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The rice seed setting rate (RSSR) is an important component in calculating rice yields
and a key phenotype for its genetic analysis. Automatic calculations of RSSR through
computer vision technology have great significance for rice yield predictions. The basic
premise for calculating RSSR is having an accurate and high throughput identification
of rice grains. In this study, we propose a method based on image segmentation and
deep learning to automatically identify rice grains and calculate RSSR. By collecting
information on the rice panicle, our proposed image automatic segmentation method
can detect the full grain and empty grain, after which the RSSR can be calculated
by our proposed rice seed setting rate optimization algorithm (RSSROA). Finally, the
proposed method was used to predict the RSSR during which process, the average
identification accuracy reached 99.43%. This method has therefore been proven as
an effective, non-invasive method for high throughput identification and calculation of
RSSR. It is also applicable to soybean yields, as well as wheat and other crops with
similar characteristics.

Keywords: rice grain identification, computer vision, deep learning, rice seed setting rate, image segmentation

INTRODUCTION

Rice (Oryza sativa) is a cereal grain and the most widely consumed staple food for a large part of
the world’s human population, especially in Asia (Ghadirnezhad and Fallah, 2014). The number of
rice grains per panicle is a key trait that effects grain cultivation, management, and subsequent yield
(Wu et al., 2019). The grains per panicle are usually divided into two categories, one is full grain and
the other is empty grain. Among them, full grain is the real measure of the number of grains per
panicle, and the ratio of full grain to the total number of grains per panicle is called the seed setting
rate. The number of grains per panicle and the seed setting rate are considered to be the two most
important traits directly reflecting rice yield (Oosterom and Hammer, 2008; Gong et al., 2018).

Generally, grain weight, grain number, panicle number, and RSSR are considered to be the
main factors affecting rice yield. However, research into RSSR is improving with the advancements
in science and technology. Li et al. (2013) have shown that the domestication-related POLLEN
TUBE BLOCKED 1 (PTB1), a RING-type E3 ubiquitin ligase, positively regulates the rice seed
setting rate by promoting pollen tube growth. Xu et al. (2017) proposed that OsCNGC13 acts as
a novel maternal sporophytic factor required for stylar [Ca2

]cyt accumulation, ECM components
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modification, and STT cell death, and thus facilitates the
penetration of the pollen tube for successful double fertilization
and seed setting in rice. Xiang et al. (2019) reported on a
novel rice gene, LOW SEED SETTING RATE1 (LSSR1), which
regulates the seed setting rate by facilitating rice fertilization.
Through these studies and their achievements, improving the
RSSR has become an expected thing. However, a new issue
has arisen with them, a problem posed by the automatic high-
throughput calculation of the RSSR.

With developments in deep learning and plant phenotypic
science, efficient and accurate research on rice through
information technology (IT) has become very anticipated. Desai
et al. (2019) proposed a simple pipeline which uses ground
level RGB images of paddy rice to detect which regions contain
flowering panicles, and then uses the flowering panicle region
count to estimate the heading date of the crop. Hong Son
and Thai-Nghe (2019) proposed an approach for rice quality
classification. In their approach, image processing algorithms,
the convolutional neural network (CNN), and machine learning
methods are used to recognize and classify two different
categories of rice (whole rice and broken rice), based on rice sizes
according to the national standard of rice quality evaluation. Lin
et al. (2018) proposed a machine vision system based on the deep
convolutional neural network (DCNN) architecture to improve,
compared with traditional approaches, the accuracy with which
three distinct groups of rice kernel images are classified. Xu
et al. (2020) proposed a simple, yet effective method termed
the Multi-Scale Hybrid Window Panicle Detect (MHW-PD),
which focuses on enhancing the panicle features to then detect
and count the large number of small-sized rice panicles in the
in-field scene. Chatnuntawech et al. (2018) developed a non-
destructive rice variety classification system that benefits from
the synergy between hyperspectral imaging and the deep CNN.
The rice varieties are then determined from the acquired spatio-
spectral data using a deep CNN. Zhou et al. (2019) developed
and implemented a panicle detection and counting system based
on improved region-based fully convolutional networks, and
used the system to automate rice-phenotype measurements. Lu
et al. (2017) proposed an innovative technique to enhance the
deep learning ability of CNNs. The proposed CNN-based model
can effectively classify 10 common rice diseases through image
recognition technology. Chu and Yu (2020) constructed a novel
end-to-end model based on deep learning fusion to accurately
predict the rice yields for 81 counties in the Guangxi Zhuang
Autonomous Region, China, using a combination of time-series
meteorology data and area data. Xiong et al. (2017) proposed a
rice panicle segmentation algorithm called Panicle-SEG, which
is based on the generation of simple linear iterative clustering
super pixel regions, CNN classification, and entropy rate super
pixel optimization. Kundu et al. (2021) develop the “Automatic
and Intelligent Data Collector and Classifier” framework by
integrating IoT and deep learning. The framework automatically
collects the imagery and parametric data and automatically sends
the collected data to the cloud server and the Raspberry Pi. It
collaborates with the Raspberry Pi to precisely predict the blast
and rust diseases in pearl millet. Dhaka et al. (2021) present a
survey of the existing literature in applying deep CNNs to predict

plant diseases from leaf images. This manuscript presents an
exemplary comparison of the pre-processing techniques, CNN
models, frameworks, and optimization techniques applied to
detect and classify plant diseases using leaf images as a data set.

RSSR was initially calculated manually. However, Kong
and Chen (2021) proposed a method based on a mask
region convolutional neural network (Mask R-CNN) for feature
extraction and three- dimensional (3-D) recognition in CT
images of rice panicles, and then calculated the seed setting rate
through the obtained three-dimensional image. However, due to
the difficulty and high cost of CT image acquisition, this method
lacks practicality.

In our research, we closely link deep learning with RSSR,
making it a portable tool for the automatic and high-throughput
study of RSSR. Through experimental verification, we have found
that the correlation between our proposed RSSROA and the
results from manual RSSR calculations is as high as 93.21%. In
addition, through the verification of 10 randomly selected rice
panicle images, our proposed method has been shown to be
able to correctly distinguish between two kinds of rice grains.
The average accuracy of the number of full grains per panicle
is 97.69% and the average accuracy of the number of empty
grains per panicle is 93.20%. Therefore, our proposed method
can effectively detect two different grains in rice panicles and can
accurately calculate RSSR. It can thus become an effective method
for low-cost, high-throughput calculations of RSSR.

MATERIALS AND METHODS

An overview of the proposed method can be seen in Figure 1.
The input to our system consists of a sequence of images
(across different days and times) of different rice varieties
taken in a particular environment (Supplementary Table 1).
The collected images were first cropped to give them the best
possible resolution for the network input, and then they were
input into the deep learning network we adopted for training
after calibration. The training results from each network were
compared, and the best network was adopted as the method to
calculate the RSSR.

Image Acquisition and Processing
Rice planting was carried out in both 2018 and 2019
at Northeast Agricultural University’s experimental practice
and demonstration base in Acheng, which is located at an
east longitude of 127◦22′∼127◦50′ and north latitude of
45◦34′∼45◦46′. The test soil was black soil, and there were
protection and isolation rows around each 20 m2 plot area.
The seeds were sown on April 20, 2018 (April 17 for the 2019
crop) and transplanted on May 20, 2018 (May 24 for the 2019
crop). The transplanting size was 30 cm × 10 cm and the
field management was the same as for the production field
(Zhao et al., 2020).

In order to improve the generalization ability of the
experiment and reduce the time required for the artificial labeling
of rice grains, 56 varieties of rice were randomly selected from the
experimental field and the rice panicle information was collected
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FIGURE 1 | Research flow diagram. (A) Original images (B) Segmentation images (C) Labelimg (D) Data integration and classification (E) Optional model selection
(F) Calculation of rice seed setting rate.

FIGURE 2 | Rice panicle image collection cubed darkroom. (A) Real map and (B) structural diagram.

using a smartphone iPhone X. The image collection environment
consisted in a cubed darkroom with a length, width, and height
all measuring 80 cm. The top of the darkroom environment
possessed a unique light source, while the other directions were all
covered by all-black light-absorbing cloth. The shooting method
was to artificially push the keys on the mobile phone from the
oval entrance on the front of the cubed darkroom (a rectangle
measuring 55 cm in length and 40 cm in width). The shooting
equipment was kept about 30 cm from the top of the rice
panicles (The shooting equipment is not fixed, it only needs to
be maintained manually). The image collection cubed darkroom
for the rice panicles is shown in Figure 2.

A total of 263 rice panicles and 298 images were obtained.
Each panicle of rice is shot in both natural and artificially shaped

states. Each image contains a different panicle of rice, at least one
panicle of rice and at most four panicles of rice. The panicles of
each rice variety ranged from 2 to 11. Among them, 60 images
were used as the data to calculate the RSSR, while the remaining
images were divided into a training verification set and a test set
by a ratio of 8:2.

We calibrated the obtained images by labeling with a
target detection marking tool, and then used these images
for training and prediction purposes. Figure 3A shows the
calibration difference between different data sets, and Figure 3B
shows the detailed differences between various categories in
the image cutting process, where “full” represents a full
rice grain, “empty” represents an empty rice grain, “half ”
represents a half rice grain, “H-full” and “H-empty” represent
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FIGURE 3 | Feature image for depth learning. (A) Comparison of local characteristics of rice grains, (B) comparison of grain characteristics of different rice varieties.

the full and empty grains detected in in the half grain
count after cropping.

Convolutional Neural Network
The CNN consists of several layers of neurons and computes
a multidimensional function with several variables (Chen et al.,
2014; Schmidhuber, 2015). The neurons in each layer, other than
from the first layer, are connected with the neurons from the
preceding layer. The first layer is called the input layer (Zhang
et al., 2015; Dong et al., 2016), which is then followed by hidden
layers, and the concluding layer. Each neuron connection has a
weight that is adjusted during the learning process. Initially, the
weights are taken at random. All neurons receive input values,
which they then process and send out as output values. The input
layer neurons’ input and output values are the values from the
variables of the function. In the other layers meanwhile, a neuron
receives at its input the weighted sum of the output values from
the neurons with which the neuron in question is connected.
The weights of the connections are used as the weights for the

weighing process. Each neuron gives its function to an input value
and these functions are called activation functions (LeCun et al.,
2015; Mitra et al., 2017).

The motivation of building an Object Detection model is to
provide solutions in the field of computer vision. The primary
essence of object detection can be broken down into two parts:
to locate objects in a scene (by drawing a bounding box around
the object) and later to classify the objects (based on the classes
it was trained on). There are two deep learning based approaches
for object detection: one-stage methods (YOLO–You Only Look
Once, SSD–Single Shot Detection) and two-stage approaches
(Faster R-CNN) (Rajeshwari et al., 2019). In addition, we have
added a newer one-stage object detector-EfficientDet. These will
be our main research methods.

Faster Region Convolutional Neural Network
As a typical two-stage object detection algorithm, the faster
region convolutional neural network (Faster R-CNN) has been
widely applied in many fields since its proposal (Ren et al., 2016).
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FIGURE 4 | Convolutional neural network. (A) Faster R-CNN, (B) SSD, (C) EfficientDet, (D) YOLO V3, and (E) YOLO V4.

As shown in Figure 4A, a region proposal network (RPN)
is constructed to generate confident proposal for multi-
classification and bounding box refinement. More precisely,

RPN first generates a dense grid of anchor regions (candidate
bounding boxes) with specified sizes and aspect ratios over each
spatial location of the feature maps. According to intersection
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over union (IOU) ratio with the ground truth object bounding
boxes, an anchor will be assigned with a positive or negative
label on top of the feature maps, a shallow CNN is built to judge
whether an anchor contains an object and predict an offset for
each anchor. Then anchors with high confidence are rectified by
the offset predicted in RPN. Then the corresponding features of
each anchor will go through a RoI pooling layer, a convolution
layer and a fully connected layer to predict a specific class as well
as refined bounding boxes (Zou et al., 2020). In addition, it is
worth noting that we use ResNet50 and VGG16 as the backbone
networks for training.

Single Shot Detector
The single shot detector (SSD) (Liu et al., 2016) discretizes the
bounding boxes’ output space into a set of default boxes over
different aspect ratios and scales per feature mAP location. At

the predicted time, the network awards scores to the situation
of each object category in each default box, after which, it
makes the according adjustments to the box to better match
the object shape. Additionally, in order to naturally handle
objects of various sizes, the network combines predictions from
multiple feature mAPs with different resolutions. SSD is simple
compared to methods that require object proposals, because it
completely eliminates the need for proposal generations and the
subsequent pixel or feature resampling stages, and encapsulates
all the necessary computations in a single network. This makes
SSD easily trainable and straightforward to integrate into systems
requiring a detection component (see Figure 4B).

EfficientDet
EfficientDet proposes a weighted bi-directional feature pyramid
network (BiFPN) and then uses it as the feature network. It

FIGURE 5 | Research on the relationship of Ratio. (A) The proportion of cumulative frequency according to the change of ratio (B) relationship between Ratio1 and
Ratio2.

FIGURE 6 | Loss curves of the different CNNs. (A) Faster R-CNN (ResNet50), (B) Faster R-CNN (VGG16), (C) SSD, (D) EfficientDet, (E) YOLO V3, and (F) YOLO V4.
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takes level 3–7 features (P3, P4, P5, P6, P7) from the backbone
network and repeats the top-down and bottom-up bi-directional
feature fusion. These fused features are fed to the class and box
networks to generate object class and boundary box predictions,
respectively. A composite scaling extension method is also
proposed, which is able to uniformly scale the resolution, depth
and width of all the backbone networks, feature networks and
prediction networks. The network structure of EfficientDet is
shown in Figure 4C (Tan et al., 2020).

You Only Look Once
YOLO V3 adopts a network structure called Darknet53. It draws
on the practice of residual network, and sets up fast links between
some layers to form a deeper network level and multi-scale
detection, which improves the detection effect of mAP and small
objects (Redmon and Farhadi, 2018). Its basic network structure
is shown in Figure 4D.

The real-time and high-precision target detection model,
YOLO V4, allows anyone training and testing with a conventional
GPU to achieve real-time, high quality and convincing object
detection results. As an improved version of YOLO V3, YOLO
V4 combines many of the techniques from YOLO V3. Among
them, the feature extraction network, Darknet53, which was
the backbone network for YOLO V3, has been changed to
CSPDarknet53, the feature pyramid has become SPP and PAN,
while the classification regression layer remains the same as in
YOLO V3. In order to achieve better target detection accuracy
without increasing inference costs, a method is used that either
only changes the training strategy or only increases the training
cost. This method is called the “bag of freebies.” A common
method for target detection that meets the requirements of being
a “free bag” in the “bag of freebies” method, is data enhancement.
The purpose of data augmentation is to increase the variability
of the input images, meaning that the designed object detection
model will have higher robustness to images obtained in different
environments. Another addition to this method, is known as
the “bag of specials.” This bag consists of plugin modules and
a post-processing method that can significantly improve the
accuracy of object detection and only increase the inference
cost by a small amount. Generally speaking, these plugin
modules are used to enhance certain attributes in a model,
such as enlarging the receptive field, introducing an attention
mechanism, or strengthening feature integration capability. Post-
processing meanwhile, consists in a method used for screening
model prediction results. Its basic network structure is shown in
Figure 4E (Bochkovskiy et al., 2020).

Hardware and Software
The CNNs were trained on the rice image dataset using a
hardware solution from our computer. This was a personal
desktop computer with Intel core i9-9900k CPU, NVIDIA Titan
XP (12G) GPU, and 64G RAM. We used the desktop to train
the six networks in Python language under a Windows operating
system with a Pytorch framework.

Rice Seed Setting Rate Optimization
Algorithm
Obtaining the RSSR is the ultimate goal of this research.
According to the traditional RSSR calculation formula used in
agriculture, the following formula was offered for adaption to our
research results:

RSSRt =
NFt

NFt + NEt
(1)

We put forward a novel method to calculate the RSSR, which is to
segment the original rice images to form the third category “half
grain,” and calculate the RSSR by finding the correlation among
them. This method is called the rice seed setting rate optimization
algorithm (RSSROA), the formula is as follows:

RSSRa =
NF + PH × NH

2

NF + NE + NH
2

(2)

Ratio1 =
NF

NF + NE
(3)

Ratio2 =
NFH

NFH + NEH
(4)

where RSSRt is a traditional measurement method used for
calculating the RSSR in agronomy, NFt is the number of full
grains obtained by traditional methods, NEt is the number of
empty grains obtained by traditional methods, RSSRa is the
RSSR result calculated by our rice seed setting rate optimization
algorithm (RSSROA), NF(NUMBER OF FULL GRAIN)
is the number of full rice grains obtained by RSSROA,
NE(NUMBER OF EMPTY GRAIN) is the number of empty

TABLE 1 | Detection performance of different models in the test set during
the clipping stage.

Network name Category Precision Recall F1 AP mAP

Faster R-CNN
(ResNet50)

Full grain 74.24% 87.80% 0.80 84.10% 50.65%

Empty grain 56.28% 56.21% 0.56 44.70%

Half grain 50.20% 32.95% 0.40 23.15%

Faster R-CNN
(VGG16)

Full grain 82.32% 88.43% 0.85 86.55% 59.70%

Empty grain 61.07% 51.77% 0.56 46.10%

Half grain 69.35% 50.16% 0.58 46.45%

SSD Full grain 36.43% 71.47% 0.48 66.09% 31.01%

Empty grain 10.24% 60.05% 0.18 17.87%

Half grain 3.18% 56.91% 0.06 9.08%

EfficientDet Full grain 79.43% 84.45% 0.82 86.99% 54.54%

Empty grain 100.00% 0.02% 0.00 15.84%

Half grain 92.54% 27.26% 0.42 60.78%

YOLO V3 Full grain 81.00% 84.07% 0.83 88.29% 62.62%

Empty grain 60.12% 35.19% 0.44 40.84%

Half grain 83.94% 44.54% 0.58 58.72%

YOLO V4 Full grain 89.79% 92.79% 0.91 94.78% 83.98%

Empty grain 77.66% 74.68% 0.76 73.92%

Half grain 87.79% 75.83% 0.81 83.24%
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grains obtained by RSSROA, NH(NUMBER OF HALF GRAIN)
is the number of half grains obtained by RSSROA,
PH(PROBABILITY OF FULL HALF SEED) is the prior
probability of there being full grains of rice in the half grain
count, NFH(NUMBER OF FULL GRAIN IN HALF GRAIN)
is the number of full grains in the half grain count, and
NEH(NUMBER OF EMPTY GRAIN IN HALF GRAIN) is the
number of empty grains in the half grain count.

Through our simulation study, it was found that there is a
certain linear relationship between Ratio1 and Ratio2. This can
be seen in Figure 5A, which shows the distribution density
curves of Ratio1 and Ratio2, where both curves belong to
normal distribution and have 99.89% probability of consistency
by the Kolmogorov-Smirnov test (Frank, 1951). Therefore,
we further explored and obtained the scatter diagram with
Ratio1 as the X-axis and Ratio2 as the Y-axis, as shown in
Figure 5B. Through a correlation analysis, we then obtained
the correlation coefficient of 0.8327 and the linear equation of
PH = Ratio2 = 0.797Ratio1 + 0.1972. The result of this
current method can be used as our PH coefficient.

Evaluation Standard
We evaluated the results from the different networks used
on our data set. For the evaluation, a detected instance was

considered a true positive if it had a Jaccard Index similarity
coefficient, also known as an intersection-over-union (IOU) (He
and Garcia, 2009; Csurka et al., 2013) of 0.5 or more, with a
ground truth instance. The IOU is defined as the ratio of pixel
number in the intersection to pixel number in the union. The
instances of ground truth which did not overlap with any detected
instance were considered false negatives. From these measures,
the precision, recall, F1 score, AP, and mAP were calculated
(Afonso et al., 2020):

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2Precision × Recall
Precision + Recall

(7)

AP =
N∑

k = 1

Precision
(
k
)
4Recall

(
k
)

(8)

mAP =
∑M

i APi
M

(9)

FIGURE 7 | Precision-recall curves of the different convolutional neural networks in test set. (A–C) Are the Faster R-CNN (ResNet50) network Precision-Recall
curves, where (A) is the full grain precision-recall curve obtained by the Faster R-CNN (ResNet50) network, (B) is the empty grain precision-recall curve obtained by
the Faster R-CNN (ResNet50) network, and (C) is the half grain precision-recall curve obtained by the Faster R-CNN (ResNet50) network. (D–F) Are the Faster
R-CNN (VGG16) network Precision-Recall curves, where (D) is the full grain precision-recall curve obtained by the Faster R-CNN (VGG16) network, (E) is the empty
grain precision-recall curve obtained by the Faster R-CNN (VGG16) network, and (F) is the half grain precision-recall curve obtained by the Faster R-CNN (VGG16)
network. (G–I) Are the SSD network precision-recall curves, where (G) is the full grain precision-recall curve obtained by the SSD network, (H) is the empty grain
precision-recall curve obtained by the SSD network, and (I) is the half grain precision-recall curve obtained by the SSD network. (J–L) Are the EfficientDet network
precision-recall curves, where (J) is the full grain precision-recall curve obtained by the EfficientDet network, (K) is the empty grain precision-recall curve obtained by
the EfficientDet network, and (L) is the half grain precision-recall curve obtained by the EfficientDet network. (M–O) Are the YOLO V3 network precision-recall curves,
where (M) is the full grain precision-recall curve obtained by the YOLO V3 network, (N) is the empty grain precision-recall curve obtained by the YOLO V3 network,
and (O) is the half grain precision-recall curve obtained by the YOLO V3 network. (P–R) Are the YOLO V4 network precision-recall curves, where (P) is the full grain
precision-recall curve obtained by the YOLO V4 network, (Q) is the empty grain precision-recall curve obtained by the YOLO V4 network, and (R) is the half grain
precision-recall curve obtained by the YOLO V4 network.
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where TP = the number of true positives, FP = the number of
false positives, and FN = the number of false negatives. Where
N is the total number of images in the test dataset, M is the

number of classes, Precision(k) is the precision value at k images,
and 4Recall

(
k
)

is the recall change between the k and k−
1 images.

FIGURE 8 | Each color corresponds to the test results from a different network model, while the symbols “◦,” “∗, ′′ and “′′ correspond to a 0.25, 0.5, and 0.75
overlap IOU, respectively. The results from each method and their use of these IOU thresholds are connected by dashed lines: (A) Test results in full grain, (B) test
results in empty grain, and (C) test results in half grain.
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In addition, the mean absolute error (MAE), the mean squared
error (MSE), the root mean squared error (RMSE), and the
correlation coefficient (R), were used as the evaluation metrics to
assess the counting performance. They take the forms:

MAE =
1
N

N∑
1

|ti − ci| (10)

MSE =
1
N

N∑
1

(ti − ci)2 (11)

RMSE =

√√√√ 1
N

N∑
1

(ti − ci)2 (12)

R =

√√√√1−
∑N

i = 1 (ti − ci)2∑N
i = 1

(
ti − t

)2 (13)

where N denotes the number of test images, ti is the ground truth
count for the i− th image, ci is the inferred count for the i− th
image, and t is the arithmetic mean of ti.

RESULTS

Rice Grain Detection
First, we evaluated the convergence between the YOLO series
model (YOLO V3, YOLO V4) and its four alternatives
[Faster R-CNN (ResNet50), Faster R-CNN (VGG16), SSD, and
EfficientDet], as well as the number of iterations. The loss curves
of the training and verification processes from the adopted six
deep neural networks are shown in Figure 6. For the full six
networks, the uniform batch size is 4 and the learning rate
starts from 0.0001. In terms of iterations, 200 are used for Faster
R-CNN (ResNet50) and Faster R-CNN (VGG16), while SSD,
EfficientDet, YOLO V3 and YOLO V4 use 120. It can be seen
that at the beginning of the training phase, the training loss drops
sharply, and then after a certain number of iterations, the loss
value slowly converges around an accurate value.

Liu et al. (2021) proposes a self-attention negative feed-
back network (SRAFBN) for realizing the real-time image
super-resolution (SR). The network model constrains the image
mapping space and selects the key information of the image
through the self-attention negative feedback model, so that higher
quality images can be generated to meet human visual perception.
There are good processing methods for the mapping from low
resolution image to high resolution image, but there is still a lack
of processing method from high resolution to low resolution.
Therefore, we propose the following idea: We cut the 190 images
into 4,560 images, re-tagged them, and added the “half” category.
Among these newly cut images, 2,705 were marked as foreground
images and 1,855 were not marked as background images. We
input the 2,705 foreground images into the six networks that
we proposed as a data set, and obtained the precision-recall
curve (Supplementary Figure 1). This greatly improved the
recognition effect of all the networks (Supplementary Table 2).
Among them, the mAP of the proposed YOLO V4 model in the
training set reached 90.13%, which is the most effective.

The features of the full grains are that they are full and the
middle of the grain presents a raised state (We believe that
partially filled grains caused by abiotic stress are also full grains),
empty grains meanwhile, are flat and the whole grain presents
a plane effect. The three-dimensional sense in an empty grain
is weaker than in a full grain, and part of the empty grain is
reflected by cracks and openings in its center. The fact that
these differences are small results in a poor detection effect by
the alternative models we proposed. The proposed YOLO V4
model uses a Mosaic data enhancing method to reduce training
costs and CSPDarknet53 to reduce the number of parameters
and FLOPS of the model, which not only ensures the speed and
accuracy of reasoning, but also reduces the model size. At the
same time, DropBlock regularization and class label smoothing
are employed to avoid any overfitting due to small differences.
Thus, this means that our proposed YOLO V4 model performs
much better than the other alternative models.

Following this, we tested the performance of different
networks on the test set (Table 1 and Figure 7), where we
plotted the precision and recall index graphs for full grain, empty
grain, and half grain, with the X-axis corresponding to recall
and the Y-axis corresponding to precision (Figure 8). Each

FIGURE 9 | The results calculated by the algorithm are in the form of a linear regression: (A) Linear regression of full grains in the optimization algorithm, (B) linear
regression of empty grains in the optimization algorithm, and (C) linear regression of half grains in the optimization algorithm.
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TABLE 2 | Comparison of the proposed method’s results and those obtained manually.

Sample label 1 2 3 4 5 6 7 8 9 10

No. of full grains per panicle determined manually 64 88 117 83 97 141 54 64 52 89

No. of full grains per panicle determined using proposed algorithm 64 86 119 82 99 146 55 66 55 91

No. of empty grains per panicle determined manually 35 39 27 21 15 9 20 5 3 12

No. of empty grains per panicle determined using proposed algorithm 34 40 27 20 16 10 20 5 2 11

RSSR determined manually, % 64.65 69.29 81.25 79.81 86.61 94.00 72.97 92.75 94.55 88.12

RSSR determined using proposed algorithm, % 64.89 68.53 81.55 80.23 86.18 93.65 73.08 92.69 95.79 88.98

Accuracy of the full grain number per panicle, % 100 97.73 98.32 98.80 97.98 96.58 98.18 96.97 94.55 97.80

Accuracy of the empty grain number per panicle, % 97.14 97.50 100 95.24 93.75 90.00 100 100 66.67 91.67

Accuracy of the seed setting rate, % 99.63 98.90 99.63 99.48 99.50 99.63 99.85 99.94 98.71 99.03

color corresponds to the test results of a network structure. For
each color, the symbols “◦,” “∗,” and “′′ represent the respective
overlapping IoU thresholds of 0.25, 0.50, and 0.75. Since in
an ideal situation, both indicators will be close to 1, the best
approach will be shown as close to the upper right corner as
possible. It is clear from Figure 8 that the results from the
YOLO V4 model were significantly better than those from the
other networks, regardless of their category. For all methods, we
noted that both accuracy and recall measures were lower when
the overlap threshold was 0.75, and highest when the overlap
threshold was 0.25. This means that in the case of more stringent
matching criteria (higher IoU thresholds), fewer detected rice
grains were matched with instances from the ground truth, which
resulted in lower indices for both. The network closest to the
top right was YOLO V4, with an overlap threshold of 0.25 and
0.50, respectively.

Calculation of Rice Seed Setting Rate
Through an analysis and comparison, YOLO V4 was finally
selected as the main network to be used for RSSR predictions,
due to its good partitioning effect on the rice grains. For the
calculation of RSSR, the rice images were first input for automatic
cropping, with the number of full grain, empty grain, and
half grain in each cropped image predicted by the YOLO V4

TABLE 3 | Detection performance of the different models during the training data
set’s untrimmed state.

Network name Category Precision Recall F1 AP mAP

Faster R-CNN
(ResNet50)

Full grain 14.43% 3.01% 0.05 0.55% 0.30%

Empty grain 6.61% 0.26% 0 0.05%

Faster R-CNN
(VGG16)

Full grain 12.47% 2.40% 0.04 0.37% 0.21%

Empty grain 7.63% 0.22% 0 0.04%

SSD Full grain 9.37% 9.95% 0.1 1.11% 0.67%

Empty grain 2.14% 0.14% 0 0.22%

EfficientDet Full grain 0.01% 0.01% 0 0.26% 0.14%

Empty grain 0.01% 0.01% 0 0.01%

YOLO V3 Full grain 45.53% 45.77% 0.46 29.82% 16.65%

Empty grain 37.21% 4.39% 0.08 3.48%

YOLO V4 Full grain 49.54% 40.30% 0.44 24.51% 17.97%

Empty grain 43.69% 17.60% 0.25 11.43%

network. Following this, all sub-images belonging to an image
were automatically synthesized, and the RSSR was calculated
according to the algorithm we provided.

The linear regression between the manual calculation result
and the optimization algorithm’s calculation result of 60 rice
images is shown through (Figures 9A–C). It can be observed that
YOLO V4 is the most efficient at identifying rice grains, and that
its correlation coefficient R surpasses 90%.

Table 2 is a comparison of the results from the proposed
method and those that were obtained manually. From Table 2,
it can be seen that the proposed method’s average accuracy for
calculating the full grain number per panicle was 97.69%, for the
empty grain number per panicle it was 93.20%, and for the RSSR

TABLE 4 | Detection performance of various networks under precise division.

Network name Category Precision Recall F1 AP mAP

Faster R-CNN
(ResNet50)

Full grain 73.85% 86.68% 0.80 80.82% 37.04%

Empty grain 59.84% 43.10% 0.50 36.48%

H-full grain 51.31% 31.87% 0.39 25.12%

H-empty grain 51.54% 4.35% 0.08 5.73%

Faster R-CNN
(VGG16)

Full grain 77.89% 90.01% 0.84 86.53% 43.91%

Empty grain 59.51% 51.42% 0.55 43.66%

H-full grain 75.34% 30.13% 0.43 36.66%

H-empty grain 73.08% 3.70% 0.07 8.77%

SSD Full grain 70.67% 75.72% 0.73 71.24% 37.75%

Empty grain 38.80% 50.25% 0.44 38.99%

H-full grain 16.15% 55.43% 0.25 28.89%

H-empty grain 34.02% 10.64% 0.16 11.87%

EfficientDet Full grain 80.89% 80.01% 0.80 86.01% 44.38%

Empty grain 80.14% 1.80% 0.04 32.36%

H-full grain 83.19% 25.71% 0.39 58.46%

H-empty grain 0.00% 0.00% 0.00 0.69%

YOLO V3 Full grain 82.93% 83.06% 0.83 87.72% 46.78%

Empty grain 65.59% 27.47% 0.39 35.51%

H-full grain 80.04% 39.53% 0.53 56.16%

H-empty grain 80.00% 1.16% 0.02 7.74%

YOLO V4 Full grain 86.87% 93.17% 0.9 94.27% 66.57%

Empty grain 79.30% 76.37% 0.78 78.44%

H-full grain 86.73% 51.07% 0.64 64.38%

H-empty grain 79.93% 14.99% 0.25 29.19%
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it was 99.43%. This indicates that the proposed method offers
high accuracy and stability. The deviations in a few cases can be
attributed to identification errors for some small empty grains
and half grains during the YOLO V4 model’s testing process. The
characteristics of some empty grains are not obvious, appearing
highly similar to the full grains. Some half grains have a relatively
complete shape, which is similar to the shape of full grains with
their shielding, resulting in recognition difficulties.

DISCUSSION

Detection Effect of Different Data Sets
To better understand the performance of our proposed methods,
we studied the network detection effects during different image

states. First, however, it must be noted that the rice identification
process is carried out using the initial image, which has 4,032
× 3,024 pixels.

Table 3 shows the detection performances of the six deep
learning networks, all of which are clear as the high input
images undergo the necessary resizing before going through
the networks. However, in spite of the preservation of various
network category characteristics, the minor differences between
full and empty grains are still easily ignored. Therefore, although
we adopted a variety of networks to train the data set, we were
still unable to find a network with an accuracy as high as our
own experimental results. Our proposed model, the YOLO V4
network, achieved the best accuracy among the six networks,
with an mAP value of 17.97%, however, this is still far below our
target expectations.

FIGURE 10 | Comparison between the prediction results and the actual results from the different networks.

FIGURE 11 | Performance: (A) Relationship between the number of different prediction images and prediction time, (B) the error in term of mAP vs. Speed (FPS) on
test set.
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Table 4 shows the detection effect under precise division. 4,560
images were obtained by cropping 190 images, whereupon these
were used as the data set. The cropping principle is that the
size of the cropped images be as close as possible to the input
size of each network, and that the categories of half-full grain
and half-empty grain are added. H-full and H-empty represent
the full and empty grains detected in in the half grain count
after cropping. It can be observed that the accuracy of all the
networks and the recognition accuracy of some of the categories
have been improved. These results accorded with our hypothesis
and proved the effectiveness of the proposed method. However,
the overall performance remains unsatisfactory.

Prediction Effect of Different Convolution
Neural Networks
Figure 10 shows the predictive effects of our six network
architectures: Faster R-CNN (ResNet50), Faster R-CNN
(VGG16), SSD, EfficientDet, YOLO V3, and YOLO V4. Through
this, it can be seen that most of the target detection methods
greatly improve the detection effect once image segmentation
has been completed. Faster R-CNN (ResNet50), Faster R-CNN
(VGG16), EfficientDet, and YOLO V3 in particular, showed
significant improvements when working with the proposed
method, and performed well when detecting full grain. Almost
all the full grain samples were detected, but empty and half grain
samples were not detected as efficiently. YOLO V4 on the other
hand, was not only the best at detecting full grains, but also at
detecting the empty and half grains, as well as many categories
that the other networks were unable to detect.

Performance vs. Speed
Figure 11A shows that as the number of predicted images
increased, so did the prediction time, with a roughly linear
increase. We calculated that one image’s average running time
is about 2.65 s, which is much less than that achieved with a
manual counting time.

We also considered the reasoning speed of various networks.
Figure 11B shows the error terms for mAP and speed (FPS)
on the test data set. Faster R-CNN (ResNet50), Faster R-CNN
(VGG16), SSD, EfficientDet, YOLO V3, YOLO V4 were all
implemented using the same Pytorch framework and used the
same input image size. We measured the speed of all the
methods on a single Nvidia GeForce GTX TITAN XP GPU
(12G) computer. According to Figure 11B, YOLO V4 is superior
to the other five methods except YOLO V3 in both its speed
(FPS) and mAP (the higher the better). YOLO V4 is significantly
better than YOLO V3 in mAP, but the detection speed (FPS)
is slightly inferior. Considering the overall situation, we think
that the importance of mAP is higher than the detection speed
(FPS). Therefore, we think that the performance of YOLO V4
is stronger. Faster R-CNN (ResNet50), Faster R-CNN (VGG16),
and EfficientDet meanwhile, show less of a difference in their
performance and speed. The SSD’s speed was similar to Faster
R-CNN (ResNet50), Faster R-CNN (VGG16), and EfficientDet,
but its performance was far below that of the other networks, with
a poor detection of small features being the main issue.

Error Analysis
Through the identification of the grains of 60 rice images, we
detected that the average error number of full grains was 5.78
grains, and the average error number of empty grains was 2.76
grains, and the final RSSR error was 2.84%. In addition, the results
of MAE, MSE, RMSE for solid grains, shrunken grains, and seed
setting rates can be obtained from Figures 9A–C, which shows
that although our results have certain errors, they are acceptable.

In future work, we plan to continue improving the detection
accuracy of full rice grains and empty grains, and to eliminate
the impact of full half grains on RSSR as much as possible.
Considering the high efficiency of the program, we will also
improve the RSSR calculation speed.

CONCLUSION

In this paper, a RSSR calculation method based on deep learning
for high-resolution images of rice panicles is proposed for the
realization of the automatic calculation of RSSR. The calculation
method is composed of both deep learning and RSSROA. Deep
learning is used to identify the grain category characteristics of
rice, and the RSSROA is used to calculate the RSSR.

In this study, a rice panicle data set composed of 4560 cut
images was established. These images were taken from multiple
rice varieties which had been grown under the same environment
and had been processed based on image segmentation. Through
the identification and comparison of data sets, we choose YOLO
V4 with the best comprehensive performance as our network
for calculating RSSR. In addition, the detection accuracy for full
grain, empty grain, and RSSR in 10 randomly selected rice images,
were 97.69, 93.20, and 99.43%, respectively. The calculation
time for the RSSR in each image was 2.65 s, which meets the
needs for automatic calculation. In cooperation with rice research
institutions, because this method is a non-destructive operation
when collecting rice panicles information, it is more convenient
for rice researchers to reserve seeds, and the simple operation
method enables rice researchers to obtain RSSR information
more efficiently and accurately, which will be a reliable method
for further estimating rice yield.
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Supplementary Figure 1 | Precision-recall curves of the different convolutional
neural networks in training set. (A–C) Are the Faster R-CNN (ResNet50) network
Precision-Recall curves, where (A) is the full grain precision-recall curve obtained
by the Faster R-CNN (ResNet50) network, (B) is the empty grain precision-recall
curve obtained by the Faster R-CNN (ResNet50) network, and (C) is the half grain
precision-recall curve obtained by the Faster R-CNN (ResNet50) network. (D–F)
Are the Faster R-CNN (VGG16) network Precision-Recall curves, where (D) is the
full grain precision-recall curve obtained by the Faster R-CNN (VGG16) network,
(E) is the empty grain precision-recall curve obtained by the Faster R-CNN
(VGG16) network, and (F) is the half grain precision-recall curve obtained by the
Faster R-CNN (VGG16) network. (G–I) Are the SSD network precision-recall
curves, where (G) is the full grain precision-recall curve obtained by the SSD
network, (H) is the empty grain precision-recall curve obtained by the SSD
network, and (I) is the half grain precision-recall curve obtained by the SSD
network. (J–L) Are the EfficientDet network precision-recall curves, where (J) is
the full grain precision-recall curve obtained by the EfficientDet network, (K) is the
empty grain precision-recall curve obtained by the EfficientDet network, and (L) is
the half grain precision-recall curve obtained by the EfficientDet network. (M–O)
Are the YOLO V3 network precision-recall curves, where (M) is the full grain
precision-recall curve obtained by the YOLO V3 network, (N) is the empty grain
precision-recall curve obtained by the YOLO V3 network, and (O) is the half grain
precision-recall curve obtained by the YOLO V3 network. (P–R) Are the YOLO V4
network precision-recall curves, where (P) is the full grain precision-recall curve
obtained by the YOLO V4 network, (Q) is the empty grain precision-recall curve
obtained by the YOLO V4 network, and (R) is the half grain precision-recall curve
obtained by the YOLO V4 network.
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