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Cotton is the most important fiber crop and provides indispensable natural fibers
for the textile industry. Micronaire (MIC) is determined by fiber fineness and maturity
and is an important component of fiber quality. Gossypium barbadense L. possesses
long, strong and fine fibers, while upland cotton (Gossypium hirsutum L.) is high
yielding with high MIC and widely cultivated worldwide. To identify quantitative
trait loci (QTLs) and candidate genes for MIC in G. barbadense, a population of
250 backcross inbred lines (BILs), developed from an interspecific cross of upland
cotton CRI36 × Egyptian cotton (G. barbadense) Hai7124, was evaluated in 9
replicated field tests. Based on a high-density genetic map with 7709 genotyping-
by-sequencing (GBS)-based single-nucleotide polymorphism (SNP) markers, 25 MIC
QTLs were identified, including 12 previously described QTLs and 13 new QTLs.
Importantly, two stable MIC QTLs (qMIC-D03-2 on D03 and qMIC-D08-1 on D08)
were identified. Of a total of 338 genes identified within the two QTL regions,
eight candidate genes with differential expression between TM-1 and Hai7124
were identified. Our research provides valuable information for improving MIC in
cotton breeding.

Keywords: Gossypium hirsutum, Gossypium barbadense, backcross inbred lines, micronaire, quantitative trait
locus
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INTRODUCTION

Cotton (Gossypium spp.) is an important cash crop species
worldwide, providing an essential natural resource for the textile
industry. Due to its high yield and wide adaptation, upland cotton
(Gossypium hirsutum L.) accounts for more than 95% of global
cotton production (Lacape et al., 2003; Li X. M. et al., 2016).
However, extra-long staple, Pima, Egyptian, or Sea Island cotton
(Gossypium barbadense L.) have excellent fiber quality with long,
strong and fine fibers, but their low yield and requirements for
warm and dry weather conditions limit their cultivation area
(Zhang et al., 2014; Said J. I. et al., 2015). In recent years,
the goal of cotton breeding in China has shifted to improving
fiber quality (including fiber length, strength, and micronaire
(MIC)], in addition to high yield (Fang et al., 2017). To date,
there have been an increasing number of studies on improving
cotton fiber quality traits through interspecific hybridization,
especially G. hirsutum × G. barbadense (Zhang et al., 2014;
Wang et al., 2020).

Cotton fibers are the longest and fastest growing cells of
cotton plants. Each cotton fiber consists of a single cell that
grows on the surface of the ovule. The fiber development process
includes four main stages: fiber initiation, elongation, secondary
wall thickening and maturation (Pang et al., 2010). Cotton
fiber quality is a quantitative trait affected by multiple genes
(genotype), environmental factors and genotype × environment
interactions during fiber development. MIC is mainly determined
by the formation characteristics of fiber secondary walls (Wu
et al., 2020). Its value is determined by measuring the airflow
resistance of a certain weight of cotton fiber plug (i.e., µg per
inch of single fiber). Textile processing companies and scientific
research organizations have adopted MIC as a key parameter of
fiber maturity and fineness (Bradow and Davidonis, 2000). MIC
is a comprehensive index of fiber fineness and maturity for fiber
quality and plays an important role in the fiber spinning process.
Because immature fibers have thin cell walls and therefore low
MIC (below 3.4), they tend to become weaker and easily break
during the spinning process, making low grade yarns. However,
mature fibers have thick cell walls and produce a thick yarn. So
mature cotton fibers are preferred in spinning (Kim et al., 2013).
For mature fibers, MIC reflects the fineness of the fibers in that the
higher the MIC, the coarser the mature fibers. Mature fibers with
MIC readings between 3.70 and 4.20 are considered premium.
However, micronaire readings of 3.4- and -under or 5.0- and -
higher will receive discount in pricing. Therefore, it is of great
theoretical and applied value to analyze and identify candidate
genes regulating MIC at the quantitative trait locus (QTL) level
for fiber quality molecular breeding and elucidate the genetic
mechanism underlying cotton fiber development.

Quantitative trait locus mapping uses molecular marker
technology as a tool based on genetic linkage maps and
uses the linkage between linked molecular markers and QTLs
to determine the position of candidate genes that control
quantitative traits throughout the genome. At present, two
commonly used methods include composite interval mapping
(CIM) and inclusive composite interval mapping (ICIM) (Meng
et al., 2015). Software used for these two methods include

WinQTLCart 2.5 for CIM and QTL IciMapping 4.2 for ICIM.
Most researchers have used these two software programs
separately to carry out QTL mapping research on important
cotton traits. For example, CIM was used by Li C. et al. (2016),
Zhang et al. (2016) and Liu et al. (2018), and ICIM was used by
Liu et al. (2017); Ma et al. (2017) and Liu et al. (2019). However,
these two mapping methods can be simultaneously used for
locating QTLs to perform a more accurate and comprehensive
genetic analysis of traits.

Using one of the two methods, studies have also reported QTLs
for MIC. Ali et al. (2018) identified 22 MIC-related QTLs in a RIL
population of 180 lines in upland cotton, among which 13 QTLs
were detected in two or more environments. Wang B. H. et al.
(2017) detected 27 MIC-related QTLs using BC3F2, BC3F2:3, and
BC3F2:4 populations of an interspecific G. hirsutum×Gossypium
mustelinum cross, among which 11 QTLs were located near the
same marker in different populations or near linked markers in
the same population. In addition, Fan et al. (2018) identified four
MIC-related QTLs using a population of 143 RILs of an intra-
G. barbadense cross. With the rapid development of genome
sequencing technology, genome-wide association study (GWAS)
has been successfully applied in the genetic analysis of fiber
quality traits, including fiber MIC. Using genome resequencing,
Wang M. J. et al. (2017) identified 3 significant single-nucleotide
polymorphisms (SNPs) for fiber MIC in a group of 362 diverse
upland cotton accessions, and Ma et al. (2018) identified 533
significant SNPs for fiber MIC in a panel of 419 upland cotton
accessions. In addition, Huang et al. (2017) used the cotton
Illumina 63K SNP array to genotype a collection of 503 upland
cotton lines and identified 3 stable QTLs associated with MIC.
Through a meta-analysis of numerous QTL reports, Said J. et al.
(2015) compiled a total of 395 QTLs related to MIC in a QTL
database for cotton.1 Xu et al. (2020) recently performed a meta-
analysis and identified a total of 15 meta-QTLs for MIC. These
studies provide references for locations of QTLs for MIC.

Although G. barbadense has much longer, stronger and finer
fibers than G. hirsutum, whether there exist major QTLs for MIC
when crossing with G. hirsutum is currently not well understood.
In this study, we used a population of 250 backcross inbred lines
(BILs) from a G. barbadense × G. hirsutum cross (Ma J. et al.,
2019) and identify QTLs for MIC based on a high-quality genetic
map using two QTL mapping methods. The identified QTLs were
then subjected to an integrated analysis to identify BILs with low
MIC (i.e., fine fibers) and candidate genes for MIC. The results
will lay the foundation for subsequent fine mapping of MIC-
related genes and molecular marker-assisted selection (MAS) to
improve MIC in upland cotton.

MATERIALS AND METHODS

Plant Materials
An interspecific BIL population comprising 250 BC1F7 lines was
developed from a cross between Egyptian cotton (G. barbadense)
Hai7124 and Chinese G. hirsutum CRI36. The parents and 250

1www.cottonqtldb.org
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BC1F7 lines were planted in accordance with a randomized
complete block design in nine environments at five locations,
including the South Farm (nc) and the East Farm (dc) at the
Institute of Cotton Research, Chinese Academy of Agricultural
Sciences (CRI-CAAS), Anyang, Henan, China (Aync, 2015, 2016,
2017, and Aydc, 2017); Weixian, Hebei (Hbwx, 2016); Sanya,
Hainan (Hnsy, 2016); and Alar, south Xinjiang (Xjal, 2016, 2017);
and Shihezi, Northern Xinjiang (Xjsh, 2017). Crop management
practices followed local recommendations for cotton production.
The use of two major cotton production regions (the Yellow River
Valley and Northwestern Inland Valley) allowed the detection of
consistent QTLs for MIC between the two regions. The specific
length amplified fragment sequencing (SLAF-seq) strategy was
followed for genotyping the BILs using a G. hirsutum reference
genome with updates (Zhang et al., 2015; Hu et al., 2019). The
details of a genetic linkage map consisting of 7709 markers were
described previously by Ma J. et al. (2019).

Phenotypic Measurements and Analysis
Twenty normally mature (opened) bolls from the first and
second nodes of middle fruiting branches were sampled in
September each year. All seedcotton samples were ginned
by a roller gin in the South Farm at CRI-CAAS, Anyang,
Henan. Fiber samples were then tested by an HVI 1000
instrument at the Cotton Quality Inspection and Supervision
Center of the Ministry of Agriculture, CRI-CAAS, Anyang,
Henan. The R software package lme4 was used to estimate
the best linear unbiased predictions (BLUPs) and broad-sense
heritability (H2) for MIC across the nine environments (Bates
et al., 2014). The R software was also used for other statistical
analyses including analysis of variance (ANOVA) and principal
component analysis (PCA) of MIC for the BIL population across
different environments.

Quantitative Trait Locus Analysis
Micronaire values in each of the nine testing environments
and their BLUPs across the tests were used for QTL analysis
using the ICIM of ADDitive QTL (ICIM-ADD) method in
QTL IciMapping 4.2 (Meng et al., 2015) and the CIM method
in WinQTLCart 2.5 (Wang et al., 2007). The parameters were
set to a mapping step of 1 cM, a p value of 0.05 for type I
error, and a PIN of 0.01, and 1000 permutations were taken
to calculate the logarithm of odds (LODs) threshold. QTLs at
the same location in two or more environments with a LOD
threshold of >2.5 were considered significant QTLs (Shang et al.,
2015). The QTL confidence interval (95%) was set as a mapping
distance interval corresponding to a decrease of 1 LOD on
either side of the peak (Yu et al., 2012a; Liu et al., 2019). MIC
QTLs detected in three or more environments were considered
stable QTLs when their confidence intervals overlapped (Yu
et al., 2012b; Ma J. et al., 2019). A set of consensus QTLs
for MIC was inferred by integrating the information of QTLs
detected via the two methods. QTLs were named according
to the method of Sun et al. (2013), with a prefix of W, I,
and C for a QTL identified by CIM, ICIM and both methods,
respectively. MapChart 2.2 was used to visualize the genetic
map and QTL bars.

Common Quantitative Trait Loci for
Micronaire in the Backcross Inbred Line
Population and Previous Reported
Studies
To identify new QTLs in this study, QTLs from our results were
compared with previously reported QTLs. Previous MIC QTLs
were retrieved from CottonGen (Yu et al., 2014) and Cotton
QTLdb Release 2.3 (January 24, 2018, see text footnote 1) (Said
J. et al., 2015) and from recent reports by Majeed et al. (2019)
and Xu et al. (2020). In addition, MIC QTL data from previous
GWAS reports were also obtained. A co-localizing marker or a
neighboring marker for a MIC QTL was identified, and then the
marker location on the TM-1 genome was determined (Zhang
et al., 2015; Hu et al., 2019). The physical intervals of all QTLs
were queried via BLAST against the TM-1 genome, and QTLs
were co-localized together with the previously identified MIC-
related QTLs.

Gene Ontology Enrichment and
Candidate Gene Identification
After the physical intervals of stable QTLs were queried via
BLAST against the TM-1 genome (Hu et al., 2019), potential
candidate genes were determined on the basis of the physical
interval for a QTL. The homologous genes of candidate genes
from Arabidopsis and the annotations of gene functions were
determined from the TM-1 genome. The general pattern of
expression of the candidate genes and their SNPs including
insertion/deletion (InDel) of TM-1 and Hai7124 were also
obtained from Hu et al. (2019) and then analyzed by SnpEff
to predict variant impact (Cingolani, 2012). Gene Ontology
(GO) enrichment of candidate genes was performed using
the micStudio tools.2 Homologous genes of candidate genes
from Arabidopsis were used to determine enriched ontology
clusters by Metascape (Zhou et al., 2019). Candidate genes were
further used to predict the micro-RNA (miRNA) target genes by
psRNATarget3 (Dai et al., 2018), and the miRNA expression data
of fibers at 14 days post-anthesis (DPA) were obtained from the
Cotton Omics Database.4

RESULTS

Micronaire Variation of Parents and the
Backcross Inbred Line Population
Across the nine environments, MIC of the BILs ranged from
2.10 to 6.17, with an average of 4.14, and the mean MIC of
the Upland CIR36 and Egyptian Hai7124 parents were 3.59 and
4.06, respectively (Table 1). The MIC of CIR36 was significantly
(P < 0.01) greater than that of Hai7124. The values of skewness
and kurtosis in each environment showed that MIC followed
a normal distribution in the BIL population (Supplementary
Figure 1 and Table 1). Furthermore, there was a transgressive

2https://www.omicstudio.cn/tool
3http://plantgrn.noble.org/
4http://cotton.zju.edu.cn/
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TABLE 1 | Performance of backcross inbred lines (BILs) of Hai7124 × CRI36 hybrids and their parents.

Trait Test Parent BILs SD Skewness Kurtosis CV (%)

Hai7124 CRI36 Min Max Mean

MIC Aync (2015) 3.40 3.80* 2.10 5.70 3.84 0.75 0.17 −0.34 19.45

Aync (2016) 3.67 4.33* 2.89 5.51 4.45 0.60 −0.33 −0.39 13.42

Hnsy (2016) 3.30 4.50* 2.20 5.90 3.66 0.66 0.57 0.17 17.92

Xjal (2016) nt nt 2.55 6.07 4.04 0.61 0.24 0.38 15.21

Aydc (2017) 4.22 4.37* 2.57 6.14 4.46 0.64 −0.10 −0.35 14.24

Aync (2017) 3.91 4.17* 2.43 6.17 4.52 0.66 −0.12 −0.19 14.65

Hbwx (2017) 3.91 4.10* 2.37 5.87 4.49 0.57 −0.28 0.28 12.64

Xjal (2017) 3.12 3.96* 2.35 5.59 3.85 0.62 0.22 −0.10 16.08

Xjsh (2017) 3.16 3.27* 2.28 5.84 3.99 0.72 −0.03 −0.52 18.04

*Difference was significant at P < 0.05 when the two parents were compared.
nt, not tested.
Anyang, Henan (Aync, 2015, 2016, 2017, and Aydc, 2017); Weixian, Hebei (Hbwx, 2016); Sanya, Hainan (Hnsy, 2016); and Alar, Xinjiang (Xjal, 2016, 2017); and Shihezi,
Xinjiang (Xjsh, 2017).

segregation of MIC within the BIL population compared with
the Hai7124 and CRI36 parents. The ANOVA detected significant
variations in MIC (P < 0.01) due to environment and genotype
in the BIL population (Supplementary Table 1). However, the
H2 estimate for MIC (i.e., the percentage of the total phenotypic
variance accounted for by the genotypic variance) was 93.44%,
suggesting that MIC was highly heritable in this BIL population
(Supplementary Table 1).

Principal component analysis of the MIC value in this set of
BILs showed that the nine environments could be classified into
two regions: Region 1 (Northwestern Inland Valley) and Region
2 (Yellow River Valley) (Figure 1), mostly consistent with the
official ecological classification of the cotton production regions
in China, except for two tests-Anyang, Henan, 2015 (15Aync) and
Sanya, Hainan, 2016 (16Hnsy) which were grouped with Region
1. Therefore, the testing environments of the two regions were
separately estimated using BLUPs as BLUP-region 1 and BLUP-
region 2.

Quantitative Trait Loci for Micronaire in
the Backcross Inbred Lines via
Composite Interval Mapping
The nine testing environments and three BLUPs including BLUP
across the nine environments, BLUP region 1 and BLUP region
2 were used for a total of 12 QTL analyses (or tests). In total,
21 QTLs (9 on the A subgenome and 12 on the D subgenome)
for MIC were detected on 9 chromosomes by CIM (Figure 2
and Supplementary Table 2), and each QTL explained 5.08–
16.56% of the phenotypic variation with LOD scores varying
from 3.65 to 10.17. Six QTL alleles from Hai7124 (WqMIC-At2-1,
WqMIC-Dt8-1, WqMIC-Dt8-2, WqMIC-Dt11-3, WqMIC-Dt12-
1, and WqMIC-Dt12-2) had positive additive effects on MIC
(i.e., increasing MIC), while other 15 QTL alleles from Hai7124
(WqMIC-At3-1, WqMIC-At3-2, WqMIC-At5-1, WqMIC-At5-2,
WqMIC-At11-1,WqMIC-At11-2,WqMIC-At11-3,WqMIC-At11-
4, WqMIC-Dt3-1, WqMIC-Dt3-2, WqMIC-Dt10-1, WqMIC-
Dt10-2, WqMIC-Dt10-3, WqMIC-Dt11-1, and WqMIC-Dt11-2)

had negative additive effects on MIC (i.e., decreasing MIC).
Importantly, three QTLs (WqMIC-Dt3-1, WqMIC-Dt3-2, and
WqMIC-Dt8-1) were consistently identified in at least three tests
and were declared stable QTLs; and other 18 QTLs were detected
in one or two tests.

Quantitative Trait Loci for Micronaire in
the Backcross Inbred Lines via Inclusive
Composite Interval Mapping
In total, 12 QTLs for MIC were detected on 8 chromosomes
across 12 tests by ICIM-ADD (Figure 2 and Supplementary
Table 3), each of which explained 3.20–12.56% of the phenotypic
variation with LOD scores between 2.62 and 10.32. Among the 12
QTLs, 7 and 5 QTLs were identified on the A subgenome and D
subgenome, respectively. Six QTL alleles from Hai7124 (IqMIC-
At2-1, IqMIC-At3-2, IqMIC-At5-2, IqMIC-Dt8-1, and IqMIC-
Dt11-1) had positive additive effects on MIC, while other six
QTL alleles from Hai7124 (IqMIC-At3-1, IqMIC-At5-1, IqMIC-
At11-1, IqMIC-At11-2, IqMIC-Dt3-1, IqMIC-Dt3-2, and IqMIC-
Dt10-1) had negative additive effects on MIC. Importantly, four
QTLs (IqMIC-At5-2, IqMIC-At11-1, IqMIC-Dt3-2, and IqMIC-
Dt8-1) were consistently identified in at least three tests and were
declared stable QTLs; and other eight QTLs were detected in
one or two tests.

Between 21 MIC QTLs detected by CIM and 12 MIC QTL
detected by ICIM, eight QTLs (CqMIC-At2-1, CqMIC-At11-
1, CqMIC-At11-4, CqMIC-Dt3-1, CqMIC-Dt3-2, CqMIC-Dt8-1,
CqMIC-Dt10-1, and CqMIC-Dt11-1) were commonly identified
by both QTL mapping methods, because they shared overlapping
confidence intervals. The 2 stable QTLs- CqMIC-Dt3-2 and
CqMIC-Dt8-1 mapped by both methods were simplified as
qMIC-Dt3-2 and qMIC-Dt8-1, respectively, in the following
analysis. Both methods detected MIC QTLs on eight common
chromosomes (At02, At03, At05, At11, Dt03, Dt08, Dt10, and
Dt11), in addition to two QTLs on Dt12 detected by CIM.
On these common chromosomes with QTLs detected by both
methods, most of them (8/12) detected by ICIM were also
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FIGURE 1 | Principal component analysis (PCA) analysis of MIC from 250 BILs in nine environments. 16Aync, 17Aync, 17Aydc, and 17Hbwx environment were
classed as region2 by PCA which represented to the Yellow River Valley (YeRV) cotton growing regions. 16Xjal, 17Xjal, and 17Xjsh environment with 15Aync and
16Hnsy were classed as region1 by PCA which nearly represented to the Northwest Inland Valley (NWIV) cotton growing regions.

FIGURE 2 | The chromosome-wise distribution of QTL for MIC by ICIM and CIM.

detected by CIM, and a few of them (4/12) had different mapping
positions than these detected by CIM. However, CIM detected
more QTLs on these chromosomes. The results suggest that both
methods can detect unique QTLs, but CIM may detect more
QTLs than that ICIM. Overall, a total of 25 QTLs were detected by
the combined use of the two QTL mapping methods (Table 2 and
Figure 2). A total of 12 and 13 MIC QTLs were distributed on the
At and Dt subgenomes, respectively. Interestingly, 13 QTLs were
detected on two pairs of homeologous chromosomes (4 on At03
vs. 2 on Dt03, and 4 on At11 vs. 3 on Dt11). It appears that they
were not distributed on homeologous chromosome regions.

Meta-Quantitative Trait Locus Analysis of
Micronaire Quantitative Trait Loci
Ten of the 21 MIC QTLs by CIM shared overlapping confidence
intervals with those reported in previous studies, including four
QTLs that shared overlapping confidence intervals with those in
at least three reported studies (Supplementary Table 2). Seven
of 12 QTLs identified via ICIM shared overlapping confidence
intervals with those reported previously, four of which shared
overlapping confidence intervals with those in at least three
studies (Supplementary Table 3). Taking together, of the 25 MIC
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TABLE 2 | Summary of micronaire (MIC) QTLs identified in different environments by ICIM-ADD and CIM.

Meta-QTL
name

QTL namea LOD PVE
(%)

Add Position
(cM)

95%
Confidence

No.
tests

Reported previously

CqMIC-At2-1 IqMIC-At2-1 3.63 5.16 −0.16 61.5 60.5–62.5 2

WqMIC-At2-1 3.86 5.56 −0.18 61.7 60–63.4 2

CqMIC-At3-1 WqMIC-At3-1 3.97 5.84 0.18 89.3 89.1–89.5 2

CqMIC-At3-2 WqMIC-At3-2 4.70 6.12 0.15 91.9 90.6–93.8 1

CqMIC-At3-1 IqMIC-At3-1 10.32 12.56 0.20 103.0 102.5–103.5 1

CqMIC-At3-2 IqMIC-At3-2 4.10 4.66 −0.11 123.0 121.5–123.5 1

CqMIC-At5-1 WqMIC-At5-1 4.33 7.02 0.24 0.0 0–0.8 1 Guo et al., 2007

CqMIC-At5-2 IqMIC-At5-1 5.09 8.89 0.22 66.0 65.5–66.5 2 Xiao et al., 2009; Tang et al., 2014; Huang
et al., 2017; Latyr et al., 2018; Tan et al., 2018

CqMIC-At5-3 WqMIC-At5-2 9.22 16.04 0.29 67.9 67–68 1 Xiao et al., 2009; Tang et al., 2014; Huang
et al., 2017; Latyr et al., 2018; Tan et al., 2018

CqMIC-At5-4 IqMIC-At5-3 3.10 4.22 −0.14 85.3 82.5–86.5 3 Xiao et al., 2009; Tang et al., 2014; Huang
et al., 2017; Latyr et al., 2018; Tan et al., 2018

CqMIC-At11-1 IqMIC-At11-1 3.75 5.95 0.18 18.0 17.5–18.5 6 Guo et al., 2007

WqMIC-At11-1 3.84 5.08 0.15 17.2 17.1–18.3 1

CqMIC-At11-2 WqMIC-At11-2 4.18 6.43 0.21 109.1 108.5–109.6 1 Guo et al., 2007

CqMIC-At11-3 WqMIC-At11-3 3.95 5.75 0.19 146.8 145.8–146.9 1 Tang et al., 2014

CqMIC-At11-4 WqMIC-At11-4 4.44 8.27 0.28 155.4 151.9–157.9 1 Tang et al., 2014

IqMIC-At11-2 4.31 8.71 0.29 156.0 155.5–158.5 1

CqMIC-Dt3-1 IqMIC-Dt3-1 5.89 10.15 0.26 9.0 6.5–10.5 2 Rong et al., 2004; Jia et al., 2018; Latyr et al.,
2018

WqMIC-Dt3-1 6.90 10.74 0.24 11.1 6.3–14.3 6

CqMIC-Dt3-2 WqMIC-Dt3-2 6.76 10.04 0.23 17.4 16.8–18.9 6

IqMIC-Dt3-2 5.53 7.69 0.21 17.0 16.5–18.5 7

CqMIC-Dt8-1 IqMIC-Dt8-1 4.65 6.54 −0.16 16.5 13.5–17.5 6 Guo et al., 2007; Yu et al., 2011; Li C. et al.,
2016; Fang et al., 2017; Jia et al., 2018; Liu

et al., 2018; Tan et al., 2018

WqMIC-Dt8-1 4.27 6.17 −0.13 16.3 14.4–19.4 4

CqMIC-Dt8-2 WqMIC-Dt8-2 3.88 5.59 −0.11 22.4 20.5–26.7 1 Guo et al., 2007

CqMIC-Dt10-1 IqMIC-Dt10-1 3.84 6.17 0.16 69.5 68.5–70.5 2

WqMIC-Dt10-1 4.39 7.20 0.19 70.0 68.4–71.5 2

CqMIC-Dt10-2 WqMIC-Dt10-2 5.19 8.61 0.20 80.8 80.1–81.5 1

CqMIC-Dt10-3 WqMIC-Dt10-3 4.01 6.75 0.19 88.5 88.1–88.8 1

CqMIC-Dt11-1 WqMIC-Dt11-1 4.43 7.06 0.26 22.9 22.3–23 1

CqMIC-Dt11-2 WqMIC-Dt11-2 4.04 6.60 0.26 32.4 30.4–33.9 1

CqMIC-Dt11-3 WqMIC-Dt11-3 4.21 6.12 −0.20 55.7 55–55.7 1

IqMIC-Dt11-1 3.59 5.41 −0.19 55.0 54.5–55.5 1

CqMIC-Dt12-1 WqMIC-Dt12-1 5.83 9.35 −0.22 71.2 65.6–72.9 2 Hulse-Kemp et al., 2015; Huang et al., 2017;
Jia et al., 2018; Latyr et al., 2018

CqMIC-Dt12-2 WqMIC-Dt12-2 3.71 7.90 −0.22 80.5 76.3–86.9 1

a Iq and Wq refer to QTLs from the methods ICIM-ADD and CIM, respectively; Cq refers to a consensus QTL identified by both methods; Add and PVE represent the
additive effect and explanation of phenotypic variation, respectively.

QTLs detected in this study, 13 were new and 12 were previously
reported. The results indicate both the reliability and novelty of
the current study.

Because the two commonly detected stable QTL (qMIC-D03-
2 on D03 and qMIC-D08-1 on D08) were also reported in
previously studies, their chromosomal regions were identified
at 34758451–36484185 bp for qMIC-D03-2 and at 57060908–
61064240 bp for qMIC-D08-1 based on Zhang et al. (2015).
However, to better understand the genes in the two regions,
qMIC-D03-2 were mapped at 42175014–43988973 bp and qMIC-
D08-1 at 60300565–63949530 bp on the two chromosomes based

on the updated TM-1 genome sequence (Hu et al., 2019), which
were used for the subsequent analysis.

Gene Ontology Enrichment Analysis of
qMIC-D03-2 and qMIC-D08-1
Within the chromosomal regions of the two MIC QTLs (qMIC-
D03-2 on D03 and qMIC-D08-1 of D08), there were 338 predicted
genes, and 218 of them had GO annotations (Supplementary
Table 4). Based on the GO analysis on the 218 genes, 161
genes were associated with the biological process category, 34
genes were associated with the cellular component category, and
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23 genes were associated with the molecular function category.
In these three categories, the oxidation-reduction process,
integral component of membrane and ATP binding were the
most enriched subcategories (Figure 3A). Remarkably, negative
regulation of catalytic activity was the most significantly enriched
process according to the GO functional enrichment analysis
(Figure 3B). For 306 of the 338 putative genes with homologous
in Arabidopsis, gene silencing, glutathione metabolism, plant
epidermis development and root morphogenesis were found to
be the main ontology clusters (Figure 3C). These four significant
clusters were selected and converted into three network layouts
(Figure 3D). It was found that root morphogenesis and plant
epidermis development cluster identities were linked. Tissue
development, root system development and root development
were the main terms and were more proportional to the 306
genes. Negative regulation of macromolecule metabolism and
negative regulation of both gene expression and of metabolic

process terms were the main terms associated with the gene
silencing clusters.

Prediction of Candidate Genes Within
qMIC-D03-2 and qMIC-D08-1
Because both the G. hirsutum TM-1 and G. barbadense
Hai7124 genomes were sequenced and CRI35 is a typical
upland cotton cultivar, The expression levels of the 338 genes
from TM-1 and Hai7124 in the two QTL regions were
determined based on existing RNA sequencing (RNA-seq) data
(the National Genomics Data Center: https://bigd.big.ac.cn/
bioproject/; accession number: PRJNA490626) (Hu et al., 2019).
The fold change in candidate gene expression was set to 2 as
the threshold for significant differential expression between TM-
1 and Hai7124 in corresponding tissues including embryos (0, 1,
3, and 5 DPA) and fibers (10, 20, and 25 DPA). As a result, eight
candidate genes (three genes for qMIC-D03-2 and five genes for

FIGURE 3 | Gene Ontology (GO) analysis of candidate genes of fiber micronaire. (A) The annotation of the candidate genes in the two QTLs through GO analysis.
(B) Top 20 GO terms enrichment in the molecular function category. (C) Enriched ontology clusters of fiber micronaire by Metascope. (D) The network layout of four
significant clusters by Metascope.
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qMIC-D08-1) were found to be differentially expressed between
TM-1 and Hai7124 (Figure 4). The following is a detailed in silico
analysis of those eight genes.

For the three candidate genes on chromosome D03,
GH_D03G1280 and GH_D03G1274 encode a kinase superfamily
protein and the NADPH/respiratory burst oxidase protein D, and
the expression levels of both genes in TM-1 were higher than
that in Hai7124 at 20 DPA. GH_D03G1280 had SNP variants
including frameshift variants and synonymous variants between
TM-1 and Hai7124. Calcium-dependent NADPH oxidase
generates superoxide molecules, a reactive oxygen species (ROS).
The third gene, GH_D03G1286 encodes a transducin/WD40
repeat-like superfamily protein and its expression in both TM-1

and Hai7124 during the early stages of fiber development was low
until 20 or 25 DPA. This gene had SNP variants between TM-1
and Hai7124 including loss/gain of a stop codon and splice region
variants and GAA frameshift variants which might be involved in
the change in fiber secondary cell wall synthesis.

GH_D08G2052 encodes a TCP family transcription factor, and
its expression was significantly higher in Hai7124 than in TM-1
during fiber elongation from 5 to 20 DPA. Three SNP variants
(frameshift variant, loss of a stop codon, and splice region types)
were found between TM-1 and Hai7124, which might be involved
in the change in fiber elongation. GH_D08G2091 encodes a
glutathione S-transferase THETA 1 enzyme and is a homolog of
AT5G41210 in Arabidopsis, and its expression was significantly

FIGURE 4 | Heat map and trend plot of the expression of candidate genes detected within two stable QTLs related to MIC. (A) Heatmap of the RNA-seq data
(log2(1 + RPKM)) of eight candidate genes during fiber development. (B) Line charts of genes listed in the left heatmap from top to bottom.
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higher in TM-1 than in Hai7124 during fiber development
from 10 to 25 DPA, when fast elongation and secondary cell
wall synthesis occurred. GH_D08G2127 encodes a receptor-like
kinase in flowers and is a homolog of AT2G48010 in Arabidopsis,
and the expression level in TM-1 was higher than that in Hai7124
at 20 and 25 DPA. Similar to GH_D03G1274, the protein encoded
by the gene is involved in protein phosphorylation.

GH_D08G2099 and GH_D08G2286 encode beta-6 tubulin
protein and xyloglucan endo-transglycosylase-related 8,
respectively. The expression of these two genes was very low in
the early stage of fiber development in both TM-1 and Hai7124
until 20 or 25 DPA. The expression levels of GH_D08G2099
(17 times higher) and GH_D08G2286 in Hai7124 fibers were
higher than those in TM-1 fibers at 20 and 25 DPA, respectively.
The upstream region of GH_D08G2286 lacked a 3126 bp
fragment at −5393 bp in Hai7124 but not in TM-1. A detailed
description of sequence variation for all the eight genes is listed
in Supplementary Table 5.

Based on predictions of miRNA target genes by psRNATarget,
GH_D08G2286 was the target gene of ghr-miR156a, ghr-
miR156b, and ghr-miR156d, and the average expression level
of these three miRNAs was 289.11 FPKM. GH_D03G1286 was
the target gene of ghr-miR164, and the expression level of ghr-
miR164 was 2114 FPKM.

Identification of Co-segregating Markers
for Micronaire
Stable MIC QTLs are important loci shaping MIC, and the
closed linked markers are valuable for MAS. For the two stable
MIC QTLs, qMIC-D03-2 and qMIC-D08-1, Markers 150834 and
175863 were the nearest SNPs, respectively (Supplementary
Figure 2A). For marker 150834 for qMIC-D03-2, the BILs with
the SNP allele genotype (AA) from CRI36 averaged a significantly
greater MIC value than did those with the SNP allele genotype
(TT) from Hai7124 (4.30 vs. 3.89, P < 0.05). However, for marker
175863 for qMIC-D08-1, the BILs with the SNP allele genotype
(AA) from CRI36 averaged a significantly lower MIC value than
did those with the SNP allele genotype (GG) from Hai7124
(3.95 vs. 4.25, P < 0.05). The QTL allele for qMIC-D03-2 had
a greater additive effect (−0.21) than that from qMIC-D08-1
(−0.15), consistent with the early QTL analysis (Table 2). MIC
for the desirable QTL genotype for D03 without the desirable
genotype for D08 (i.e., Q3Q3q8q8) was 4.06, vs. 4.16 for the
desirable QTL genotype for D08 without the desirable genotype
for D03 (i.e., q3q3Q8Q8). When the desirable alleles from the two
QTLs were combined into the same genotype (Q3Q3Q8Q8, i.e.,
TT for qMIC-D03-2 with AA for qMIC-D08-1), MIC was further
reduced to 3.73 (significantly lower than that from q3q3Q8Q8
but not from Q3Q3q8q8), as compared to 4.44 for the genotype
without any desirable allele (i.e., q3q3q8q8). The effects from
the two QTLs were additive and there appeared no interaction
between them (Supplementary Figure 2D). Furthermore, the
two homozygous genotypes for each of the two SNP markers
(150834 and 175863) had similar fiber length and strength
(Supplementary Figures 2B,C), indicating that these two QTLs
did not affect fiber length and strength. Therefore, these two SNPs

could be used to design portable markers for MAS to improve
MIC without affecting fiber length and strength.

DISCUSSION

Micronaire is measured as the air permeability of a compressed
lint sample of known mass and is essentially the fiber weight
per unit length (µg inch−1) for a single fiber. Therefore, lint
yield improvement through breeding has been accompanied by
the increase of MIC (Zhang et al., 2019). Therefore, it is not
surprising that the MIC of new cultivars has been increased,
because of the positive correlation between lint yield and MIC.
Sun et al. (2019) showed that a global collection of 719 upland
cotton germplasm accessions only had very low percentage of
lines with the premium MIC (i.e., 3.70–4.20). As lint with MIC
higher than 5.0 will suffer price discounts, breeding for low fiber
MIC is becoming increasingly important.

Populations From Parents With Low
Fiber Micronaire Could Be Used for
Quantitative Trait Locus Analysis
In the nine testing environments, Hai7124 and CRI36 had MIC
ranges of 3.12–4.22 and 3.27–4.50, respectively. Both parents had
low MIC and were considered degree A MIC in China according
to the national standards. The results indicated that both upland
cotton CRI36 and Egyptian cotton Hai7124 possessed genomic
regions that could decrease MIC. However, the upland parent
still had significantly higher MIC. Therefore, it was still valid
to carry out the current QTL analysis in the BIL population
developed from the two parents. The results further showed that
the two parents of different species possessed different genetic loci
involved in MIC formation in that both parents had QTL alleles
decreasing MIC (8 QTLs in CRI36 vs. 17 QTLs in Hai7124),
consistent with many previous QTL studies in cotton (Lacape
et al., 2010; Zhang et al., 2014, 2020; Zhu et al., 2020). As such,
transgressive segregation in MIC was observed in that the BILs
developed from the two parents had MIC ranging from 2.10
to 6.17, with an average BLUP of 4.18. Moreover, a very large
proportion of the BIL population (35.6% of the BILs) had a degree
A MIC. These lines with QTL introgression for low MIC and the
desirable QTL alleles and their linked markers should be useful in
MAS for breeding cotton with a premium fiber quality.

Utilization of Best Linear Unbiased
Predictions With Different Principal
Component Analysis Clusters and the
Complementation of the Two
Quantitative Trait Loci Mapping Methods
In this study, results showed that different ecological
environments had a great influence on MIC. The MIC of
the BILs grown in the Northwestern Inland Valley averaged 0.5
lower than these grown in the Yellow River Valley. Hence, the
BLUPs of the PCA cluster, which represented the two different
ecological environments, could be used to identify QTLs
associated with specific ecological environments. These QTLs
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may be useful in MAS of low MIC for a particular ecological
environment. Interestingly, QTL CqMIC-At11-1 was identified
in blup region one test and in six individual tests. This indicated
that it was necessary to analyze QTLs with BLUPs associated
with different ecological environments and that the results were
reliable. Therefore, when there is a genotype × environment
interaction for a trait of interest in a multi-location experiment,
testing environments can be grouped for a BLUP analysis for
each group instead of using overall means in QTL mapping,
in addition to a separate analysis for each environment. In
this study, grouping based on PCA did not completely reflect
geographical regions of tests because one test in Anyang, Henan,
2015, of Yellow River Valley and another test in Sanya, Hainan,
2016 were grouped with the Northwestern Inland Valley (i.e.,
Xinjiang). In addition to soil type, soil fertility and moisture
(Hearn, 1994), and crop management practices, it is known
that MIC is greatly influenced by weather conditions including
daily temperature (especially night temperature) and relative
humidity (Gipson and Joham, 1968; Wanjura and Barker, 1985;
Liakatas et al., 1998; Reddy et al., 1999; Bange et al., 2010). We
speculate that the dry periods with low temperatures during the
boll development stage in the two tests were likely the major
cause for decreased MIC, as frequently observed in Xinjiang.

In this study, 13 and 4 specific QTLs were identified by
CIM and ICIM, respectively. However, eight common QTLs
were identified via both QTL mapping software programs. Both
methods can identify common chromosomes with QTLs, and
most of the QTLs (67.7%) of the MIC QTLs detected by ICIM
were also detected by CIM, while the remaining unique QTLs
detected by ICIM differed in mapping positions from these
detected by CIM on the same chromosomes. CIM can detect
more QTLs on the same chromosomes and may be more QTLs
on additional chromosomes. Therefore, CIM is more powerful
in detecting QTL, as proposed by Zeng (1993, 1994) when the
CIM method was developed. The results demonstrate that both
mapping methods are useful and are complementary to one
another to detect additional QTL loci. Common QTLs detected
by the two methods provide some levels of confidence in mapping
results. Therefore, we suggest that the two QTL mapping methods
be simultaneously used. Of course, common QTLs especially
these with major effects should be focused in further studies.

Another important aspect is if some of the MIC QTLs detected
in this study were also overlapped with QTLs for lint yield and
fiber length and strength, leading to MIC’s correlation with lint
yield, fiber length and strength. Overlapped QTL regions for these
traits are likely due to linked genes or pleiotropic effects of genes
for the traits, which would explain the correlations of MIC with
the three traits. A subsequent QTL analysis will be performed to
address these questions.

Gene Ontology Enrichment and
Candidate Gene Identification
In this study, two methods were used to perform GO analysis
of putative genes with the two common QTL regions (qMIC-
D03-2 and qMIC-D08-1). The results showed that the oxidation-
reduction process, integral component of membranes and
ATP binding were the most populated subcategories. Root

morphogenesis, plant epidermis development, gene silencing
and response to hypoxia were the main clusters according
to Metascape. The results of the two methods coincided and
showed that the following hypothesis governing MIC by the
two QTLs: During fiber elongation, fiber cells are hypoxic,
giving rise to a response to hypoxia that negatively regulates
enzymatic catalytic activities to induce fiber morphogenesis. This
was followed by secondary cell wall synthesis and changes in
membrane components, eventually leading to a change in MIC.
This hypothesis was supported by the finding that immature
fiber mutants had reduced ROS levels and reduced energy
production in developing fibers compared with mature fibers
(Kim et al., 2013).

In this study, eight candidate genes were identified for the
two QTL regions. Xyloglucan might negatively affect fiber
elongation according to comparisons of xyloglucan contents
between G. barbadense and G. hirsutum (Li et al., 2013).
GH_D08G2286 encodes xyloglucan endo-transglycosylase-
related 8 (GhXTR8) and has a function similar to that xyloglucan
endo-transglycosylase/hydrolase (XTH) proteins, which,
when overexpressed in cotton plants, result in 15–20%
longer fiber compared with that of wild-type cotton (Lee
et al., 2010). GH_D03G1298 encodes a glucuronoxylan 4-O-
methyltransferase-like protein (DUF579) that is involved in
xyloglucan metabolism and that is located within the qMIC-D03-
2 region. The expression of the genes encoding both of these
proteins in Hai7124 was higher than that in TM-1 at 25 DPA.
DUF579 was also determined to be involved in xylan biosynthesis
according to phylogenetic analysis (Chen et al., 2020). IRX15
and IRX15-L are homologous genes of DUF579 in Arabidopsis;
and characterization of a double knockout line revealed irregular
secondary cell wall margins of fiber cells and a lower degree of
xylan polymerization compared with that of the wild-type line
(Jensen et al., 2011).

GH_D03G1280 (a protein kinase superfamily gene) was also
reported to participate in fiber elongation (Li C. et al., 2016).
The protein coded by GH_D03G1286 belongs to a WD40
protein superfamily and mainly regulates the formation of
trichomes via the R3 MYB-bHLH-WD40 transcriptional complex
in Arabidopsis (Gan et al., 2011), but a divergent WD40 protein
(GhWDR) interacts with GhMML4_D12 in a process similar to
but different from that of the MBW transcriptional complex
involved in trichome development (Tian et al., 2020). The protein
coded by GH_D08G2052 is a TCP family transcription factor,
and GhTCP4 plays an important role in balancing cotton fiber
elongation and cell wall synthesis together with miR319 (Cao
et al., 2020). GH_D08G2099 encodes a beta-6 tubulin protein
that is involved in fiber development. Nineteen beta-tubulin
cDNAs were detected in developing cotton ovules and were
found to be highly expressed in elongating fiber cells (He et al.,
2008). Beta-tubulin was also identified by QTL analysis and was
found to control fiber quality (Guo et al., 2021). GH_D03G1274
encodes NADPH/respiratory burst oxidase protein D (RBOHC),
and AtRBOHC influences the development of root hairs via
the activation of Ca2+ and K+ osmotic pathways in plant root
cells (Bai et al., 2014). RBOHC may mediate the progression
of ABA-regulated primary root growth by producing ROS in
the roots (Ma X. et al., 2019). GH_D08G2091, which encodes
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a glutathione transferase, also regulates the production of
ROS. The products of both GH_D03G1274 and GH_D08G2091
participate in ROS metabolic pathways, and ROS can act as
developmental signaling molecules in the process of secondary
cell wall differentiation in cotton fibers (Li et al., 2007; Guo et al.,
2016). GH_D03G1262 encodes an ARF-GAP domain 1 protein
(AGD1), which regulates root hair polarity by coordinating
cytoskeleton and membrane trafficking (Yoo and Blancaflor,
2013). To determine which of these 8 genes contribute to MIC
within the two QTL regions, further studies are needed.

It is recognized that only one specific candidate gene in each
of the two MIC QTL regions will be the one determining a
proportion of the genetic differences in MIC between the two
parents. Functions of other genes within the two QTL regions are
most unlikely associated with MIC and should not be overstated.
Although other molecular aspects including quantitative RT-PCR
between parents and BILs with contrasting MIC and virus-
induced gene silencing can be performed for those 8 genes,
further high resolution mapping using a larger interspecific
genetic population is required. In addition, the desirable effect
(reducing MIC) for qMIC-D03-2 was from the allele contributed
from the Egyptian Hai7124 cotton. Therefore, the two QTLs
may be specific to interspecific hybrid populations between the
two species. A panel of upland cotton germplasm lines would
not be useful in validating the QTL effect. Near-isogenic lines
will be developed for the two QTL regions for a more in-depth
analysis in the future.

In summary, an interspecific BIL population of 250 lines
from G. hirsutum × G. barbadense was employed to detect
MIC QTLs in nine replicated field tests. Based on a high-
density genetic map with 7709 genotyping-by-sequencing (GBS)-
based SNP markers, 25 MIC QTLs were identified, including
12 previously described QTLs and 13 new QTLs. Importantly,
eight candidate genes within two stable MIC QTL regions were
identified with differential expression between upland TM-1 and
Egyptian Hai7124. This study provides valuable information for
improving MIC in cotton breeding.
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Supplementary Figure 1 | Frequency distribution of fiber micronaire of 250 BILs
in different environments. 15Aync, 16Aync, and 17Aync represent the environment
of Anyang south farm in 2015, 2016, and 2017, respectively; 16Xjal and 17Xjal
represent the environment of Alaer, Xinjiang in 2016 and 2017, respectively;
17Aydc,17Hbwx, and 17Xjsh represent the environment of east farm, Anyang,
Henan, Weixian, Hebei, and Shihezi, Xinjiang in 2017; 16Hnsy represent the
environment of Sanya, Hainan in 2016.

Supplementary Figure 2 | The QTL allele effect for the qMIC-D03-2 and
qMIC-D08-1 related to MIC, FL, and FS. (A) Box plots for the qMIC-D03-2 and
qMIC-D08-1 related to MIC. (B) Box plots for the qMIC-D03-2 and qMIC-D08-1
related to FL. (C) Box plots for the qMIC-D03-2 and qMIC-D08-1 related to FS.
(D) The QTL allele effect for qMIC-D03-2 and qMIC-D08-1 related to MIC.
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