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Evaluation of the legume proportion in grass-legume mixed swards is necessary
for breeding and for cultivation research of forage. For objective and time-efficient
estimation of legume proportion, convolutional neural network (CNN) models were
trained by fine-tuning the GoogLeNet to estimate the coverage of timothy (TY), white
clover (WC), and background (Bg) on the unmanned aerial vehicle-based images. The
accuracies of the CNN models trained on different datasets were compared using the
mean bias error and the mean average error. The models predicted the coverage with
small errors when the plots in the training datasets were similar to the target plots in
terms of coverage rate. The models that are trained on datasets of multiple plots had
smaller errors than those trained on datasets of a single plot. The CNN models estimated
the WC coverage more precisely than they did to the TY and the Bg coverages. The
correlation coefficients (r) of the measured coverage for aerial images vs. estimated
coverage were 0.92–0.96, whereas those of the scored coverage by a breeder vs.
estimated coverage were 0.76–0.93. These results indicate that CNN models are helpful
in effectively estimating the legume coverage.

Keywords: convolutional neural network models, legumes, grass-legume mixed swards, image analysis,
unmanned aerial vehicle

INTRODUCTION

Grass-legume mixtures are applied in a forage production to obtain a greater productivity and a
higher nutritive value of forage. Compared with the grass monocultures, pasture yields improve
in grass-legume mixed swards owing to nitrogen fixation by legumes (Lüscher et al., 2014; Suter
et al., 2015). In mixed swards, nitrogen fixed by forage legumes from the atmosphere is transferred
to non-legumes (Pirhofer-Walzl et al., 2012; Thilakarathna et al., 2016). Furthermore, nitrogen
fixed by legumes in mixed swards is higher than that in the legume monocultures (Nyfeler et al.,
2011). Consequently, grass-legume mixtures improve the productivity of swards. Feeding the forage

Abbreviations: Bg, background; CNN, convolutional neural network; ExG, excess green; ExR, excess red; FCN, fully
convolutional network; HSL, hue, saturation, and lightness; MAE, mean absolute error; MBE, mean bias error; MMAE, mean
of MAE; MMBE, mean of MBE; OG, orchard grass; RC, red clover; TY, timothy; UAV, unmanned aerial vehicle; WC, white
clover.
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legumes to livestock can enhance the milk yields and the
nutritional quality (Dewhurst et al., 2009; Peyraud et al., 2009).
Therefore, the forage obtained from the grass-legume mixed
swards can also be beneficial in terms of feed quality. In Japan,
timothy (Phleum pratense L., TY) and white clover (Trifolium
repens L., WC) are widely utilized for grass-legume mixed swards.

Legume proportion in mixed swards fluctuates dynamically
over time, and patterns of the fluctuation vary depending on
the proportion of seeds in the mixture, soil fertility, and climate
conditions (Rasmussen et al., 2012; Suter et al., 2015; Bork
et al., 2017). To maintain an appropriate legume proportion,
it is crucial to obtain suitable forage varieties and to ensure
proper management of grass-legume mixtures. Therefore, in
breeding and in cultivation research, the evaluation of legume
proportions is necessary. In Japan, for several times a year, the
forage breeders score the coverage of grass and legume as an
indicator of legume proportion. However, estimating the legume
proportion in swards through observations of researchers may be
subjective, and separating the legumes from the non-legumes by
harvest measurements is time-consuming.

Unmanned aerial vehicles (UAVs) make it possible to obtain
big data from images in a short time and conduct precise image
analysis. The use of UAVs is becoming widespread in various
fields, including agricultural analysis (Colomina and Molina,
2014). Analysis of UAV-based aerial images is also applied to
remote sensing of sward height and of biomass in grasslands
(Michez et al., 2019).

The image analysis method for objective and time-efficient
estimation of legume proportions has been examined. Himstedt
et al. (2012) applied color segmentation with legume-specific
thresholds in hue saturation and light (HSL) color space to
images of swards and predicted legume coverage and dry
matter contribution. McRoberts et al. (2016) extracted local
binary patterns (LBP), one of the texture descriptors in image
classification, and developed regression models to estimate grass
composition in alfalfa-grass fields. Mortensen et al. (2017)
distinguished plant material from soil with excess green (ExG)
and excess red (ExR) vegetation indices calculated from the RGB
images, and detected the legume leaves with an edge detection
and a reconstruction using flood filling.

In addition to image analysis methods using local color
indices or feature extractors, convolutional neural networks
(CNNs) are utilized in image classification or object detection.
Convolutional neural network (CNNs) are a multi-layer neural
networks equipped with convolutional and pooling layers, and
they have a strong ability of complicated feature recognition
(LeCun et al., 2015). There have been many studies on the
application of CNNs in various aspects of agriculture (Kamilaris
and Prenafeta-Boldú, 2018), including crop grain yield estimation
(Yang et al., 2019), weed detection in grasslands (Yu et al.,
2019a,b), and crop pest recognition (Thenmozhi and Srinivasulu
Reddy, 2019; Li et al., 2020).

Some studies have applied CNNs to the estimation of
legume proportion, especially in methods involving semantic
segmentation. Semantic segmentation is a pixel-to-pixel
classification task. The fully convolutional network (FCN)
has been developed for solving the problem of segmentation

(Shelhamer et al., 2017). Skovsen et al. (2017) trained an FCN
architecture to distinguish clover, grass, and weed pixels. Larsen
et al. (2018) examined the data collection workflow with UAVs
and demonstrated the network (Larsen et al., 2018). Bateman
et al. (2020) developed a new network for semantic segmentation,
called the local context network, which distinguished clover,
ryegrass, and the background more accurately than the FCN.
Despite these studies, few examples of CNN application in
the estimation of a legume proportion are available, and the
knowledge required to develop the CNN models has not been
fully accumulated. Besides, understanding how to develop
models suitable to various fields and comparison between the
models using different datasets may be useful.

GoogLeNet is a CNN model equipped with Inception
modules and is the winner of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2014 competition (Szegedy
et al., 2015). Mehdipour Ghazi et al. (2017) demonstrated a
plant identification with three CNN architectures, GoogLeNet,
AlexNet, and VGGNet, using the dataset of LifeCLEF 2015. In
the study, VGGNet was the most accurate, AlexNet was the
fastest in terms of training, but GoogLeNet achieved competitive
results both in terms of accuracy and of training speed. Because
GoogLeNet has a well-balanced architecture, we considered it
desirable to develop and compare multiple models.

In the current study, the CNN model estimating the coverage
area of timothy, white clover, and the background (Bg) from
UAV-based aerial images was trained by fine-tuning GoogLeNet.
Multiple CNN models were trained on different datasets under
the same conditions, and their accuracies were compared. To
evaluate the usability of the CNN models, the correlations
between the scored coverage by a breeder, measured coverage
using aerial images, and estimated coverage by the CNN
models were analyzed.

MATERIALS AND METHODS

Field Experiment and Data Collection
The field experiment and data collection were conducted at
Hokkaido Agricultural Research Center (Hokkaido, Japan). Each
of three white clover cultivars under a variety test (“cultivar A,”
“cultivar B,” and “cultivar C”) was mix-sowed with timothy on
May 31, 2016. The plot size was 2 m× 3 m for each replicate (four
replicates with three cultivars), and the amount of seeds sown was
TY: 150 g/a and WC: 30 g/a in each plot. The plot design was
determined using a randomized block design.

Coverage estimation, through scoring by a breeder and image
acquisition with a UAV, was conducted 2 years after the seeding.
A coverage score (%) for the three categories (TY, WC, and Bg)
was assigned by a breeder on October 9, 2018 (scored coverage).
The UAV-based aerial image of each plot was taken using DJI
Phantom 4 Pro (SZ DJI Technology Co., Ltd., Shenzhen, China)
on October 10, 2018, 14 days after the 3rd cutting of that year. The
camera of Phantom 4 Pro had lens with an 8.8 mm focal length
and a 1′′ CMOS 20 M sensor. The UAV hovered above each plot at
an altitude of 4 m and took one image. The image was stored as a
Digital Negative (DNG), a format of RAW images. The ground
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FIGURE 1 | Example of timothy (TY), white clover (WC), and background (Bg) maps generated from a UAV-based aerial images.

FIGURE 2 | The process of training and evaluation of the convolutional neural network (CNN) models.

sample distance was ∼1 mm/pixel. The images were imported
to a personal computer and were adjusted with Photoshop CC
(Adobe, San Jose, CA, United States). After auto-correction, the
images were converted to PNG format. The images were cropped
to the region of the plots and were keystone-corrected with
the perspective crop tool. The size of the cropped images was
approximately 2,000× 3,000 pixel.

On each image of plots, blank layers for three categories
(TY, WC, and Bg) were generated. Pixels belonging to TY and
WC were painted on its respective layer with Photoshop CC
using a pen display (Wacom Cintiq 16, Saitama, Japan) by hand.
Pixels not belonging to TY or WC were painted as Bg category.
Therefore, each layer acted as a map for that category (Figure 1).
The layers were output as PNG files. The rates (%) of painted
pixels on the maps were calculated with Python 3.6.8 (Python
Software Foundation, 2018), Numpy 1.19.4 (Harris et al., 2020),
and Pillow 8.0.1 (Clark, 2021). Thus, the percentage of the painted
pixels represents the coverage rate of each category measured on
the aerial image (measured coverage).

Training and Evaluation of the
Convolutional Neural Network Models
The process of training and evaluation of the CNN models is
shown in Figure 2. This process was conducted on a Windows
10 PC using a Core i9 7900X CPU, an RTX 2080 Ti GPU, and
64 GB RAM. The environment for CNN was constructed with
Anaconda (Anaconda Software Distribution, 2021) using Python
3.6.2 (Python Software Foundation, 2017), CUDA 10.1 (NVIDIA
Corporation, Santa Clara, CA, United States), cuDNN 7.5
(NVIDIA Corporation), Chainer 6.5.0 (Tokui et al., 2019), and
cupy 6.5.0 (Okuta et al., 2017). Our previous research (Akiyama
et al., 2020) was referenced in training the CNN models.

Formation of Training Datasets and
Training of the Convolutional Neural
Network Models
As the training dataset for a model, image pieces were cut from
an aerial image of one plot or from aerial images of three plots
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TABLE 1 | Classification of the rate of positive pixel in each region.

Class Class value (%) Class Class value (%) Class Class value (%)

0 ≤ rp ≤ 0.025 0 0.325 < rp < 0.375 35 0.675 ≤ rp ≤ 0.725 70

0.025 < rp < 0.075 5 0.375 ≤ rp ≤ 0.425 40 0.725 < rp < 0.775 75

0.075 ≤ rp ≤ 0.125 10 0.425 < rp < 0.475 45 0.775 ≤ rp ≤ 0.825 80

0.125 < rp < 0.175 15 0.475 ≤ rp ≤ 0.525 50 0.825 < rp < 0.875 85

0.175 ≤ rp ≤ 0.225 20 0.525 < rp < 0.575 55 0.875 ≤ rp ≤ 0.925 90

0.225 < rp < 0.275 25 0.575 ≤ rp ≤ 0.625 60 0.925 < rp < 0.975 95

0.275 ≤ rp ≤ 0.325 30 0.625 < rp < 0.675 65 0.975 ≤ rp ≤ 1 100

in a group. For training, 4,000 pieces of 64 × 64-pixel images
were randomly cut from the region, excluding 128 pixels on
the right side of the plot image. For validation, 48 pieces of
64 × 64-pixel size images were cut from 128 pixels on the
right side, in order, from the upper left without overlaps. On
the maps of TY, WC, and Bg, the rate of painted pixels (rp)
was calculated at the location of each piece. The rp of each
category was divided into 21 classes set every 5%, as shown
in Table 1 (the handling of values on the boundary is due to
the behavior of the round function of Python). Sixty-four by
sixty-four pixel-sized pieces were resized to 256 × 256 pixels
by the nearest neighbor interpolation. These pieces and classes
of TY, WC, and Bg coverage were used as the training dataset
for a CNN model.

GoogLeNet, with the weights pre-trained on ImageNet, was
trained on these datasets. The hyper-parameters were learning
rate: 0.01, batch size: 32, optimizer: momentum Stochastic
Gradient Descent (SGD; momentum = 0.9), and training epochs:
500. The accuracy (the rate of correct prediction on 21-classes
classification) of each training model was checked with validation
datasets every 1,000 iterations. The weight was saved during the
validation. After training was completed, the weight with the
highest accuracy upon validation was selected as the model for
that dataset. The training mentioned above was conducted using
datasets of 16 image sets ( = 12 plots + 4 groups) across three
categories (TY, WC, and Bg). A model trained on a dataset of
a plot was named “(TY, WC, or Bg)-plot a” (a = plot code),
and a model of a group was named “(TY, WC, or Bg)-group A”
(A = group number). The properties of the models are shown
in Table 2.

Evaluation of the Convolutional Neural
Network Models
The trained model was evaluated using the evaluation images,
which were the images not used in the training of each model.
Images 64× 64 pixels in size were cut from the evaluation images
without overlaps (the remainder at the end of the image was
not used) and resized to 256 × 256 pixels. One thousand two
hundred to one thousand five hundred pieces of image were
cut from each image. These pieces were applied to the CNN
model to obtain the predicted class value of each piece. On the
maps of TY, WC, and Bg, the class value on the location of each
piece was measured in the same way as on the training datasets.
Using the predicted class value and the measured class value,
the mean bias error (MBE) and the mean absolute error (MAE)

were calculated (Willmott, 1982; Willmott and Matsuura, 2005)
as follows:

MBE = 1
n

n∑
j=1

(
Pj − Oj

)
(1)

MAE = 1
n

n∑
j=1

∣∣Pj − Oj
∣∣ (2)

where n is the number of cases in the evaluation (pieces
cut from an image), Pj is the predicted class value, and
Oj is the observed class value.

The MBE indicates the bias of the model. Particularly, when
the MBE is positive, the model tends to over-estimate; and when
it is negative, the model tends to under-estimate. The MAE
indicates the magnitude of the prediction error of the model.

One set of MBE and MAE values was obtained when one
model was employed to predict pieces that were cut from an
image of one plot (one-model-to-one-plot prediction). For the
evaluation of the models, the means of MBEs (MMBE) and MAEs
(MMAE) were calculated for each model using the following
formulae:

MMBE = 1
N

N∑
i=1

MBEi (3)

TABLE 2 | The properties of the models trained in this study.

Model’s name
(xx = TY, WC, or Bg)

Plot(s) for training Number of pieces

Training Validation

xx-plot 1-1 plot 1-1 4,000 48

xx-plot 1-2 plot 1-2 4,000 48

xx-plot 1-3 plot 1-3 4,000 48

xx-plot 1-4 plot 1-4 4,000 48

xx-plot 2-1 plot 2-1 4,000 48

xx-plot 2-2 plot 2-2 4,000 48

xx-plot 2-3 plot 2-3 4,000 48

xx-plot 2-4 plot 2-4 4,000 48

xx-plot 3-1 plot 3-1 4,000 48

xx-plot 3-2 plot 3-2 4,000 48

xx-plot 3-3 plot 3-3 4,000 48

xx-plot 3-4 plot 3-4 4,000 48

xx-group 1 plot 1-1, 2-1, 3-1 12,000 144

xx-group 2 plot 1-2, 2-2, 3-2 12,000 144

xx-group 3 plot 1-3, 2-3, 3-3 12,000 144

xx-group 4 plot 1-4, 2-4, 3-4 12,000 144
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MMAE = 1
N

N∑
i=1

MAEi (4)

where N is the number of images used for evaluating the model
(all images except the ones used in the training), and MBEi and
MAEi are the MBE and MAE of each one-model-to-one-plot
prediction, respectively.

Estimation of the Measured and Scored
Coverage
The estimation process is shown in Figure 3. In each one-model-
to-one-plot prediction, the predicted values of the pieces were
averaged. The average was regarded as the estimated coverage
of the plot by the model. The model estimated the coverage of
the plots from the dataset of a group, except of the ones used
for the training. For the verification of the CNN models, the
correlations between scored coverage, measured coverage, and
estimated coverage by the model were analyzed.

In previous studies, the background has been distinguished
from plant bodies using the excess green (ExG) and excess red
(ExR) vegetation indices (Meyer and Neto, 2008; Mortensen
et al., 2017). In our datasets of the 12 plots, the rate of
pixels with zero or negative excess green minus, that of pixels
with zero or negative excess red indices (ExG – ExR), was
calculated as the estimated coverage of the background, as per
the method of Meyer and Neto (2008). For comparison with
the CNN method, the correlation of the measured coverage
on aerial images vs. the estimated coverage with ExG – ExR
was analyzed.

Evaluation of the Convolutional Neural
Network Models for Predicting Legume
Coverage Using Different Datasets by
Grass or Legume Species
Datasets that are different to those used in training by grass or
by legume species mix-sowed in the field were used to evaluate
the accuracy of legume coverage prediction by the trained CNN
models. On the date which the image was taken, the UAV used
in aerial photographing, and the pasture species of grass, orchard
grass (OG), and legume, WC or red clover (RC), are shown in
Table 3. These images were taken over the fields in Hokkaido
Agricultural Research Center (mentioned above). As shown in
the table, DJI Phantom 4 RTK (SZ DJI Technology Co., Ltd.,
Shenzhen, China) was used for both OG-RC 3 and OG-RC 4,
while Phantom 4 Pro was used for the others. The spec of the
camera of Phantom 4 RTK is the same as that of the Phantom 4
Pro. The OG-RC 3 and OG-RC 4 were taken from the same plot
on different dates, while the plots of other images were different
to each other. The legume coverage maps of these images were
generated (as shown in Figure 1). Images 64 × 64 pixels in
size were cut from the generated images and predicted by the
CNN model trained for each group. The coverage of RC was
also predicted with the WC models. In the same way, MBEs and
MAEs were calculated for the evaluation of the models.

RESULTS

Scored and Measured Coverage on
Each Plot
The scored coverage by the breeder and the measured coverage
on aerial images (measured using painted maps) are shown in
Table 4. The sum of the measured coverage of the three categories
(TY, WC, and Bg) on each plot was not precisely 100% because
the maps of the categories were painted individually. The scored
coverage tended to be higher in WC and lower in Bg, compared
with the measured coverage. In every category, the range of
the scored coverage was wider; that is, the breeder scored plots
without much difference in the dynamically measured coverage.
The correlation coefficient of the scored and measured coverages
was high in WC but not in TY and Bg.

Evaluation and Comparison of the
Convolutional Neural Network Models
The training time for the CNN models from one plot was
approximately 4,000 s, and that from a group (three plots) was
approximately 12,000 s. The MBEs for every one-model-to-one-
plot prediction are shown in Figure 4, and the MAEs are shown in
Figure 5. In these figures, the MBEs and the MAEs for predicting
the images used in training each model are also shown in gray
squares. The models trained on data from the plots, whose
measured coverage rates were high (such as “TY-plot 1-4,” “WC-
plot 3-4,” and “Bg-plot 2-1”; Table 4), tended to over-estimate;
they had positive and high MBEs for predicting other plots.
Contrary to this, the models trained on data from plots with low
coverage rates (“TY-plot 2-1,” “WC plot 2-1,” and “Bg-plot 1-
1”) tended to under-estimate. The prediction errors (MAE) were
high when these over or under-estimating models were used.

For prediction using the models trained on plots, whose
measured coverage rates were close to the target (e.g., model:
“TY-plot 2-1” and target: plot 2-4, and vice versa), the MBEs were
close to zero, and the MAEs were low. The MAEs for predicting
WC coverage of plot 3-4, the plot with high WC coverage, were
high in many models but were lower in the model trained on
data from another high-coverage plot (such as “WC-plot 1-1” and
“WC-plot 2-3”). The Plot 2-2, which shared “cultivar B” but did
not have high WC coverage, was predicted with high MAEs by
“WC-plot 1-1,” “WC-plot 2-3,” and “WC-plot 3-4.” Therefore, in
this case, the main factor influencing the tendency of the model
to predict with high MAEs was the WC coverage, not the cultivar.

The MMBE and the MMAE are shown in Figure 6. The
calculation of MMBE and MMAE of each model did not include
the MAEs and the MBEs for predicting the images used in
the training. Therefore, the MMBE and the MMAE are the
averages of each row without the gray squares in Figures 4, 5.
Overall, the MMAE was lower in WC than that in TY and
Bg. Compared with the models trained on data from a plot,
the MMAE of the models trained on data from a group was
lower. Moreover, though the MMAEs of some models trained
on data from a plot were extremely high, the MMAEs of the
models trained on data from a group were relatively stable. This
showed that the models trained on datasets representing multiple
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FIGURE 3 | The estimation process of measured and scored coverage by the CNN models.

conditions could predict wider target images accurately. When
the MMAE of a model was high, such as in the case of “TY-
plot 2-1,” “WC-plot 3-4,” and “Bg-plot 2-1,” the absolute value of
the MMBE was also high, that is, such a model tended to over
or under-estimate.

Estimation of the Measured and Scored
Coverage
For the models of TY, WC, and Bg trained on a dataset from
each group, the scatter plots and the correlation coefficients (r)
of scored coverage, measured coverage, and estimated coverage
are shown in Figure 7. The results were different between models
even in the scored vs. measured coverage pair because the
plot data used to train the models were omitted in each pair.
For WC, the correlation coefficients in every pair of scored,
measured, and estimated coverage were high: r = 0.92–0.96 in
measured vs. estimated coverage (the highest was “WC-group 2”:
r = 0.961), and r = 0.76–0.93 in scored vs. estimated coverage

TABLE 3 | Status of the images used in evaluation of legume prediction on fields
differing in grass or legume species.

Image Grass Legume Date taken Lapsed days
after cutting

UAV

OG-WC 1 OG WC 2018/5/31 16 days DJI Phantom 4 Pro

OG-WC 2 OG WC 2018/5/31 16 days DJI Phantom 4 Pro

OG-RC 1 OG RC 2019/7/19 53 days DJI Phantom 4 Pro

OG-RC 2 OG RC 2019/7/19 53 days DJI Phantom 4 Pro

OG-RC 3 OG RC 2020/10/19 20 days DJI Phantom 4 RTK

OG-RC 4 OG RC 2020/10/26 27 days DJI Phantom 4 RTK

(the highest was “WC-group 1”: r = 0.934). For TY and Bg, the
correlation coefficients of measured vs. estimated coverage were
lower, r = 0.24–0.75, in TY and r = 0.41–0.74 in Bg. In TY, the
correlation coefficient of scored vs. estimated coverage exceeded
that of measured vs. estimated coverage with every model.

The scatter plot of the estimated coverage of Bg with ExG –
ExR and the measured coverage of Bg on aerial images of the
12 plots is shown in Figure 8. The correlation coefficient of the
estimated coverage with ExG – ExR vs. measured coverage was
0.51, the same extent as with the CNN Bg- models (r = 0.41–0.74).

Evaluation of Legume Coverage
Prediction Using Different Datasets by
Grass or Legume Species
Using the WC model trained on the dataset of each group,
legume coverage on images of the OG-WC and OG-RC fields
was predicted. The MBEs and MAEs for the prediction are shown
in Figure 9. The coverage of the WC of OG-WC 1 and 2, taken
on fields with a different grass species (OG), was predicted with
MAEs lower than 10 by “WC-group 2,” “WC-group 3,” and “WC-
group 4,” though the MAEs increased by several points from those
shown in Figure 5. When coverage of a different legume species
(RC) was predicted by the WC-models, RC coverage of OG-RC
1 and 2 was predicted with relatively high MAEs and negative
MBEs, that is, the models tended to under-estimate. In contrast,
the RC coverage of OG-RC 3 and 4 was predicted with lower
MAEs. Both the OG-RC 3 and OG-RC 4 differed from OG-RC 1
and 2 in season and year of the images being taken (Table 3). The
difference between OG-RC 2 and OG-RC 4 in original images,
prediction results by “WC-group 3,” and details of the prediction
are shown in Figure 10.
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TABLE 4 | The scored coverage by a breeder and the measured coverage using aerial images.

Scored coverage by a breeder (%) Measured coverage using painted maps (%)

Plot Group Cultivar TY WC Bg TY WC Bg

1-1 1 Cultivar B 50 50 0 41.4 27.8 31.5

1-2 2 Cultivar A 70 25 5 47.4 13.6 38.9

1-3 3 Cultivar C 45 35 20 38.3 16.8 44.8

1-4 4 Cultivar C 45 40 15 49.2 13.8 37.2

2-1 1 Cultivar C 70 25 5 37.7 13.2 46.5

2-2 2 Cultivar B 40 45 15 40.3 17.2 42.5

2-3 3 Cultivar B 45 50 5 37.6 26.8 35.6

2-4 4 Cultivar A 50 50 0 37.5 18.2 44.3

3-1 1 Cultivar A 70 30 0 42.2 22.0 35.8

3-2 2 Cultivar C 50 40 10 46.3 17.3 36.4

3-3 3 Cultivar A 55 45 0 41.2 20.9 37.8

3-4 4 Cultivar B 25 70 5 37.0 31.6 31.4

Mean 51.3 42.1 6.7 41.3 19.9 38.6

Range 45.0 45.0 20.0 12.2 18.3 15.1

Correlation coefficient (r) of scored vs. measured coverage 0.29 0.79 0.35

FIGURE 4 | The mean bias errors (MBEs) for every one-model-to-one-plot prediction.

FIGURE 5 | The mean average errors (MAEs) for every one-model-to-one-plot prediction.
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FIGURE 6 | The mean of mean bias errors (MMBE) and the mean of mean average errors (MMAE) for predicting the coverage of the plots by the CNN models. The
calculation for each model doesn’t include the MAEs and the MBEs on predicting the images used in the training.

DISCUSSION

The generalization of the CNN model is a major problem. The
“WC-group 3” model used in this study was trained on the images
of plot 2-3, a plot with high WC coverage, and other plots with a
low coverage (Table 4). Consequently, the MAEs for predicting
both high and low-coverage plots were suppressed (Figure 5),
and the MMAE of the model was low (Figure 6). This model
is likely to succeed in generalization. It is suggested that a wide
distribution of coverage rate in training datasets leads to high
accuracy of predicting different types of plots. However, “WC-
group 1,” trained on datasets including that from a high-coverage

plot, plot 1-1, predicted other high-coverage plots with high
MAEs. The reason of this may be the deficiency in fitting the
model to the training datasets because this model also predicted
plot 1-1, used in training the model, with a high MAE. A wide
distribution of the coverage in training datasets, and a thorough
training to fit the model to the datasets could be needed.

Judging by the correlation data shown in Figure 7, coverage
estimation of legume by CNN models is likely to be easier than
that of the grass or background. The reason for this may be
the difference in the shape of leaves. Particularly, legume leaves
are wider than those of grasses, thus, CNN can fully extract the
features of legume leaves from the aerial images. Moreover, in
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FIGURE 7 | The scatter plots and the correlation coefficients (r) of scored coverage by a breeder, measured coverage on aerial images, and estimated coverage by
CNN models trained from groups.
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FIGURE 8 | The scatter plot of estimated coverage of Bg with ExG – ExR and
measured coverage of Bg on aerial images of 12 plots.

this study, there were cases where distinguishing TY from the
background was difficult on paintings of the location because
there were withered TY leaves on the mixed swards in autumn.
In such cases, the training datasets had some uncertainty. This
may be one of the reasons why the coverage estimation of TY was
inaccurate. The “TY-group 2” over-estimated the TY coverage of
plot 2-1 (MBE: 10.7, MAE: 10.9), while the “Bg-group 2” under-
estimated Bg coverage of plot 2-1 (MBE: −8.5, MAE: 8.6), as
shown in Figures 4, 5. The examples of the piece-level prediction
are shown in Figure 11. In these examples, including withered
TY leaves on sheets, TY class values were over-estimated and Bg
class values were under-estimated. When maps of each category
for training were painted on hand, the withered TY leaves were
not painted as TY, and thus, painted as Bg. These withered TY
(painted as Bg) areas are likely to be predicted as TY due to the
shapes of the leaves. In this way, TY and Bg could be confused
by the CNN models.

The background, the location with no plants present, lacks
a characteristic shape. Feature extraction of the background by
the CNN models may be difficult because the background does
not have a unique shape. Using our datasets, the prediction of
background coverage with ExG – ExR (Meyer and Neto, 2008)

was not accurate (Figure 8). For the estimation of background
coverage, other methods that involve vegetation indices or
machine learning may be needed.

The comparison of the multiple models shown in Figures 4, 5
can be a variation of the cross validation with MBE and MAE,
though the validation in our case was different to common cross
validation in that the size of our validation datasets was larger
than that of the training datasets. On the models generalized
sufficiently, the prediction errors of validation datasets are near
the prediction errors of training datasets in cross validation. From
this point of view, the WC prediction models in our study were
well-generalized, compared with those of TY and of Bg.

The scored coverage by a breeder reflects the 3D features that
the aerial 2D images cannot grasp. Therefore, the scored coverage
is not necessarily inferior to the measured coverage on images,
though the scored coverage is subjective. It is likely that the
CNN models can estimate both measured coverage and scored
coverage for legumes based on the high correlations of predicting
WC coverage observed (Figure 7). On the other hand, in TY and
Bg, the correlations of scored vs. measured coverage were low.
This may be due to the difference between the appearance of TY
or Bg to a breeder and that from a UAV. It seems to be difficult
to produce an estimation of a breeder by predicting TY or Bg
coverage from images using CNN models.

However, in TY models, the correlations of scored vs.
estimated coverage were higher than those of measured vs.
estimated coverage (Figure 7). This means that the CNN models
estimated the scored coverage more precisely even though the
models were trained on measured coverage data. In general, the
CNNs were likely to be trained on characteristic parts of images
and made predictions using such parts, as demonstrated through
visual explanation methods such as the Grad-CAM (Selvaraju
et al., 2020). For the prediction of TY coverage, the CNN
models may be trained mainly on data of the characteristic parts
( = typical parts for TY) and may predict a high coverage using
the plot images of such parts. Breeders also look at characteristic
parts in plots and score the coverage. This may be the reason
why the correlations of the scored coverage by a breeder vs. the
estimated coverage by the CNN models were higher. These results
suggest that the CNN models make predictions using the data
generated through human decision-making more precisely than
using data measured mechanically. Additional research is needed
to confirm this.

When the WC coverage from the OG-WC images was
predicted by the CNN models trained with TY-WC images, an

FIGURE 9 | The MBEs and the MAEs for predicting legume coverage of different images by grass or legume species to those used in training.
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FIGURE 10 | The original plot images and the prediction results of OG-RC 2 and OG-RC 4. “Prediction result” is the result map of the legume (RC) coverage
prediction by “WC-group 3” illustrated in grayscale (when a sheet is close to white, the predicted class value is high). “Detail” is an enlarged view of the original image
on which the prediction result map overlapped (the opacity of the result map is adjusted in overlapping).

increase in MAEs was limited for “WC-group 2,” “WC-group 3,”
and “WC-group 4” (Figure 9). It appears that the WC-models
trained with TY-WC images are applicable to WC coverage
prediction of mixed swards with a different grass species. On
the other hand, when the RC coverage from OG-RC images was
predicted by the WC-models, the MAEs increased on OG-RC
1 and 2 (Figure 9). In these images, there were pieces with RC
presence that were predicted to have low legume coverage, as
shown in “Detail” of OG-RC 2 in Figure 10. In OG-RC 1 and
2, the RC leaves stood upwardly, and thus, looked sharper. Such
RC leaves had different shapes on imaging to WC leaves. In
contrast, in OG-RC 3 and 4, RC leaves looked similar to WC
leaves. This may be the reason why the WC-models predicted
the RC coverage of OG-RC 1 and 2 with higher MAEs, and that
of OG-RC 3 and 4 with lower MAEs. For training the model to
predict RC coverage accurately, training datasets, which cover
leaf shapes of various RC conditions, should be needed.

In this study, for comparing multiple models using different
training datasets in the same conditions, adjustment of the
architectures and hyperparameters of the CNN was not
conducted. Adequate accuracy for coverage estimation of WC
was achieved in this condition. The following points can be
considered for further improvement of the models: (1) The
architecture of the CNN: Yu et al. (2019a) reported that AlexNet
and VGGNet achieved higher precision values for weed detection
in perennial ryegrass than GoogLeNet. The CNN models for
the coverage estimation of mixed swards can be improved with
architectures other than GoogLeNet. (2) The optimizer used for
training the CNN model: Momentum SGD was used as the
optimizer in our study, but other optimizers, such as AdaGrad
(Duchi et al., 2011) and Adam (Kingma and Ba, 2014), can
be used. Adjustment of hyperparameters, including optimizers,
may improve the coverage estimation models of grass-legume
mixed swards. (3) The problem setting: In the predictions in

FIGURE 11 | The examples of the piece-level prediction in which TY and Bg
were confused. The pieces were cut from plot 2-1. The coverage of TY was
predicted by “TY-group 2” and that of Bg was predicted by “Bg-group 2.”

this study, a 21-class classification was applied to the CNN
models because GoogLeNet has been developed to address the
issue of classification. The CNN models for regression problems,
however, are also buildable. There are precedents for this in
crop yield prediction (Nevavuori et al., 2019) in and maize
tassels counting (Lu et al., 2017). The development of CNN
regression models that predict coverage as a continuous value
may be promising.

In previous studies, methods involving semantic segmentation
have mainly been applied to the prediction of a legume
proportion using CNNs (Skovsen et al., 2017; Larsen et al., 2018;
Bateman et al., 2020). On the other hand, in this study, class
values of coverage in separate regions were predicted. Using this
method, many pieces of images for training can be obtained from
a fixed number of aerial images. Moreover, prediction errors may
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be suppressed because values of coverage are predicted directly,
and not by interposing the classification on each pixel. So far,
the superiorities of these methods are not clear. Additionally,
although the measured coverage on aerial images and the
scored coverage by a breeder were used as indicators of legume
proportion in this study, yield-based indicators such as dry matter
yield are also likely to be useful. Comparative studies between the
prediction methods of legume proportion are required.

The CNN system to investigate a small experimental field was
developed in this study because of the difficulty to take high
resolution images for a large field. However, the investigation
system for the large production field is important. The capability
to capture a large field mainly depends on the performance
of UAVs; examples are flight time, the camera sensor size,
and the camera lens. As the technology of UAVs becomes
more advanced, this CNN system may be useful for the large
production field in the future.

Multiple CNN models estimating the coverage of timothy
(TY), white clover (WC), and the background (Bg) from UAV-
based aerial images were trained and were compared. The
accuracy of the CNN models used in our study was affected
by the coverage on the plots in the training datasets, and thus,
it was suggested that a wide distribution of the coverage rate
in the training datasets was important for the generalization of
the model. The WC coverage, both the measured coverage on
aerial images and the scored coverage by a breeder, was precisely
estimated by the CNN models.

The CNN model trained on data from a group of the three
plots was shown to be useful for the estimation of the WC

coverage. It is expected that further works based on the methods
in this study will generate a practical system to estimate the
coverage in grass-legume mixed swards.
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