Sucrose (s.e. = 0.005) 0.364 0.412 0.406

sampling establishes a radius that is used to exclude individuals
that are genetically close to a previously chosen member
of the training set, and only considers genomic information
(genetic distance). The CDmean method though, makes use
of more information than the genetic distance sampler: trait
variability and heritability. For traits that are influenced by non-
genetic (environmental) factors, like fructose and sucrose content
(Kumar et al., 2004), genomic information alone will not be as
beneficial as having both genomic and phenotypic information.
The combined information of trait variability and heritability,
as well as genomic relationships between individuals, allows the
CDmean method to construct a training set that produces higher
accuracies for these traits. However, this necessity for phenotypic
input information, in addition to the increased computational
load, can make the CDmean method less attractive than genetic
distance sampling.

Distance Measures
The differences between distance measures is very small when
compared by correlation diagnostics. We were not able to
explain the unexpected behavior exhibited by the Nei’s, Jaccard
and Kosman and Leonard genetic distances, where for fructose
and sucrose content, the accuracy of predictions did not
monotonically increase as sample size increased. The fact that
Euclidean distance produced accuracies that were monotonically
increasing with sample size, motivates the use of this measure
in this study. However, this finding is not conclusive for all
tetraploid studies: only bi-allelic markers were available for this
study, but tetraploid individuals can have up to four alleles
(Silva et al., 2005; Salimi et al., 2016). The Kosman and Leonard
distances can utilize this information as it considers the number
of different alleles at a given marker, and this is expected
to produce better measures of distance between individuals
(Kosman and Leonard, 2005; Dufresne et al., 2014), whereas the
Euclidean distance uses a count of one particular allele (reference
allele) as input to calculate genetic distances. This study did not
contain the multi-allelic marker information needed to truly test
the differences between the distance measures, and for scenarios
like this that are limited to bi-allelic markers, the difference
between distance measures will not be relevant.

TT Scheme
To investigate the impact that the training set has on the
prediction of new potential cultivars, the TT scheme was
introduced which includes a randomly chosen test set. As
expected, there was a decrease in overall prediction accuracy
(Akdemir and Isidro-Sanchez, 2019). The divergence in accuracy
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between the random and analytical methods as sample size
increased, observed in the TV scheme was not seen in the TT
scenario. This is due to the fact that all methods predict the same
group of individuals, and leave a limited pool of candidates to
be selected for training the model. As a result, there was overlap
in the training sets sampled by the various sampling methods.
Secondly, the composition of the trainng set had no affect on
the individuals where predictions were made, an unavoidable
situation with the TV scheme. The TT Scheme reveals that the
differences between training set construction methods depend
on the scenario for which these methods are applied; scenarios
with an independent test set (new breeding material) or instances
where it may be more cost and time efficient to phenotype a
few individuals and predict the rest (phenotyping platforms, TV
scheme). These results are not conclusive, due to the moderate
number of individuals in this study. The performance at the
smaller sample sizes for the TT scheme may give an impression
of what an ideal situation would look like, where there is a
large population thus minimizing the overlap of individuals
in the training sets constructed by the different methods.
At these low sample sizes, the CDmean method constructed
training sets led to more accurate predictions. Similar to the TV
scenario, there is evidence that the utilization of both genomic
and phenotypic information by the CDmean method is more
beneficial for predicting traits highly influenced by non-genetic
(environmental) factors. The genetic distance sampler maintains
its position as the second best sampler. In spite of the limitation
created by the population size, the evidence is still substantial: for
GP of tetraploids in a training-test scenario, analytical methods of
sampling the training set lead to better predictions, as seen also in
diploids (Bustos-Korts et al., 2016; Akdemir and Isidro-Sanchez,
2019).

Prediction Models
The performance of the prediction models can be explained
by the architecture of the traits analyzed. GBLUP models work
best for traits controlled by many small effects while models
that perform marker selection are better suited for traits that
are controlled by a few large effect QTL (de los Campos et al.,
2013). A previous Genome Wide Association Study (GWAS)
was conducted on the same diversity panel as this study, where
significant QTLs were detected for tuber length, but not for
sucrose and fructose content (Rosyara et al., 2016). Other studies
have found that sucrose and fructose content are controlled by a
small number of loci (Bradshaw et al., 2008; Sliwka et al., 2016;
Rak et al., 2017). It is therefore not surprising that the BayesCπ

model was able to make better predictions of all three traits in
comparison to the GBLUP model.

Having four copies of each chromosome, one may expect that
tetraploids exhibit more inter-locus interactions (epistasis) in
comparison to diploids (Stich and Gebhardt, 2011). When non-
additive effects like dominance and epistasis are present, they can
be captured with the RKHSmodel (Gianola and vanKaam, 2008).
Tuber length did not benefit from accounting for these effects
while sucrose and fructose content showed little improvement.
Fry color, strongly related to sugar content (Pritchard and Adam,
1994), can attribute the majority of its variability to additive

effects, however there is a small contribution by non-additive
effects (Endelman et al., 2018). This helps to explain the small
but present improvement of the RKHS model over the BayesCπ

model for these two traits.

CONCLUSIONS

• Genomic prediction of individuals with limited population
structure requires a sampling method that uniformly covers
the genetic space of the breeding population as opposed
to stratified sampling based on discrete classifications into
sub-populations.

• When GP is implemented to lessen the resources consumed
by phenotyping, a portion of the population is phenotyped
to train a model that predicts the remaining individuals. The
TV scheme results show the value of explicitly using genomic
information to sample the training set.

• The CDmean method of selecting a training set should be
utilized for genomic prediction in potato, as it is robust
to sample size, trait architecture, statistical model and
application scenario.

• Further investigation has to be done before these results can be
extrapolated to other traits and other polyploid crops. Testing
on larger pools of varieties with more distinct subgroups
is required.
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APPENDIX A: AMOVA TABLE TO ANALYSE
VARIABILITY DUE TO POPULATION
STRUCTURE

Appendix A1 | AMOVA analysis showing sources of variation from different

configurations of population structure.

Source of variation df SS MS Est. Var. Percentage

AMOVA with 6 market classes: | CP | RWT | Y | P | FFP | TR |

Among subpops 5 0.208 4.16 × 10−2 1.16 × 10−3 14.78

Within subpops 184 1.234 6.71 × 10−3 6.71 × 10−3 85.22

Total 189 1.442 100

AMOVA with 3 market classes: | CP,RWT,Y | P | FFP,TR |

Among subpops 2 0.154 7.72 × 10−2 1.37 × 10−3 16.61

Within subpops 187 1.288 6.89 × 10−3 6.89 × 10−3 83.39

Total 189 1.442 100

AMOVA with 3 market classes: | CP,RWT | Y ,P | FFP,TR |

Among subpops 2 0.152 7.62 × 10−2 1.19 × 10−3 14.71

Within subpops 187 1.290 6.90 × 10−3 6.90 × 10−3 85.29

Total 189 1.442 100

AMOVA with 4 market classes: | CP,RWT | Y | P | FFP,TR |

Among subpops 3 0.178 5.93 × 10−2 1.29 × 10−3 15.93

Within subpops 186 1.264 6.80 × 10−3 6.80 × 10−3 84.07

Total 189 1.442 100

AMOVA with 2 market classes: | CP | RWT,Y ,P,FFP,TR |

Among subpops 1 0.075 7.51 × 10−2 8.05 × 10−4 9.97

Within subpops 188 1.367 7.27 × 10−3 7.27 × 10−3 90.03

Total 189 1.442 100

df, Degrees of freedom; SS, Sum of Squared deviations; MS, Mean Sum of Squared

Deviations; Est. Var, Estimated Variance components; CP, Chip Processing; RWT, Round

White Table; Y, Yellow (Y); P, Pigmented; FFP, French Fry Processing; TR, Table Russet.

Classes grouped together between vertical lines (|).
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