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A low-cost portable wild phenotyping system is useful for breeders to obtain detailed
phenotypic characterization to identify promising wild species. However, compared with
the larger, faster, and more advanced in-laboratory phenotyping systems developed
in recent years, the progress for smaller phenotyping systems, which provide fast
deployment and potential for wide usage in rural and wild areas, is quite limited. In
this study, we developed a portable whole-plant on-device phenotyping smartphone
application running on Android that can measure up to 45 traits, including 15 plant
traits, 25 leaf traits and 5 stem traits, based on images. To avoid the influence of
outdoor environments, we trained a DeepLabV3+ model for segmentation. In addition,
an angle calibration algorithm was also designed to reduce the error introduced by the
different imaging angles. The average execution time for the analysis of a 20-million-
pixel image is within 2,500 ms. The application is a portable on-device fast phenotyping
platform providing methods for real-time trait measurement, which will facilitate maize
phenotyping in field and benefit crop breeding in future.

Keywords: smartphone, application, plant phenotyping, deep learning, maize plants

INTRODUCTION

Maize (Zea mays L) is one of the essential crops cultivated primarily for food, animal feed, and
biofuel, and a more significant amount of maize by weight is produced each year than any other
grain (Ritchie and Roser, 2020). Maize plant traits, such as plant architecture, plant biomass, plant
projected area, and plant height, are essential factors in the study of maize biology, growth analysis,
and yield estimation (Golzarian et al., 2011). Leaves are the primary photosynthetic organs and
fundamental importance to maize, acting as transporters, carrying essential materials and energy
from the environment, and eliminating waste products (Efroni et al., 2010). Thus, leaf traits, such
as leaf area, leaf shape, and leaf number, are also of great significance in maize breeding (Yang et al.,
2013). Moreover, the traits of each individual leaf at different heights contribute differently to the
final yield prediction (Zhang et al., 2017).
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Wild species related to agricultural crops (CWR, crop wild
relatives) represent a large pool of genetic diversity, providing
new allelic variation for yield improvements, disease resistance,
farming practices, and market demands (Dempewolf et al.,
2017). The advent of next-generation sequencing technology has
resulted in a significant improvement in genomics (Koboldt et al.,
2013) and implemented high-throughput genome sequencing for
CWR. However, there are substantial gaps in accessible CWR
in gene banks, and available evidence indicates that the crop
diversity present in farmers’ fields has declined, leading to the
rareness or even disappearance of many farmers’ varieties and
landraces (FAO, 2010; Pilling et al., 2020). Among the most
critical crops across the global food supply, such as wheat, rice,
and soybean, maize wild relatives gain the highest priority for
further collection to improve their representation in gene banks
(Castañeda-Álvarez et al., 2016). When breeders collect CWR
resources, a portable device that can provide detailed phenotypic
characterization on device in wild conditions is urgently needed.

Over the past few decades, many versatile and high-
throughput phenotyping platforms have been developed (Yang
et al., 2020). Compared with other phenotyping trait collection
methods, image-based phenotyping is noninvasive, scalable, and
easy to automate (Das Choudhury et al., 2016). Granier et al.
(2006) developed one of the first automated visible-light imaging
systems called PHENOPSIS for detecting Arabidopsis responses
to water deficit in 2003. Walter applied soil-filled rhizoboxes to
make the root visible and established GROWSCREEN for both
aboveground and belowground phenotyping in 2007 (Walter
et al., 2007). Later, a chlorophyll fluorescence imaging system
was attached to the platform, and GROWSCREEN was updated
into GROWSCREEN FLUORO, allowing the phenotyping of
leaf growth and chlorophyll (Jansen et al., 2009). In the next
few years, larger-scale phenotyping platforms in the laboratory,
such as Phenoscope (Tisné et al., 2013) and Phenovator (Awlia
et al., 2016), were designed for potted plants. These platforms
combined the rotating imaging table for multiangle imaging,
a high-speed x–y rail system for camera movement (camera
to plant) or plant movement (plant to camera), and a dark
acclimation chamber for a more stable imaging environment.
In general, phenotyping systems in the laboratory are rapidly
developing and contain more advanced sensors for additional
traits unable to be acquired before. However, indoor phenotyping
platforms are costly, time-consuming, immovable, and require
skilled engineers for maintenance. To provide phenotyping
measurements in the field, a portable, simple-to-operate, and
cost-effective phenotyping platform is needed.

Taking advantage of advances in sensors and chip
computation power, modern smartphones have become a
new solution that combines sensors, platforms, and processing,
and a few methodologies for phenotyping with smartphones
have been developed (Araus and Kefauver, 2018). The fractional
vegetation cover can be estimated from simple calculations
with traditional RGB images taken above crop canopies using
the smartphone’s own processing capacities (Patrignani and
Ochsner, 2015; Chung et al., 2017). PocketPlant3D uses the
device accelerator and magnetometer to measure the leaf
insertion angle and the leaf angles from the insertion to the

tip (Confalonieri et al., 2017). PocketLAI acquires real-time
images from below the plant canopy. It uses the smartphone
accelerator to obtain the smartphone’s current depression angle
and detect sky pixels when the angle between the vertical
and the normal to the screen reaches 57◦ to estimate plant
LAI (Orlando et al., 2016). PocketN estimates plant nitrogen
content from digital images (Confalonieri et al., 2015). The
iPad application “Estimate” takes images of a single expanded
leaf and uses standard area diagrams (SADs) to estimate the
severity of Cercospora leaf spot (Pethybridge and Nelson, 2018).
Some researchers develop applications to acquire images and
send them to a server for advanced data processing to transfer
machine learning approaches to smartphone applications (Singh
et al., 2018). This client-server architecture fills the smartphone
computation capacity gap by transmitting image data to an in-
house server for advanced image processing to detect Cercospora
leaf spots on sugar beet (Hallau et al., 2018). A cloud-based
system that can send the images taken from the greenhouse
to the cloud is developed for water stress prediction using
window-based support vector regression (multimodal SW-SVR)
(Kaneda et al., 2017). These applications revealed the potential of
mobile devices in plant phenotyping.

In previous work, our phenotyping team developed a high-
throughput indoor phenotyping facility called HRPF to extract
rice phenotypic traits (Yang et al., 2014), and more novel imaging
techniques were renewed and applied in more crops, such as
multiangle RGB imaging for 3D reconstruction of wheat plants
(Fang et al., 2016), hyperspectral imaging for rice plant biomass
(Feng et al., 2013) and rice leaf chlorophyll (Feng et al., 2013),
and micro-CT for rice tiller traits (Wu et al., 2019). In the present
work, we developed a portable on-device phenotyping system
running on Android to nondestructively extract 15 plant traits,
25 leaf traits and 5 stem traits with high efficiency (up to 3 s
per plant), which provides a real-time quantitative maize trait
analysis for breeders.

MATERIALS AND METHODS

Material and Experimental Design
The study area was located at Huazhong Agricultural
University, Wuhan, Hubei Province, China (30.5N, 114.3E)
at an average elevation of 16 m. The maize variety of JinZhongYu
(YT0213/YT0235) was sown and germinated during the summer
of 2015. Ninety maize plants were planted in a plastic pot and
in the field. The pots were 23.5 cm in diameter and 35 cm in
height with approximately 6 l of experimental soil (pH 5.45,
total nitrogen 0.241 g kg−1, total potassium 7.20 g kg−1, total
phosphorus 0.74 g kg−1, alkali-hydrolysable nitrogen 144.06 mg
kg−1, available potassium 188.64 mg kg−1, available phosphorus
16.81 mg kg−1, organic matter 46.55 g kg−1).

The measurement started 30 days after sprouting. Every
3 days, nine plants in the pots and nine plants in the field were
randomly picked and photographed outdoors via an application
(PocketMaize) running on an ANDROID smartphone (MEIZU,
MX4). A portable black backdrop is placed behind the plant as
background, and a marker object is placed next to the plant to
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calculate the resolution between image pixels and the real world.
Four images with pitch angles of approximately 0◦ (front view),
10◦, 15◦, and 20◦ were taken for each plant with arbitrary distance
from camera to the plant and imaging height. Images were stored
in JPG format with a resolution of 3,936 × 5,248 pixels. The
app stores the pictures and records the current spatial angle,
time, and date when a picture is taken. Other necessary pieces
of information, such as plant ID, can also be manually input.

After imaging, plant height was manually measured with a
ruler vertically placed against the plastic pot’s edge or the field
ground on top of the soil surface. The shoot part of the maize
plant was then cropped down for destructive measurements. The
fresh leaf biomass and stem biomass were estimated separately.
The individual leaves of each plant were cut, and the leaf area was
measured using high-throughput leaf scoring (HLS) (Yang et al.,
2015). Then, the plants were sealed and oven-dried for further
dry-weight determination.

The Image Process Procedure
In this study, we developed an application running on Android
smartphones (called PocketMaize) for image acquisition, image
processing, and plant traits extraction combined (Figure 1).
Image processing’s key steps include image calibration, angle
calibration, image segmentation, skeletonization, stem and leaf
extraction, and phenotypic traits calculation.

The first step, camera distortion calibration using an OpenCV
calibration function (Zhang, 2000), is optional. A black and white
calibration pattern pasted on a plastic plate was used to obtain
20–25 images. Furthermore, the imaging angles between each
image should have apparent differences to ensure accuracy.

The second step is to calibrate the rotation angle and
depression angle. As shown in Figures 2A,B, the depression
angle α is the angle between the normal n to the plane on
which the device’s screen lays and the horizontal plane, while
the rotation angle γ is the angle between the y-axis of the
screen and the zenith.

An ideal image for trait extraction should be perpendicular
to the ground and have the same object-pixel resolution for the
whole image. One of the best options is orthographic projection
imaging. For most of the other image-based phenotyping
systems, camera lens distortion calibration is sufficient because
in these systems, the cameras are fixed to obtain a stable imaging
angle. However, in our application, the position and direction
of the camera are continuously changing, making it essential to
calibrate ordinary images with different rotation and depression
angles to an approximate orthographic projection image by
image transformation.

Gravity sensors in the smartphone provide live data of
the rotation angle and depression angle, and these two
angles are calibrated separately. Figure 1A shows an original
image obtained from camera calibration whose rotation angle
and depression angle need to be calibrated. Usually, the
perpendicularity is satisfied by simply rotating the image
clockwise or anticlockwise using the rotation angle obtained
from the accelerometer to match the gravity direction while a
perspective transform was applied to adjust the depression angle.

Figures 1B,C display the results of the rotation angle calibration
and depression angle calibration, respectively.

The perspective transform is used in depression angle
calibration, which is a nonlinear geometric transformation that
can change an image from one viewpoint to another viewpoint or,
in other words, change the position of the image plane. It is widely
used in image processing, including length calculation, marking
recognition in images (Liu et al., 2012) and vision guidance
for vehicles (Torii, 2000). Perspective transform can transform
the ordinary images taken in this experiment with different
imaging angles to an approximate orthographic projection image.
It needs the coordinates of four sets of points, four given points
on the original image plane and their corresponding points on
the target image plane, to calculate the perspective transform
matrix. Placing four markers on to the background can reduce
obstacles in image processing. The markers might be obscured by
leaves, and it is troublesome to determine the relative positions
in the wild. Therefore, a camera calibration method without
markers was developed.

Examine a 2W × 2H rectangle with four symmetric corner
points LT, RT, LB, RB on the target image plane (object
plane) and their corresponding points LT

′

, RT
′

, LB
′

, RB
′

on the origin image plane. Figure 2C shows the position
of these eight points, and point C is the origin point of
the coordinate system on both the object plane and image
plane. The coordinates of these eight points are LT(−W,H),
RT(W,H), LB(−W,−H), and RB(W,H) on the target image
plane and LT

′
(
−W

′

upper,H
′

upper

)
, RT

′
(
W
′

upper,H
′

upper

)
,

LB
′
(
−W

′

lower,H
′

lower

)
, and RB

′
(
W
′

lower,H
′

lower

)
on the origin

image plane. Figure 2D is the longitudinal section at the center,
while T and T

′

are the center of LT, RT and LT
′

, RT
′

and B and
B
′

are the center of LB, RB and LB
′

, RB
′

. First, for the upper part
of the image, let’s mark{

Lupper = OT
L
′

upper = OT ′
(1)

Then, we have
W
′

upper
W =

L
′

upper
Lupper

(2)

Let β be the actual viewing angle of the point and D be the
distance between the camera and the plant; then, we have:

H
′

upper = D tan β (3)

H
′

max = D tan βmax (4)

β = tan−1
(

H
′

tan βmax
H′max

)
(5)

where βmax is the half vertical field of view (VFOV) of the camera
and H

′

max is the half y resolution of the camera.
The trigonometric relationship in the upper half of the image

can be described as follows:

D = L
′

upper cos β (6)

Frontiers in Plant Science | www.frontiersin.org 3 November 2021 | Volume 12 | Article 770217

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-770217 November 23, 2021 Time: 14:19 # 4

Liu et al. Smartphone Application for Maize Plant Phenotyping

FIGURE 1 | The image analysis pipeline showing (A) original image; (B) rotated image to calibrate rotation angle; (C) depression angle calibration using perspective
transform; (D) color adjustment; (E) the resulting image of preprocessing; (F) segmentation using DeepLabV3+; (G) segmentation result image; (H) skeletonization
using our distance transform-based algorithm; (I) stem axis recognition by finding the overlaid route; (J) pixel extraction for each individual leaf; (K) result image.

Hupper
sin β

=
D

sin[π−β−( π
2 −α)] (7)

Lupper
sin( π

2 −α)
=

D
sin[π−β−( π

2 −α)] (8)

At last, we have

L
′

upper =
cos(α−β)
cos α cos β

Lupper (9)

and
H
′

upper =
cos(α−β)

cos β
Hupper (10)

Similarly, for the lower half of the image, we have

Hlower
sin[π−α−( π

2 −α−β)] =
H
′

lower
sin( π

2 −α−β)
(11)

L
′

lower =
H
′

lower
sin β

(12)

Frontiers in Plant Science | www.frontiersin.org 4 November 2021 | Volume 12 | Article 770217

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-770217 November 23, 2021 Time: 14:19 # 5

Liu et al. Smartphone Application for Maize Plant Phenotyping

FIGURE 2 | The calibration of rotation angle and depression angle showing (A) explanation of depression angle; (B) explanation of rotation angle; (C) schematic
diagram for depression angle; (D) longitudinal section for depression angle.

FIGURE 3 | The model structure of DeepLabV3+ with the MobuleNetV2 backbone.

Llower
sin( π

2 +α)
=

Hlower
sin β (13)

Hence, the final proportion is given by

H
′

lower =
cos(α+β)

cos β
Hlower (14)

L
′

lower =
cos(α+β)
cos α cos β

Llower (15)

From formulas (9), (10), (14), and (15), for any given point
on the original image plane, we can calculate the coordinates
of the corresponding points on the target image plane and
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FIGURE 4 | Schematic workflow for the skeletonization procedure showing (A) origin segmented image; (B) all points in S2; (C) all points in S3; (D) final result for
skeletonization with the points from S2 marked in blue and the points from S3 marked in red.

FIGURE 5 | The procedure of leaf pixel segmentation showing (A) the original segmented image and skeletonized image; (B–E) the segmentation result of two, four,
six and all leaves with each leaf marked in different colors and the stem marked in red.

vice versa. Then, we can calculate the eight points needed to
transform the ordinary image to an approximate orthographic
projection image.

The color enhancement in this manuscript aims to standardize
the image color according to the main color of the target
object and enlarge the color difference between the plant part
and background. The purpose of color enhancement here is to
improve the segmentation result of DeepLabV3+ under different
surrounding weather and illumination conditions.

Use DeeplabV3+ With the MobileNet
Backbone for Segmentation
Segmentation of the plant image is the critical step for the
image process. We introduced the DeepLabV3+ model with a
MobileNet backbone to obtain segmented results of images with
different lightness conditions and backgrounds. DeepLabV3+ is

a convolutional neural network model designed for pixel-based
semantic image segmentation that has three improved versions
(Chen et al., 2018).

Convolutional neural networks use several layers of filters
convolved with the input data to greatly reduce the dimension
of input data and extract features of the image. These features
from each layer are combined into feature maps that can
then be used to make the output prediction. Compared with
other convolutional neural networks, DeepLabV1 (Chen et al.,
2016) introduced a dilated convolution to increase the receptive
field to regain the data lost in the pooling layer and used
the conditional random field (CRF) to improve boundary
recognition. DeepLabV2 (Chen et al., 2017) established the model
with atrous spatial pyramid pooling (ASPP) to handle images
of similar objects with different scales. DeepLabV3 (Chen et al.,
2018) adds a batch normalization layer into the ASPP, and
DeepLabV3+ uses a simple decoder module to further upgrade
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TABLE 1 | Trait classification and abbreviation.

Trait classification Trait Trait abbreviation

Plant traits Maximum plant height in side view MPH

Vertical plant height in side view VPH

Plant width in side view PW

Total projected area TPA

Green projected area/total projected area in side view GPAR

Total projected area/bounding rectangle area ratio in side view TBR

Plant perimeter in side view PP

Perimeter/projected area ratio in side view PAR

Plant compactness in side view PC

Fractal dimension in side view FD

Height to width ratio of minimum circumscribed box in side view HWR

The area of convex hull ACH

The perimeter of convex hull PCH

Plant area/convex hull area PCHAR

Total dry weight TDW

Leaf traits Total leaf dry weight LDW

Total leaf area TLA

Total leaf projection area TLPA

Total leaf length per plant TLL

Leaf number per plant LN

Standard deviation of straightened leaf length per plant SDSLL

Average distance between the leaf tip and node per plant LNL

Standard deviation of the distance between the leaf tip and node per plant SDLNL

Average leaf curvature per plant LC

Standard deviation of leaf curvature per plant SDLC

Average leaf tangency angle per plant LTA

Standard deviation of leaf tangency angle per plant SDLTA

Average leaf straight angle per plant LSA

Standard deviation of leaf straight angle per plant SDLSA

Average straightened leaf length in lower half of plant SLL_below

Average distance between the leaf tip and node in lower half of plant LNL_below

Average leaf curvature in lower half of plant LC_below

Average of leaf tangency angle in lower half of plant LTA_below

Average of leaf straight angle in lower half of plant LSA_below

Average straightened leaf length in upper half of plant SLL_above

Average distance between the leaf tip and node in upper half of plant LNL_above

Average leaf curvature in upper half of plant LC_above

Average of leaf tangency angle in upper half of plant LTA_above

Average of leaf straight angle in upper half of plant LSA_above

Total leaf dry weight TLDW

Stem traits Stem height SH

Stem projection area SPA

Average stem width SW

Stem volume SV

Stem dry weight SDW

boundary recognition. The DeepLabV3 Plus model is a deep
convolutional neural network with atrous convolution that can
increase the receptive field without increasing the number of
parameters or reducing the dimension of space.

Several kinds of backbones can be used in DeepLab,
including ResNet (He et al., 2015), Xception (Chollet,
2017) and MobileNet (Howard et al., 2017). All these

models have good performance in maize segmentation,
especially Xception. However, to transfer the model to mobile
devices, we decided to train our DeepLab model with the
most lightweighted MobileNet. The structure of the whole
DeepLabV3+ model with the MobileNetV2 backbone is shown
in Figure 3. These modules are implemented in TensorFlow
(Abadi et al., 2016).
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FIGURE 6 | The user interface of PocketMaize showing (A) menu; (B) image capturing page; (C) segmentation result page; (D) leaf extraction result page; (E) traits
extraction result page.

Our own dataset included 720 images in the training set and
80 images in the validation set. A horizontal flip is applied to
each image to produce a final training set of 1,440 training and
190 validation images. The transfer training was started with an
initialized model pre-trained on the VOC 2012 dataset. The loss
weight of the loss function is modified according to the total pixel
size of background and the plant. The logit layer and the last layer
are excluded to train on our own dataset.

Thinning Algorithm
The media axis of the segmented image is essential for stem
and leaf recognition and the calculation of traits such as
stem height and leaf length. Thinning/peeling-based methods
such as Zhang’s thinning algorithm (Zhang and Suen, 1984)
will produce numerous spurs and are time-consuming, and
Voronoi diagram-based methods will have difficulty deciding
whether a skeletal branch should be pruned. Since the plant’s
binary images in this study are relatively large (originally up
to 20 million pixels and will become even larger after angle
calibration in this manuscript and might be larger for more
advanced smartphones) and the boundary of the plant is usually
very complicated and meandering, a proper way is to use
distance transform-based methods. We developed a two-step
skeletonization algorithm (Figure 4) based on the distance
transform algorithm (Felzenszwalb and Huttenlocher, 2004).
First, a distance transform algorithm was applied to the binary
image. Define St to be the point set of the target skeleton we
needed and Sn to be the point set containing all the points
whose value in the distance transformed image is larger than
at least n points in its eight neighbors. Figure 4A displays
the original segmented image, and Figures 4B,C show the
points in S2 and S3. We have approximately S2 ⊆ St ⊆ S3.
In the second step, we designed a path finding algorithm to
find a way to connect the points in S2 with the points in
S3. Figure 4D is the result of our algorithm with the origin
points in S2 marks in blue and the connected pixels from
S3 marks in red.

Stem and Leaf Extraction
The stem was extracted by finding the shared route connecting
the upper part and the plant root, and Figure 5 presents the
practical steps. First, all the endpoints of the skeleton image
are detected. Figure 5A is the image of the mid axis and all
the endpoints. Then, the shortest routes between the lowest
endpoint and each of the other endpoints are traced and summed.
Figures 5B–E shows this tracing procedure from lower leaves to
higher leaves, where each individual leaf is marked in different
colors and the overlaid route is marked in red.

Leaf apexes were located at the endpoints of the skeleton
image. The leaf direction can be traced by finding the shortest
route between leaf apexes and plant stems along the skeleton.
Figure 5E displays the segmented plant stem and individual
leaves painted in different colors. The leaf insertion angle and the
leaf angles from the insertion to the tip can be directly measured
from the leaf mid axis. With the stem area removed, the leaves in
the lower half were naturally separated.

Traits Extraction
Finally, from the segmented images and skeletonized images, we
calculated 45 traits (Table 1), which included 15 plant traits, 25
leaf traits and 5 stem traits. We can also extract each individual
leaf and analyze the difference between leaves at the upper part of
the plant and the lower part.

RESULTS

Development of a Smartphone
Application: PocketMaize
In this study, equipped with an Android smartphone (Meizu
MX4, MediaTek6595, CPU A17 2.2 GHz × 4 + A7 1.7 GHz × 4,
GPU PowerVR G6200), the application was developed with two
sensors: an RGB camera and a 3-axis accelerometer. In the image
taking mode, an indicator displaying the current depression angle
and rotation angle allows users to adjust phone orientation to
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FIGURE 7 | Comparison of manual ground truth and the segmentation result of DeepLabV3+. The left three columns (A–C) are the results of three potted samples,
and the right three columns (D–F) are the results of three in-field samples. The first row (A,D) shows samples taken in sunny mornings with even illumination. The
second row (B,E) shows two samples taken at dawn when the images have a heavy yellow color deviation. The last row (C,F) is taken at midday with high
brightness.

obtain the appropriate angles. Images were stored in JPG format
with a resolution of 3,936 × 5,248 pixels. The camera was
autofocused; ISO, shutter speed, and light balance were autofixed.
Other necessary information, such as time, date, and plant ID,
could also be manually input.

Image processing, processed images and extracted traits can
be displayed and saved on the device. The final traits of the maize
are stored in a CSV file. Figure 6 shows the user interface of the
application, which includes the main menu (A), the image taking
page (B), the result of segmentation and stem and leaf recognition
(C,D), and the traits displaying page (E).

Performance Evaluation of DeepLabV3+
Segmentation
In this study, after 1,440 images of maize were used to train the
DeepLabV3+ model, another 190 images, including 95 images
of potted samples and 95 in-field samples, were selected to
test the DeepLabV3+ model. To evaluate the performance, four
indicators, including precision, recall, F1-measure and IoU, are
adopted. Figure 7 shows the results of six samples under different
conditions. The left three columns (A–C) are the results of three
potted samples, and the right three columns (D–F) are the results
of three in-field samples. The first row (A,D) shows samples taken
in sunny mornings with even illumination. The second row (B,E)
shows two samples taken at dawn when the images have a heavy
yellow color deviation. The last row (C,F) is taken at midday

with high brightness. In general, the DeepLabV3+ model works
well in different color temperatures, different light intensities
and mild wind or mild rainy days. However, a sun halo might
influence the segmentation result. Although heavy wind will not
affect the segmentation stage, it will decrease the accuracy in later
stem and leaf recognition stage since the structure of the plant
may greatly change.

For the DeepLabV3+ model, the mean values of the Precision,
Recall, F1-measure and IoU are 97.31, 74.85, 86.10, and
79.91%, respectively.

Accuracy Evaluation of Plant Height
Measurement
Plant height is the vertical distance from the bottom of the
stem at soil surface to the top position of the while plant.
To evaluate the measurement accuracy of plant height, all
the plants were manually measured. The plant height was
measured after the images were captured, and automatic
plant height measurement was used to calculate the actual
distance between the bottom position of the stem and the
top of the whole plant. Figure 8 shows the plant height
results of manual observation versus automatic observation
in all four depression degrees for all plants. The MAPE
values were 3.556% for potted samples and 4.594% for
field samples, and the R2 coefficients were 0.928 and 0.958,
respectively. The results show that smartphone applications
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FIGURE 8 | The result of automatic plant height measurement versus manual plant height measurement.

FIGURE 9 | The modeling result of (A) automatic leaf area measurement versus measurement using high-throughput leaf scoring (HLS) and (B) automatic leaf dry
height measurement versus manual leaf dry height measurement.
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FIGURE 10 | The modeling result for automatic stem dry weight measurement and manual stem dry weight measurement.

can correctly detect stems and have good potential for
accurate measurement.

Accuracy Evaluation of Leaf Area and
Leaf Dry Weight
Figure 9 shows the results of leaf area estimation (A) and
leaf dry weight estimation (B). The MAPE values were 7.46%
for potted leaf area, 18.85% for in-field leaf area, 15.35% for
potted leaf dry weight and 20.97% for in-field leaf dry weight
estimation. The squares of the correlation coefficients (R2)
were 0.61, 0.79, 0.46, and 0.77. The detailed model summaries
for stepwise regression analysis for leaf area estimation and
leaf dry weight estimation are shown in Supplementary
Tables 1, 2.

Accuracy Evaluation of Stem Dry Weight
Since maize stems and maize leaves have a significant difference
in organ structure and density, it is natural to evaluate the
stem dry weight and leaf dry weight separately. In particular,
the plant stem can be approximately seen as a cylinder, so the
plant stem’s dry weight can be estimated with the volume of
a cylinder fitted to the stem together with other traits such
as stem projected area, stem height and average stem width.

Figure 10 shows the result of stem biomass measurement.
The MAPE values were 16.68 and 23.85% for potted and
field samples, respectively. The squares of the correlation
coefficients (R2) were 0.64 and 0.88, respectively. The detailed
model summaries for stepwise regression analysis for leaf
area estimation and leaf dry weight estimation are shown in
Supplementary Table 3.

DISCUSSION

Comparison of Trait Extraction
With/Without Depression Angle
Calibration
Since the difference in the depression angle can greatly change
the original image, a depression angle calibration is essential
before advanced image processing. Figure 11 shows an example
of eight images of one potted sample and one in-field sample
with different depression angles and rotation angles. The actual
depression angles/rotation angles are −2.1◦/4.9◦, 8.4◦/5.7◦,
15.2◦/4.5◦, and 22.7◦/3.8◦ for the potted sample shown in A and
4.4◦/3.68◦, 12.1◦/3.5◦, 16.6◦/2.89◦, and 18.4◦/3.6◦ for the field
sample shown in B. The calibrated images show that our angle
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FIGURE 11 | Comparison of the images taken with different depression angles and their angle calibrated results showing (A) a potted sample and (B) an in-field
sample.

calibration algorithm can vastly reduce the influence caused by
different rotation and depression angles and transform the plant
to an approximate front view.

Figure 12 shows the plant height, leaf area, leaf dry biomass
and stem dry biomass with and without depression angle
calibration. The results indicate that for plant height, leaf area
and leaf dry weight, the result is still meaningful without
depression calibration, with R2 values up to 0.73, 0.65, and 0.57
for in-field samples (Figures 12B,D,F). However, a depression
angle calibration can increase the measurement accuracy as

R2 increases to 0.99, 0.79, and 0.68 (Figures 12A,C,E).
Stem dry weight can only be measured with depression
angle calibration.

Comparison of Four Skeletonization
Methods
The skeleton algorithm we developed is based on the distance
transform algorithm. Several existing skeleton algorithms were
tested during our application development, and some were
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FIGURE 12 | The comparison of the modeling results for leaf area, leaf dry weight and stem dry weight measurements with and without angle calibration showing
(A) plant height measurements with depression angle calibration, (B) plant height measurements without depression angle calibration, (C) leaf area measurements
with calibration, (D) leaf area measurements without calibration, (E) leaf dry weight measurements with calibration, (F) leaf dry weight measurements without
calibration, (G) stem dry weight measurements with calibration and (H) stem dry weight measurements without calibration.
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FIGURE 13 | Comparison of the skeletonization results of the four methods showing (A) the segmented image. (B) Result image of our algorithm. (C) Results image
of Zhang’s thinning algorithm with branch pruning. (D) Result image of Scikit-image’s skeletonization. (E) Results image of heat equation-based skeletonization.

FIGURE 14 | Display of individual leaf traits at different heights of the plant showing (A) the whole plant and (B) traits of a specific leaf.

modified to match the situation better. It turned out that our
algorithm has a good result both for correctness and calculation
speed compared with the other algorithms. Our algorithm
requires a shorter calculation time to find a maize plant’s skeleton,
yields fewer unexpected branches and burrs, and the skeleton is
located closer to the center axis. In Figure 13, we present our
algorithm’s results compared with several other skeletonization
algorithms. These candidate algorithms include Zhang’s thinning
algorithm (Zhang and Suen, 1984), the media axis algorithm

provided by scikit-image (van der Walt et al., 2014), and 2D
skeleton extraction based on the heat equation (Gao et al., 2018).
Figure 13A is the original segmentation image, and Figure 13B
is the result of our skeleton algorithm. Figures 13C–E are the
skeletonization results of Zhang’s thinning algorithm with branch
pruning, the scikit-image’s media axis algorithm, and the heat
equation 2D skeleton extraction, respectively.

The details of these skeleton images show that our method’s
result has fewer unexpected branches, and the skeleton lies closer
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to the center axis. Although our method does not have the best
result among these four methods, it has the highest efficiency.
Supplementary Table 4 shows the calculation time consumption
and memory use of our method and other methods. Our method
is the fastest among these algorithms but consumes the largest
amount of memory. With the development of smartphone chips,
the processing memory of smartphones has become significantly
larger. Therefore, our approach is a better choice for the
skeletonization process on the smartphone platform.

Efficiency of the Image Process
Procedure
In general, the average execution time for a single plant
image of 20 million pixels is 2,482 ms operating on an
Android smartphone (Meizu MX4, MediaTek6595,CPU A17
2.2 GHz × 4 + A7 1.7 GHz × 4,GPU PowerVR G6200) All
image process-related algorithms were developed using C++
language combined with the OpenCV library and compiled into
a Java library for Android. The image processing procedure
contains three major parts: segmentation, skeletonization and
trait calculation. The average computational times are 1,050,
641, and 791 ms for segmentation, skeletonization and trait
calculation, respectively. The total computation time for the
whole procedure varied from 700 to 4,000 ms depending on
the complexity of the plant structure and cleanliness of the
background. Moreover, a faster segmentation algorithm that can
reduce the process time to less than 100 ms is provided in the
application for clean backgrounds with stable environments.

Individual Leaf Traits Extraction
PocketMaize provides an algorithm to extract all individual leaves
from one maize plant and to obtain the traits of each leaf. It
provides data for evaluating the difference between leaves at
higher places and lower places. As shown in Figure 14, traits of
individual leaves can be examined and stored for further analysis
for canopy research and to investigate leaf overlap and sunlight
absorption at different layers of the plant.

Potential Application and Outlooks
Although the main object of this manuscript is to obtain
single plant traits with high accuracy, the application can also
calculate traits of several plants with minor overlapping, but the
segmentation and traits calculation accuracy will decrease for
severe overlapping. Moreover, the current work mainly focus on
maize stem traits and leaf traits, the application to extract tassel
traits and cob traits in reproductive stage will be improved in the
future work. With training of enough images containing maize
cobs and tassels, new segmentation model will be developed
to obtain cobs traits during reproductive stage and estimate
the final yield.

CONCLUSION

In conclusion, we developed PocketMaize, an android
smartphone application for maize plant phenotyping. The
application is capable of field and potted maize phenotyping
without many additional devices used. A total of 45 traits, which
included 15 plant traits, 25 leaf traits and 5 stem traits, were
nondestructively extracted. The average execution time for a
single plant image of 20 million pixels was within 3,500 ms.
In the future, with more trained images, a portable and cost-
effective phenotyping solution could be extended to maize
functional genomics studies, maize breeding, and disease and
insect pest detection.
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