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Table grape browning is a complex physiological disorder that occurs during cold
storage. There is a need to investigate novel and innovative ways to manage the problem
that hampers the progressive and sustainable growth of table grape industries. Given the
complex nature of the browning phenomenon, techniques such as near-infrared (NIR)
spectroscopy can be utilized for the non-destructive classification of different browning
phenotypes. In this study, NIR coupled with partial least squares discriminant analysis
(PLS-DA) and artificial neural networks (ANN) were used to classify bunches as either
clear or as having chocolate browning and friction browning based on the spectra
obtained from intact ‘Regal Seedless’ table grape bunches that were cold-stored over
different periods. Friction browning appears as circular spots close to the pedicel area
that are formed when table grape berries move against each other, and chocolate
browning appears as discoloration, which originates mostly from the stylar-end of the
berry, although the whole berry may appear brown in severe instances. The evaluation
of the models constructed using PLS-DA was done using the classification error rate
(CER), specificity, and sensitivity and for the models constructed using ANN, the kappa
score was used. The CER for chocolate browning (25%) was better than that of friction
browning (46%) for weeks 3 and 4 for both class 0 (absence of browning) and class
1 (presence of browning). Both the specificity and sensitivity of class 0 and class 1 for
friction browning were not as good as that of chocolate browning. With ANN, the kappa
score was tested to classify table grape bunches as clear or having chocolate browning
or friction browning and showed that chocolate browning could be classified with a
strong agreement during weeks 3 and 4 and weeks 5 and 6 and that friction browning
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could be classified with a moderate agreement during weeks 3 and 4. These results
open up new possibilities for the development of quality checks of packed table grape
bunches before export. This has a significant impact on the table grape industry for it will
now be possible to evaluate bunches non-destructively during packaging to determine
the possibility of these browning types being present when reaching the export market.

Keywords: browning, intact table grape bunches, contactless scanning, near-infrared spectroscopy, partial least
squares discriminant analysis, artificial neural networks

INTRODUCTION

Exported grapes should remain intact and free of damage or
defect when they reach the consumer market. Table grape
browning appears mainly as a discoloration of the pulp
(flesh or internal browning) and berry skin (skin or external
browning) (Vial et al., 2005). This is due to a dysfunction
or disruption of the cellular membranes, which allows the
mixing of the enzyme polyphenol oxidase (PPO) with phenolic
substrates or compounds occurring naturally in the fruit
(Ferreira, 1997; Golding et al., 1998; Kruger et al., 1999). Several
different phenotypes of browning, such as external, internal,
low temperature, chemical, physical, and pathogenic browning
have been identified by Fourie (2009). External browning is
subdivided into net-like, mottled, friction, and contact browning
types. Internal browning is expressed as chocolate-, water-, and
glassy berry. The post-harvest treatment of grapes with methyl
bromide and carbon dioxide (CO2) causes damage that is known
as chemical browning, while abrasions and bruises are known as
physical browning, and fungal infection as pathogenic browning
(Fourie, 2009).

Ever since the browning phenomenon was first reported in
1989 (Wolf, 1996), it has only become more severe. Numerous
studies have been conducted to try and find out what exactly is
the cause of it on table grapes, but to date, nothing has shown
that there is a single dominant factor that can be repeatedly
linked to either internal or external browning development
(Moelich, 2010). The cultivar, seasonal variations and relative
amounts of individual phenolic compounds in grapes, and the
phenolic distribution in the flesh and skin (Lee and Jaworski,
1989) are just some of the factors that may influence browning
while the grapes are still hanging in the vineyard. Zapata et al.
(1995) also could not find a correlation between real browning
in red and white grapes based on the level of peroxidase
activity in the grapes.

Specific macro and/or micro-nutrients and post-harvest
factors, like moisture-modifying packaging material, sulfur
dioxide (SO2), and modified atmosphere packaging (MAP)
possibly influenced the occurrence of external and/or internal
browning, but Burger et al. (2005) could not discover whether a
possible relationship existed between them or not. A correlation
between internal browning and post-harvest treatments like
methyl bromide fumigation, a toxic odorless gas used to control
pests of quarantine significance in both grapes and apples,
was found but the clear role that glutathione, an antioxidant
preventing damage to important cellular components, played in it

could not be found (Liyanage et al., 1993). Even González-Barrio
et al. (2005), after thoroughly explaining the chemical process of
the occurrence of browning, could not show that the post-harvest
treatment with UV-C light was the single cause for the browning
observed in ‘Superior Seedless’ table grape.

On white seedless table grapes, the two most common
kinds of external and internal browning occur in different
forms- and manifest with varying profiles of development.
Friction browning, for example, is a form of external browning
that occurs when circular spots close to the pedicel area of
table grape berries develop as a result of rolling against each
other. Chocolate browning is a form of internal browning
and entails a discoloration, which originates mostly from the
stylar-end of the berry, although the whole berry may appear
brown in severe instances (Fourie, 2009). These variations in
the phenotypic manifestation of grape berry browning pose
challenges for the implementation of automated and non-
destructive methods for its detection and management because
currently, they can only be visually detected through vigorous
inspection of the bunches.

Several reports have shown that near-infrared (NIR)
spectroscopy coupled with chemometric techniques such as
partial least squares (PLS) and partial least squares-discriminant
analysis (PLS-DA) demonstrated to be valuable and versatile
tools for the simultaneous determination of an array of
quantitative and qualitative parameters on the same sample
(Pérez-Enciso and Tenenhaus, 2003). This includes analyzing
and classifying a variety of fruit defects and diseases. Kavdir
et al. (2007) used NIR spectroscopy to assess the firmness, skin,
and flesh color, as well as the dry matter content of pickling
cucumbers. Fu et al. (2007) demonstrated the utility of visible
(VIS)-NIR spectroscopy for discriminating between pear fruits
with internal brown heart defects and clear ones. Near-infrared
spectroscopy was also utilized successfully to measure the
microstructure-related changes that occurred because of the
internal damage in apples (Clark et al., 2003). Ozanich (2001)
detected moderate to severe internal disorders in apples such
as water-core, internal browning, and rot while also using NIR
spectroscopy. Stemming from these successful applications
of NIR spectroscopy, the next logical step was to explore this
technology on table grapes. This would also lay the groundwork
to pursue vision-based systems or techniques in the vineyard to
evaluate the quality of grapes similar to what Pothen and Nuske
(2016) have already done by evaluating the color development
and harvest-readiness of intact table grape bunches in
the vineyard.
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Partial least squares discriminant analysis is a derivative of
the standard PLS regression algorithm that uses class variables
instead of numeric variables (Barker and Rayens, 2003). The
use of PLS-DA in previous studies has been to assess which
genes are useful in discriminating between different statuses of
cancer (Pérez-Enciso and Tenenhaus, 2003). Folch-Fortuny et al.
(2016) used it to successfully make a distinction between healthy
and infected citrus fruits. Artificial neural networks (ANN)
are a machine-learning framework that attempts to mimic the
learning pattern of natural biological neural networks based on
their ability to “learn” throughout a training procedure exactly
where inputs and a set of anticipated results are given. Artificial
neural networks are typically organized in layers, and these layers
are composed of interconnected nodes that contain activation
functions (Ramadan et al., 2005). It is a well-established analytical
tool and has been used successfully in combination with other
techniques such as principal component analyses (PCA) and PLS.
Baldwin et al. (2011) used it to help analyze the data obtained
by electronic noses and electronic tongues for various parameters
from different products. Rodríguez et al. (2010) again determined
the quality control of Colombian coffee qualities and Cajka et al.
(2009) confirmed the origin of honey, while Pérez-Magariño et al.
(2004) classified Spanish denomination of origin rosé wines.

The aim of this study was, therefore, to scan table grape
bunches of the cultivar ‘Regal Seedless’ non-destructively before
and after cold storage from 0 to 6 weeks at 0◦C. ‘Regal
Seedless’ is one of the white seedless cultivars on which the
expression of berry browning symptoms frequently occurs (Vial
et al., 2005). Moelich (2010) studied the effect of delivery air
temperature (DAT), as well as the duration of forced-air cooling
(FAC) on the external and internal browning of cold-stored
‘Regal Seedless’ and ‘Thompson Seedless’. He found that the
berry browning index of ‘Regal Seedless’ was much higher than
that of ‘Thompson Seedless’ in the different populations of
the two cultivars. An investigation by Avenant (2017) on the
use of gibberellic acid (GA3) and N-(2-Chloro-4-pyridyl)-N-
phenylurea (CPPU) treatments to reduce or eliminate browning
on ‘Regal Seedless’ found that the application of CPPU (alone
or in combination with GA3) to decrease the internal browning
of ‘Regal Seedless’ could not be justified. Thus, given this
high susceptibility of ‘Regal Seedless’ to browning, it was a
model cultivar to use in this study. Therefore, the visual
assessment of the ‘Regal Seedless’ bunches occurred after a
contactless scanning with the MATRIX-F instrument (Bruker
Optics, Ettlingen, Germany) for various defects and browning
phenotypes including chocolate and friction browning. Since
individual berries behave like individual experimental units
although they are part of a bunch, it was an important objective
that the whole bunches must be investigated (table grapes are
exported as whole bunches and not individual berries). After
recording the presence (1) or absence (0) of the browning
phenotypes, the spectra of the grapes, as well as the column
that indicated if there was a defect or not, were combined
into one large dataset. The data was then analyzed using PLS-
DA and ANN.

However, the number of flowers on a bunch should also
be considered as it determines the number of berries on a

bunch, so in years that many flowers dropped, fewer berries
will develop into berries on the bunches and vice versa
(Vasconcelos et al., 2009). The implication of this for this study
is that in the years that many flowers dropped, the bunches
would have been straggly, allowing more light to interact with
the other parts of the bunch and the background and not many
berries during scanning. In the years when little flowers dropped,
the bunches would have been compact and a lot of light would
have been reflected from many more berries, but some berries
would have had less surface area available for the light to interact
with. In both scenarios, the fewer berries and more berries on a
bunch might also play a role in the number of specific browning
phenotypes that would develop, for example in the event of fewer
berries for friction browning.

In addition, a table grape bunch consists of berries attached
to pedicles/stems, in turn, attached to a central axis (Chervin
et al., 2012). Each berry, however, acts as an individual fruit
on the bunch. Different cultivars have a different number of
berries on a bunch (May, 2000; Vasconcelos et al., 2009), and
the size and the weight of these berries differ. ‘Regal Seedless’
table grapes can have bunches weighing up to 870, 780, and
915 g, respectively, if they contain 150 berries that each weigh
5.2 g (Van der Merwe, 2012). The application of plant growth
regulators such as GA3 (amount, concentration, and combination
as well as the time of application) would also play a major role
in the size of the berries (Raban et al., 2013). The application
of enlargement sprays is usually done when the berries are 4–
5 mm in diameter. This enlargement of the berries can cause
bunches to be compact, which leads to friction browning. The
physical removal of berries and/or laterals on a bunch so that the
bunch is not too compact occurs when the berries are 8–10 mm
in diameter to ensure a looser bunch. Proper bunch thinning
must occur so that the bunch is not too compact so that as much
as possible, the surface of as many berries is exposed. This will
ensure the most efficient possible collection of information of
the berries and the bunch. For friction browning that is mostly
concentrated at the pedicel part of the berries, the light would not
always fall completely on those parts since they are obscured by
the other berries.

MATERIALS AND METHODS

Harvest Locations
‘Regal Seedless’ table grape bunches (Vitis vinifera L.) bunches
were harvested from two different vineyard blocks, one in the Hex
River Valley and one in Wellington, Western Cape, South Africa
during 2016. The global positioning system (GPS) coordinates
for the Wellington vineyard is 33◦38′22,0′′S,10◦50′47,6′′E and
that of the Hex River Valley is 33◦27′53,9′′S, 19◦39′43,7′′E. The
harvest of the ‘Regal Seedless’ from the Hex River Valley was
at an average soluble solids content (SSC) level of 19.55◦Brix.
The average titratable acidity (TA) level was 4.17 g/L, the average
pH level was 3.78, and the average SSC/TA ratio was 46.22. For
the ‘Regal Seedless’ from Wellington, the values were 15.72◦Brix,
4.03 g/L, 3.87, and 40.16, respectively.
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Vineyard Treatments and Harvesting of
Bunches
The standard protocol for preparing table grapes for export
was followed (Van der Merwe, 2012). Before the application
of gibberellic acid (GA3) to the bunches, they were shortened
and thinned by physically removing some of the berries and
laterals on the bunches with scissors when the berries were 8–
10 mm in diameter. This was to prevent the bunches from
being too compact at the ripening and harvesting. The table
grape industry uses closed-top, corrugated fiberboard cartons to
pack table grapes. The dimension of these fiberboard cartons is
300×400×127 mm and has a capacity of 4.5 kg. Bunches are
placed in individual plastic carry bags before being packed in
boxes lined with a 2-mm perforated, low-density polyethylene
(LDPE) liner bag with which the entire carton content is
eventually enclosed in. The placement of a corrugated cardboard
sheet at the bottom reduces abrasion damage. A moisture-
absorbing membrane and a green Uvasys R© sulfur dioxide (SO2)
(Tessara (Pty) LTD, Cape Town, South Africa) generator sheet
covered the grapes to control decay. This dual-phase SO2
generating pad contains precise concentrations and particle sizes
of the active ingredient sodium metabisulfite (Na2S2O5). It
consists of a sequence of laminated plastic membranes, each
bonded by a wax layer. There is a slow-release layer between
the top and middle plastic membranes and a fast-release layer
between the middle and bottom membranes. An autocatalytic
reaction begins in a 70% relative humidity environment whereby
the sheet starts releasing a time and concentration-varying stream
of SO2. The fast-release layer sterilizes the surface of the table
grapes by discharging a large enough dose of SO2 over a 24–48 h
period to kill and eradicate any actively growing Botrytis cinerea
fungal spores. By releasing a low, continual dose of SO2 gas,
concentrated enough to inhibit any superficial latent or inherent
B. cinerea spores from growing, the slow-release layer remains
active for up to 120 days∗. When table grapes reach the overseas
markets, this defect is usually responsible for a large part of the
post-harvest problems experienced with table grapes (Castillo
et al., 2010; Gabler et al., 2010). Table grapes are usually harvested
during the cooler parts of the day between 9 and 10 am and the
same was done in this study. After each box was packed with
the correct number of bunches in the vineyard, the LDPE liner
bag containing the grapes and SO2 sheet was folded, the boxes
were closed, carried out of the vineyard to the end of each row,
and placed in the shade until all the other grapes were harvested.
The packed boxes were loaded into an air-conditioned vehicle
and transported by road to the chemical analytical laboratory
of the Department of Viticulture and Oenology, Stellenbosch
University, South Africa. The transport of boxes 1–7 to the
Agricultural Research Council at Nietvoorbij in Stellenbosch
occurred after the scanning for cold storage at 0◦C. Box 1
was immediately evaluated after the first scan on the day of
harvest (week 0). Box 2 was cold-stored for one week (week 1),
removed, and taken back to the chemical analytical laboratory
of the Department of Viticulture and Oenology, Stellenbosch
University, and scanned again after a few hours. The removal of
box 3 was after 2 weeks of cold storage (week 2) and box 4 after
3 weeks (week 3) of cold storage, etc. This occurred up until box 7

and the same process was followed as with box 1. The evaluation
of each box (2–7) for the different defects occurred immediately
after the second round of scanning.

Near-Infrared Spectroscopic
Measurements
The NIR spectra of the intact table grape bunches were acquired
with the diffuse reflectance MATRIX-F Fourier Transform
(FT)-NIR spectrometer (Bruker Optics, Ettlingen, Germany)
(Figure 1) that was operated with a contactless measurement
head coupled with the spectrometer with a cable for power supply
and lamp switching. Four air-cooled tungsten NIR light sources
(12 V, 5 W) mounted in the measurement head illuminates the
samples. The measurement area on the sample was 80 mm in
diameter and the distance from the emission head to the sample
plate was 170 mm. The collection of the light scattered by the
sample is guided to the spectrometer with an optic fiber of
1 m. The standard viticultural practice of thinning table grape
bunches ensured that the bunches were not too compact and
as much as possible, the surface of as many as possible berries
were exposed so that the proper information of as many of the
berries on the intact bunch was collected. It is important to keep
in mind that a grape bunch is not a uniform sample with many
edges increasing the signal-to-noise ratio and that information
collected during the scans is of all the different parts of the bunch
(rachis, stems, and berries). The detecting emission head also
housed a very sensitive, thermoelectric-cooled, and temperature-
controlled InGaAs diode detector. Each bunch was scanned for
60 s, once in the middle of the one side and once in the middle
on the other side. During each scanning procedure, 32 scans took
place per side, averaged into a single spectrum. The collection of
spectral data were in the range of 12,500–4,000 cm−1 (resolution,
2 cm−1; scanner velocity, 10 kHz; background, 32 scans; sample,
32 scans). The number of data points collected during each scan
was 1,801. The Log (1/R) transformed absorbance spectra were
processed using OPUS version 7.2 (Bruker Optics, Ettlingen,
Germany) for Windows, and saved after the spectral acquisition.
All the boxes were scanned immediately upon arrival in the
laboratory (week 0) and then again after each week of cold storage
(week 1–week 6). The storage time was, therefore, one week
for each box. After each box was removed from cold storage,
the LDPE liner was opened and folded over the sides of the
box, the SO2 and moisture absorbing sheets removed and the
grapes were left to acclimatize to the room temperature in the
laboratory (as to be the same as the day of the initial scan) before
being scanned again.

Visual Assessment of Browning
Phenotypes
A visual evaluation of each box occurred immediately after
scanning e.g., the box of week 0 on the day of harvest and the
other boxes after every week of cold storage (week 1–week 6). The
berries removed from the bunch with scissors were individually
evaluated for one type of defect only, i.e., chocolate browning or
friction browning, whichever defect appears most pronounced on
it. In the data collection stage, there was no recording of the status
of each grape berry. Instead, the translation of the bunch was
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FIGURE 1 | Contactless scanning of an intact ‘Thompson Seedless’ table grape bunch with the MATRIX-F NIR spectrometer (adapted from Daniels et al., 2019).

either containing the defect even if only observed on one berry or
not containing the defect if all the grape berries on the bunch were
clear. For ease of analysis, the bunches were assigned a value of 0
when no defect was present at all and a value of 1 when the defect
was present. The incidence of chocolate browning was absent in
weeks 1 and 2 of cold storage or too low in weeks 3–6 to undergo
meaningful analysis. The data for the chocolate browning in
weeks 3 and 4, and in weeks 5 and 6, were combined into one
dataset for the data analysis. Similarly, for friction browning, the
data from weeks 3 and 4 were combined, i.e., the spectra and the
matching reference (presence of the browning = 1; or not = 0)
were placed in one excel sheet.

Data Analysis
Partial Least Squares-Discriminant Analysis
In PLS, the dummy variable Y is used as a response variable,
and it is set to 1 if the sample is present and 0 if not. In this
study, the defects were scored as 0 = no defect and 1 = defect
present. The cut-off value was set at 0.5, above which the
sample was predicted as 1, and below as 0. In this study,
the optimal number of latent variables (LV) was chosen based
on the minimum root mean square error of cross-validation
(RMSECV). The model was cross-validated using Venetian
blinds of 10 data splits with 10 samples c {[True Negatives/(True
Negatives + False Positive)], sensitivity [True Positives/(True
Positives+ False Negatives)]}, and classification error rate (CER)
for the calibration and cross-validation were also used to evaluate
the performance of the model (Nicolaï et al., 2007; Ballabio and
Consonni, 2013). All the calculations were performed using the
PLS-Toolbox for MATLAB (version 8.6.1, Eigenvector Research
Inc., United States).

Artificial Neural Networks
To determine the relationship between the spectral information
of the studied bunches and the presence or absence of different
browning phenotypes using ANN, the following procedures
were followed. The relevant entries were selected (e.g., weeks
in cold storage 3 and 4 from the “No defects - REGAL
Week 3 and Week 4, Week 5 and Week 6” dataset). The
data were normalized and labeled (0 for no defect and 1
for defect). The two combined datasets had a total of 192
samples, which were divided into four sets. Resulting in
96 training samples (∼1/2), 32 validations 1 sample (∼1/6),
32 validations 2 samples (∼1/6), and 32 testing samples
(∼1/6). A maximum of four hidden layers was selected and
the number of nodes (with a max of 25) in each layer
and alpha was set independently. The optimal parameter
combination was selected via a grid search (running the model
for each set of parameters). The dataset dimensions (the
number of wavenumbers) were reduced so that the number of
dimensions was less than the number of samples, using principal
component analysis (PCA).

Cohen’s kappa is a statistic (Cohen, 1960, 1968) that indicates
how well a classification model does in comparison to predicting
just the average (McHugh, 2012). The interpretation of the kappa
score that was used is displayed in Table 1. If the kappa score
was between 0 and 0.2, there was no agreement between the
measured and predicted label, a score between 0.21 and 0.39
showed minimal agreement, and a score between 0.4 and 0.59
showed weak agreement. There was a moderate agreement when
the kappa score was between 0.6 and 0.79. A kappa score between
0.8 and 0.9 corresponded to a strong agreement between the
measured and predicted labels while a score above 0.9 showed an
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TABLE 1 | Kappa score interpretation guide (McHugh, 2012).

Kappa Interpretation

0.0–0.20 No agreement

0.21–0.39 Minimal agreement

0.40–0.59 Weak agreement

0.60–0.79 Moderate agreement

0.80–0.90 Strong agreement

>0.90 Almost perfect agreement

TABLE 2 | The classification error rate, specificity, and sensitivity of the partial least
squares discriminant analysis (PLS-DA) models constructed for chocolate
browning (CB) and friction browning (FB) of ‘Regal Seedless’ grape bunches.

Condition Sample set Class 0 Class 1

CERa Specb Senc CER Spec Sen

CB: W3and4d Calibration 0.15 0.865 0.815 0.15 0.815 0.865

CB:W3and4 CVe 0.25 0.808 0.692 0.25 0.692 0.808

CB: W5and6f Calibration 0.13 0.875 0.864 0.13 0.864 0.875

CB: W5and6 CV 0.22 0.722 0.818 0.22 0.818 0.722

FB: W3and4 Calibration 0.41 0.412 0.757 0.41 0.757 0.412

FB: W3and4 CV 0.46 0.353 0.714 0.26 0.714 0.353

aClass error rate is defined as the proportion of instances misclassified over the
whole set of instances.
bSpecificity is defined as the ability of a test to correctly identify a sample
without the defect.
cSensitivity is defined as the ability of a test to correctly identify a
sample with a defect.
dWeeks 3 and 4.
eCross-validation.
f Weeks 5 and 6.

almost perfect agreement. In this study, a kappa score indicating a
strong agreement was considered “good” and almost perfect was
considered to be “great”.

RESULTS AND DISCUSSION

Partial Least Squares-Discriminant
Analysis
The CER of chocolate browning for weeks 5 and 6 was lower
(22%) than that of weeks 3 and 4 for both class 0 and class 1
(Table 2). This means that the prediction of chocolate browning
could have an accuracy of 75% for weeks 3 and 4, and 78% for
weeks 5 and 6. This might be attributed to the longer times
that the samples of weeks 5 and 6 were in cold storage and the
defect, therefore, developed and/or appeared more pronounced
on the bunches. The incidence could also have been more (more
chocolate brown berries) in weeks 5 and 6 than in weeks 3 and 4.
This was also observed where the specificity is concerned since it
was better for class 0 at weeks 3 and 4 (81%) and better for class
1 in weeks 5 and 6 (82%). The sensitivity, on the other hand, was
higher for class 0 in weeks 5 and 6 (82%) and for class1 in weeks
3 and 4 (81%) (Figures 2A,B).

For friction browning, the CER for class 1 (26%) was lower
than that of class 0 (46%) and almost similar to that of class 0

and class 1 with chocolate browning for weeks 3 and 4 (25%)
(Table 2). Both the specificity and sensitivity of class 0 and
class 1 for friction browning were not as good as that for
chocolate browning.

It should also be noted that a grape bunch is not a uniform
sample with many edges and that berries are sticking out in all
directions, increasing the signal-to-noise ratio. The information
that was thus collected during the scans was of all these
different parts of the bunch (berries and stems). All this might
have played a role in the CER as well as the specificity and
sensitivity of classes 0 and 1 obtained for friction and chocolate
browning. The error rates in Haff et al.’s (2013) study when
they developed an algorithm to identify spots generated in
hyperspectral images of mangoes infested with fruit fly larvae
were much lower than the ones in this study. They achieved
an overall error rate of 2.0%, with 1.0% false positive and
3.0% false negative. This is also similar to the studies of
Leemans et al. (2002) when they classified two different apple
cultivars using machine vision. Their proposed method for apple
external quality grading showed correct classification rates of
78 and 72%, for the Golden Delicious and Jonagold apples,
respectively. When they considered the two classes (fruit accepted
or rejected), the error rate reached 5% for Golden Delicious
and 8% for Jonagold. Li et al. (2016) obtained a total accuracy
of 96.6% when they looked at the skin defects of bi-colored
peaches. Their proposed multispectral algorithm was effective
in differentiating normal and defective bi-colored peaches. All
these good results obtained by these different authors might
be due to the larger size of mangoes, apples, and peaches
that they used in their experiments and, therefore, the larger
surface area that was available to the NIR light than the surface
area of the single berries that was affected with the browning
disorder in this study.

Taking into account that using a value of 0 to indicate
the absence of browning on the entire bunch and a value
of 1 to indicate the presence there-of, even when only one
berry on a bunch had browned, might not have been the
most accurate way to obtain the reference for building the
classification models. However, it should be kept in mind
that the browning phenomenon is complex and does not
occur instantaneously, but rather, gradually, as time progresses.
This means that it is possible that the brown discoloration
in the bunches that scored 0 (no browning) could have
developed at a later stage. Similarly, where only one berry
developed browning and the whole bunch was scored 1
(browning present), the affected berry could have remained
the only one to develop browning, while the other berries
could have remained healthy for a considerable time during
cold storage. False positives and negatives would therefore
be present and the accuracy of the models would thus not
be completely dependable. Figure 3 illustrates the situation
where the majority of bunches that should seemingly be
clear are indicated as having friction browning. The spectra
picked up other browning phenotypes already present on those
bunches, but not yet visually discernible by the naked eye,
hence the misclassification of mostly clear (class 0) bunches as
class 1 bunches.
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FIGURE 2 | Absence (Class 0, open circle) or presence (Class 1, close circle) of chocolate browning in ‘Regal Seedless’ table grape bunches performed by a partial
least squares discriminant analysis (PLS-DA) model, based on near-infrared (NIR) spectral data. (A) Weeks 3 and 4 and (B) Weeks 5 and 6.

Figures 4A,B show the complexity of browning development
during cold storage with two adjacent berries in the peach tray
coming from the same bunch harvested from the same vineyard
in the same year. One is still healthy and clear (Figure 4B on the
right) and the other has turned completely brown (Figure 4A
on the left) with the possible cause of this browning being a
fungal infection. Figure 5 shows the same berry in Figure 4B
on the left with chocolate browning symptoms on the outside
of the berry (Figure 5A) and when it is cut open (Figure 5B).
Figure 6A shows internal browning symptoms as seen from
the outside and Figure 6B as seen on the inside when the
berry is cut open. Figure 7A shows the gradual development of
internal browning from completely clear, to symptoms starting
to manifest in Figure 7B.

Artificial Neural Networks
In Table 3, the chocolate browning vs. no defects for the ‘Regal
Seedless’ table grapes weeks 3 and 4 showed that there was
strong agreement (test kappa = 0.88) between the measured
and predicted labels for the data when PCA was performed
and the number of features (wavenumbers) was reduced to
50 (three runs). From two to four runs it can be seen that
accurate prediction can be done with a moderate agreement
(Table 1), but not necessarily consistently (test kappa = 0.71
with two runs and 0.67 with four runs). This might be due to
a lack of data causing an insufficient representation of healthy
and damaged spectra variation in the training sample set. The
chocolate browning vs. no defects for the ‘Regal Seedless’ table
grape in weeks 5 and 6 showed a strong agreement between
the measured and predicted labels for the data when PCA
was performed and the number of features (wavenumbers)
was reduced to 30 (two and three runs) and 15 (four runs),
respectively. The test kappa scores were all above 0.80. The

friction vs. no defects for the ‘Regal Seedless’ table grapes in
weeks 3 and 4 showed that there was a moderate agreement
between the measured and predicted labels for the data when

FIGURE 3 | Absence (Class 0, open circle) or presence (Class 1, close circle)
of friction browning in ‘Regal Seedless’ table grape bunches performed by
PLS-DA model, based on NIR spectral data for Weeks 3 and 4.
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FIGURE 4 | (A) The browning stage of berries in a peach tray after five weeks
of cold storage and (B) a berry showing chocolate browning (caused by a
fungal infection) and a berry not showing any browning.

FIGURE 5 | A Regal berry showing chocolate browning on the outside (A)
and (B) on the inside caused by a fungal infection.

FIGURE 6 | Internal browning as seen (A) from the outside and (B) on the
inside of a ‘Thompson Seedless’ berry.

PCA was performed and the number of features was reduced
to 80 (two runs).

In other studies where ANN was utilized as an analysis
technique, Zarifneshat et al. (2012) successfully evaluated it as an
alternative technique to predict the bruise volume of apples in a
fast, yet accurate and objective way. Binetti et al. (2017) used it
to create models to classify olive oil cultivars based on multiple
types of information, standard merceological parameters, NIR
data, and nuclear magnetic resonance (NMR) fingerprints. The
most informative variables about the cultivars were obtained with
the NMR data because the ANN models based on the NMR
data displayed the highest ability to classify cultivars (in some

FIGURE 7 | A ‘Thompson Seedless’ berry is showing (A) no signs of browning
on the inside and (B) onset of internal browning around the vascular tissue.

TABLE 3 | The number of runs done for each cold storage condition (week 3 and
week 4; week 5 and week 6) and browning defect, chocolate browning (CB), and
friction browning (FB) of the ‘Regal Seedless’ table grape bunches.

Condition Runs PCA Alpha (α) Validation
kappa
score

2nd
validation

score

Test
kappa
score

CB: W3and4a 1 n/a 0.01 1.0 0.65 0.59

2 80 0.1 1.0 n/a 0.71

3 50 1e–5 1.0 0.656 0.88

4 50 1e–6 0.93 n/a 0.69

CB: W5and6b 1 n/a 1e–3 1.0 0.47 0.68

2 30 1e–5 1.0 1.0 0.83

3 30 1e–7 1.0 1.0 0.80

4 15 1e–6 1.0 1.0 0.83

FB: W3and4a 1 n/a 1e–2 0.78 n/a 0.37

2 80 1e–2 1.0 n/a 0.73

3 50 1e–5 1.0 0.49 0.51

4 65 1e–9 0.92 0.77 0.47

The number of feature reductions done per principal component analysis (PCA)
and the kappa scores for the first and second validations, as well as the test
validation, are also shown.
aWeeks 3 and 4.
bWeeks 5 and 6.

cases, accuracy >99%), independently on the olive oil production
process and year.

CONCLUSION

This study shows the possibility of detecting the presence
or absence of different browning phenotypes during different
cold storage periods on intact ‘Regal Seedless’ table grape
bunches through contactless and non-destructive scanning using
NIR spectroscopy. This, coupled with PLS-DA analysis and
the machine learning technique ANN, showed that chocolate
browning classification is more accurate than friction browning
with both techniques. Table grape bunches are very complex
and heterogeneous, and the difficulty of building accurate
classification models for the different browning phenotypes is
also highlighted here. In the global context where consumer
preference dictates the market, it is paramount that producers
have an idea of what the post-harvest quality of their products
is going to be. Real-time objective measurements, such as the
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contactless measurement of intact table grape bunches in the
pack-house with NIR spectroscopy using classification models
such as those constructed in this study, present a feasible
alternative to exporting table grapes that might turn brown
before or when they reach the intended export market. Such
measures may help producers to make appropriate marketing
decisions, especially for developing countries that operate in a
highly competitive niche market and cannot afford any post-
harvest losses.
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