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Crop classification maps are fundamental data for global change research, regional
agricultural regulation, fine production, and insurance services. The key to crop
classification is samples, but it is very time-consuming in annual field sampling.
Therefore, how to use historical samples in crop classification for future years at a
lower cost is a research hotspot. By constructing the spectral feature vector of each
historical sample in the historical year and its neighboring pixels in the target year, we
produced new samples and classified them in the target year. Specifically, based on
environmental similarity, we first calculated the similarities of every two pixels between
each historical year and target year and took neighboring pixels with the highest local
similarity as potential samples. Then, cluster analysis was performed on those potential
samples of the same crop, and the class with more pixels is selected as newly generated
samples for classification of the target year. The experiment in Heilongjiang province,
China showed that this method can generate new samples with the uniform spatial
distribution and that the proportion of various crops is consistent with field data in
historical years. The overall accuracy of the target year by the newly generated sample
and the real sample is 61.57 and 80.58%, respectively. The spatial pattern of maps
obtained by two models is basically the same, and the classification based on the newly
generated samples identified rice better. For areas with majority fields having no rotation,
this method overcomes the problem of insufficient samples caused by difficulties in
visual interpretation and high cost on field sampling, effectively improves the utilization
rate of historical samples, and provides a new idea for crop mapping in areas lacking
field samples of the target year.
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INTRODUCTION

Large-scale crop mapping is fine detection of land use, and
timely and accurate mapping results are basic data for food
production prediction, global change research, agricultural
insurance evaluation, production process supervision, and
adjustment of supply and demand structure (Hao et al., 2015;
Huang et al., 2015; Arshad et al., 2018; Liu Z. et al., 2018; Liu
et al., 2021; You et al., 2021). Crop mapping mostly adopts a
supervised classification strategy (Yang et al., 2019), which is
mainly based on spectral features (Xu L. et al., 2019), spatial
patterns (such as shape and texture) (Ren et al., 2020; Zhang et al.,
2020), and temporal changes (Arias et al., 2020) of real samples
to train crop a classification model, and then the classification
is conducted by comparing the similarity of series features of
unknown pixels or objects with the trained model. This strategy
requires a large number of training samples to construct a
classification model. Because of difficulty in visual interpretation
of crop types using satellite images and the high cost of filed
sampling, it is tough to implement this modeling and mapping
method on a large scale year by year. Therefore, how to efficiently
use crop samples collected in the historical year to map a large-
scale crop distribution in the target year is one of the current
research hotspots.

There are several methods to classify crops using historical
samples. We can mention three: the first one is to reuse the
spectral characteristics of historical samples for classification; the
second one is to transfer a model trained on historical samples
for classification; and the third one is to generate new samples
for classification.

(1) Reusing the spectral characteristics of historical samples
for classification is a method of transferring the characteristics
of crops in historical years to the target year. The spectral
characteristics of crops are often extracted from samples and
image information of historical years, and then the spectral
information of the same crop is applied to classify the target year.
For example, to demonstrate the feasibility of this strategy on
the county scale: Zhong et al. (2014) took Doniphan county in
the United States as an example and selected the phenological
calendar matrix of each crop as the classification feature to
construct a classification model for mapping in different years.
Hao et al. (2016a,b) used the normalized difference vegetation
index (NDVI) and enhanced vegetation index (EVI) time series
of historical samples as classification features, and realized the
classification of main crops on the target year in two counties
of Xinjiang, China and southwestern Kansas, United States.
Subsequently, in order to verify the effect of this method on
a larger spatial scale: Liu et al. (2016) obtained the NDVI
curve based on samples from 2013, and applied it to the crop
classification of 2011–2013 in the eastern agricultural region
of Canada. However, due to the inter-annual differences in
the production environment and imaging conditions such as
light, temperature, and water (Liu et al., 2017; Zan et al.,
2019), the growth period of the same crops will appear to
be earlier or later, and the spectral characteristics will be
different, which will cause errors in reusing of spectral features
of historical years.

(2) Transferring a model trained on historical samples for
classification is a method to realize repeated classification using
a model constructed by historical years. The model is often
trained based on samples from many historical years to enhance
inter-annual generalization ability, and then directly transfer
it to the year to be classified. Xu Z. et al. (2019) applied
a model trained in 2017 to classified in 2018 and achieved
good classification results. However, it had large errors when
only 1 year of historical samples was used, so many scholars
began to use years of samples to train models. For example,
combining multi-year average phenological variables extracted
by the asymmetric double sigmoid function with a hierarchical
decision tree automatic classification algorithm, Zhong et al.
(2016) drew a distribution map of soybean and maize in
Parana, Brazil from 2010 to 2015. Massey et al. (2017) extracted
classification features from the United States Cropland Data
Layer (CDL) of three typical years and constructed a classification
model with strong inter-annual generalization ability. Cai et al.
(2018) applied a model trained on CDL and Landsat data to
the classification of target year in the United States maize belt
and achieved a good classification result. Luciano et al. (2018)
identified the distribution of sugarcane in Brazil from 2009 to
2016 based on a model trained by the historical year. However,
it is difficult to explain the generalization ability of a model
simply by adding and transferring historical years. Therefore, the
transferable condition of an inter-annual model was proposed.
For example, Wang et al. (2019) measured the transferability of
a model based on growing degree days (GDDs). Since a transfer
model does not use the information of the target year, only in the
case of less crop types and small differences between a historical
year and target year can achieve good results. In addition, the
migration of a model requires that inter-annual images have a
balanced and comparable time series, which is difficult to meet
for images with medium and high spatial resolution on a large
scale. At present, in order to solve it, most missing time phases are
complemented by interpolation, which will introduce new errors.

(3) Generating new samples for classification is a method
of producing samples for a target year based on classification
results or samples of historical years, and then using them for
classification. Based on a stable planting structure and similar
planting mode in a study area, new samples with high similarity
to historical samples are produced and then used for modeling
and classification of the target year. For example, Hao et al.
(2016c) extracted pseudo samples from CDL data of historical
years in southwest Kansas, United States, and screened them
based on the ABNet method to obtain “training samples” to
classify crops in the target season, with an overall accuracy
of 90%. Zhang et al. (2019) extracted pixels with unchanged
crop types in historical years based on classification results and
screened them as new samples to classify the two counties in
Heilongjiang, China, with the classification accuracy equivalent
to that when using real samples. The abovementioned studies
on generating new samples are based on classification results of
historical years. However, due to some errors in the classification
of historical years, it is difficult to guarantee the accuracy of
samples extracted based on this, which will accumulate errors in
the classification of the target year, resulting in poor results.
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Among the three types of crop classification methods that
reuse historical samples, the method of directly reusing the
spectral characteristics of historical samples does not take full
account of inter-annual differences in crop spectra, the method of
transferring a model trained on historical samples requires more
historical years and inter-annual image timing balance, and the
method of generating new samples uses the classification results
of historical years, and accuracy cannot be guaranteed. However,
because the method of generating new samples has characteristics
of high flexibility and a low requirement on historical years, it is
feasible in the study of reusing historical samples. It should be
pointed out that none of the above methods consider whether
each historical sample can be reused in the year to be classified.
Therefore, how to make use of information on historical samples
one by one to produce new samples with high accuracy and
representativeness, and use them in the modeling of the target
year is a key scientific issue for the reuse of historical samples.

In terms of the reusability of historical samples across the
year, the third law of geography provides a good theoretical
basis (Zhu et al., 2018). It is a spatial inference method based
on the similarity of geographic conditions between sample
points and inferred points, where geographic conditions can
be specified according to different application problems and
expert knowledge (Jing et al., 2013; Behrens et al., 2014; A-
xing et al., 2018). For crop classification and cross-year reuse of
historical samples, within neighborhoods of historical samples,
their growth conditions are similar, and the possibility of planting
the same crops is high. We call it environmental similarity in
this neighborhood. Based on this principle of environmental
similarity, we first replaced the environmental features with the
spectral features of crops, and then calculated the similarity

sample by sample, that is, dynamically calculated the reusability
of each historical sample in the target year, thereby supporting
large-area crop mapping.

Therefore, this study took the mapping of major crops in
Heilongjiang province, China as an example. First, based on
the principle of environmental similarity, the “feature curve” of
historical crop samples and the adjacent conjecture point of the
target year were constructed to calculate the similarity between
them. On this basis, the strategy of generating new samples for
classification was adopted to produce new samples of the target
year. Then, we used the samples to construct a model, and the
results of mapping were compared with those based on actual
samples. It provided a new idea for remote sensing mapping and
the study of reusing historical samples.

MATERIALS

Study Area
As shown in Figure 1, Heilongjiang Province is located in the
northeast of China. It starts from 121◦11′E in the west and ends
at 135◦05′E in the east, with a latitude span of 43◦26′–53◦33′N. It
has 10 latitudes and 2 temperature zones in the north to south,
14 longitudesand 3 humid zones in the east to west. It covers
an area of 4,73,000 square kilometers. The terrain is high in the
northwest, north, and southeast, and low in the northeast and
southwest. It is mainly composed of mountains, terraces, plains,
and water, and belongs to the temperate continental monsoon
and cold temperate climate. Spring is dry, summer is warm and
rainy, autumn is prone to flooding and early frost, and winter
is cold and long. In addition, the frost-free period is short, with

FIGURE 1 | Study area.
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an average of 100–150 days. Annual precipitation is between 400
and 650 mm, and annual sunshine hours are 2,400–2,800 h, of
which sunshine hours in the growing season account for 44–48%
of the total hours, with more in the west and less in the east. With
a large span between north and south, the active accumulated
temperature in the study area ranges from more than 2,700◦C in
the south to less than 1,900◦C in the north, forming six distinct
accumulated temperate zones. Therefore, the types of crops and
varieties (extremely early maturing, early maturing, medium
maturing, etc.) suitable for planting in these zones vary greatly.
In addition, with global warming, accumulated temperate zones
have gradually moved northward in recent years, the varieties of
medium and early maturing crops have also spread to the north,
and extremely early maturing crops have also been planted in
some non-cultivated areas (Liu et al., 2013).

The main crops (maize, rice, and soybean) in the study area
are grown from May to October. Maize is sown from late April to
early May and harvested around October; rice seedlings in April,
transplants in May, and matures in September; the sowing time of
soybean is close to that of maize, and the growth period is shorter
than that of maize. The sown area of crops of the study area in
2018 was about 14,673.33 thousand hectares, of which maize, rice,
and soybean were about 6,317.82, 3,783.1, and 3,567.74 thousand
hectares, respectively. The three major crops account for about
93.15% of the province’s sown area. Due to typical temporal and
spatial variations in climate conditions and large crop areas in this
region, it is an ideal study area for the dynamic evaluation of the
reusability of historical samples and crop mapping.

Data Source
Remote Sensing Image Data
In consideration of the characteristics of long available years,
large coverage area, and high spatial and temporal resolution
required in this study, the China Gaofen-1 (GF-1) satellite
launched on April 26, 2013, was selected in this study. Compared
with Landsat, GF1 has a higher temporal and spatial resolution,
which is 16 m and 4 days, respectively, and it can obtain more
abundant temporal phases. Compared with Sentinel-2, although
the spatial resolution of GF1 is lower than that of Sentinel-2
with 10 m, it is available for a longer period of time. This study
covers the years 2013–2018, while the data for Sentinel-2 have
only been available since 2015. In addition, the 4 multispectral
cameras (WFV) carried by the GF-1 satellite have a width of
800 km, including four bands of blue (0.4–0.52 m), green (0.52–
0.59 m), red (0.63–0.69 m), and NIR (0.77–0.89 m), which can
meet the calculation of vegetation index commonly used. With
high temporal resolution, it can obtain more cloud-free remote
sensing images of crops during key growth periods. The growing
season of the main crops is from April to October, but indoor
seedlings are mostly used for rice in April, so observable spectral
changes mostly occur from May to October. As there are a lot
of clouds in remote sensing images generally, it will affect the
results of crop classification (Xiong et al., 2021). Therefore, GF-
1 WFV data with cloud < 10% in the main growing season
(May–October) of maize, rice, and soybean from 2013 to 2018
were used as a remote sensing data source (300–400 scenes/year).
The data came from the L1 product of China Center for

FIGURE 2 | Description of Gaofen 1 (GF-1) data phases used in this study.
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TABLE 1 | Statistics of ground reference samples from 2013 to 2018.

2013 2014 2015 2016 2017 2018

Maize 3700 4021 3250 3221 2205 3277

Rice 633 909 640 639 1023 533

Soybean 2054 1415 1339 1338 2927 1872

Other 1165 1272 789 1200 1151 847

All 7552 7617 6018 6398 7306 6529

Resources Satellite Data and Application, which refers to remote
sensing products that have a radiometric correction and have
not undergone geometric correction. Moreover, a Multilevel
Raster Data Cleaning and Reconstitution Multigrid (RDCRMG)
system developed by our team was used for image preprocessing,
segmentation, and storage to a 10-km grid (Xiong et al., 2021).
Figure 2 shows the number of grids with images in each year
and each phase using 10 km as the unit. We can find that in
the same year, the number of images on different dates varies
greatly. There are also big differences in the number of images
from year to year.

Crop Samples From 2013 to 2018
In order to obtain the distribution of main crops in the study
area, ground field surveys were conducted from 2013 to 2018.
We measured the latitude and longitude coordinates of the

samples using a handheld Global Positioning System (GPS), and
we recorded vegetation types and took photos. The number
of samples is shown in Table 1. In 2014, the largest number
of samples were collected, which was 7,617; the least collected
was 6,018 in 2015. Among them, the year with the most
severe proportion imbalance was 2018, with rice accounting for
only 8.16%. Most of the samples were distributed in the main
agricultural production areas such as the Songnen Plain and the
Sanjiang Plain. The distribution of samples in each year is shown
in Figure 3.

METHODS

The workflow of this study is shown in Figure 4, and
mainly includes three parts: (1) data preprocessing, (2) sample
production, and (3) classifier training and accuracy assessment.
First, based on the automatic processing and sharing platform
in GF-1 WFV developed by our team, the image and sample
data were preprocessed and stored in the RDCRMG grid system.
RDCRMG is a grid system independently developed by our team.
It is a multisource raster data organization and management logic
framework that is similar to the Military Grid Reference System
(MGRS) data organization framework. The RDCRMG system,
which has three levels of square grids (100, 10, and 1 km) and
different grid sizes, uses strictly nested relationships and specific

FIGURE 3 | Distribution of crop samples from 2013 to 2018.
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FIGURE 4 | Workflow of this study.

codes as consistent RS image partition units. Second, according
to the principle of environmental similarity, the spectral feature
vector of each historical sample and neighboring pixels of the
target year were constructed, the similarity between them was
calculated, and the adjacent pixel with the highest local similarity
was taken as the potential sample. Then, we performed a cluster
analysis on potential samples of each crop and screened more
similar samples within the class as the newly generated samples.
Finally, the newly generated sample combinations in different
years were used to train a classifier for crop mapping in the target
year, and we evaluated their accuracy.

Data Preprocessing
The GF-1 images and field-collected samples were stored in
the RDCRMG grid system independently developed by our
team (Ye et al., 2018). GF-1/WFV L1 products did not
provide geometric correction and cannot be directly used for
crop classification. The GF-1 WFV automatic pre-processing
shared platform developed by our team performed radiometric
calibration, atmospheric correction, and orthorectification, as
well as cloud cover detection and geometric registration. In order
to best preserve the original spectral characteristics of each pixel,
the nearest neighbor sampling method was used for geometric
registration (Xiong et al., 2020).

Radiation calibration is calculated according to the following
formula, and its coefficients are the official radiometric
calibration coefficients updated annually by China Center For

Resources Satellite Data and Application (Ye et al., 2018).

Le (λe) = Gain · DN + Offset,

where Le(λe) is the converted radiance, the unit is
W ∗m−2

∗ sr−1
∗ µm−1, DN is the observed value of satellite,

Gain is the slope, the unit is W ∗m−2
∗ sr−1

∗ µm−1, Offset
is the offset of the absolute calibration coefficient, the unit is
W ∗m−2

∗ sr−1
∗ µ m −1.

The 6S model is used for atmospheric correction and is
an atmospheric radiation transmission model developed by the
Department of Geography of the University of Maryland on the
basis of the 5S (simulation of the satellite signal in the solar
spectrum) model. It is used to eliminate the influence of the
atmosphere and calculate the atmospheric correction coefficient
of ground reflectivity (Ye et al., 2018).

Sample Production
Due to the inter-annual differences in light, temperature, water
environment, and imaging conditions, even if the same crop
is planted in the same place for many years, the inter-annual
spectral difference is very large and even higher than that of
the different crops in the same year. Therefore, if the spectral
features of historical crop samples are directly used for the model
construction of the year to be classified, the deviation of the
feature layer will be transferred to the model layer, resulting in
poor classification results. In addition, even in fields having no
rotation, it still cannot guarantee the complete consistency of
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crop types between years, so it may be unreasonable to directly
use one-year samples to predict the next year. However, due
to the similarity of the production environment and planting
habits, pixels near the historical sample are likely to adopt similar
methods to grow the same crop. Based on this idea, this study
designed a new sample generation scheme based on the similarity
calculation of historical samples. As shown in Figure 5, it mainly
included two parts. First, the feature vectors of historical samples
and adjacent pixels to be classified were constructed, and the
adjacent pixels with the highest local similarity were extracted
as potential samples. Then, the potential samples of the same
crop were clustered separately, and newly generated samples were
obtained after screening.

Production of Potential Samples
According to the similarity of historical samples and neighboring
pixels, the production of potential samples mainly included the
following three steps: first was to construct the feature vector of
the historical sample and its nearby pixels in the target year; then
to calculate their similarity; finally, based on the similarity, the
pixel with the highest similarity in the vicinity of each historical
sample was selected as the potential sample.

To calculate the similarity, the feature vector of the sample
and inferred points should be constructed first. This study
constructed the time series spectral feature vector of each
historical sample pixel and its neighboring 5 pixels ∗5 pixels
(i.e., 80 m∗80 m spatial range). All the images of the main crops
growing season (May–October) in the study area were selected as
timing sequence, and the four original bands (blue, green, red,
and NIR) of GF-1, China and two vegetation indexes (NDVI
and NDWI) were selected as features. Due to the influence of
clouds, shadows, etc., the amount of phase available varies from
year to year. Additionally, there is noise in reflectivity, so the
method of directly constructing feature vectors based on raw

data is inaccurate, and it will affect the subsequent calculation of
similarity. Therefore, this study proposed a method to construct
the eigenvector by fitting the curve. Due to the different temporal
curve shapes of the different features, we experimented with
three fitting methods of cubic polynomials (Dong et al., 2003),
Gaussian function (Oza et al., 2008), and 5-parameter linear
harmonics (Roy and Yan, 2018) in each feature, and chose the
most appropriate way for different features based on R2 and
RMSE (Soudani et al., 2008). Based on this, the feature of each
historical sample and its adjacent 5 pixels∗5 pixels were fitted as a
“feature curve”.

In this study, the historical samples are divided into 2:1,
2/3 was used to fit the curve, and 1/3 tested the accuracy. R2

and RMSE were used as test indicators to compare the above
curve fitting methods (Soudani et al., 2008). R2 is an index to
evaluate the quality of the fit, which measures the overall fit of
the regression equation and expresses the overall relationship
between dependent variables and all independent variables, the
closer to 1, the higher the fitting. RMSE is the root mean
square error, which is used to measure the deviation between the
observed value and the truth value. It can reflect the dispersion
degree of a data set. The smaller the value is, the higher the
accuracy of the model will be. The formula is as follows:

SSE =
m∑

i = 1

(
yi−fi

)2 (1)

SST =
m∑

i = 1

(
yi−y

)2 (2)

SSR = SST− SSE (3)

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

Time series 
feature curve

DTW

Neighboring 
5 * 5 pixels of 

historical 
samples

Curve 
fitting

K-Means

Silhouette Coefficient

Historical samples

Features of images 
to be classified

Samples Best clustering results 
(2 categories)

Potential samplesSimilarity statistics

Clustering results

Maize Rice

Soybean Other

FIGURE 5 | Process of new sample generation.
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R2
=

SSR
SST

= 1−
SSE
SST

(4)

RMSE =

√√√√ 1
m

m∑
i = 1

(
yi−y

)2 (5)

SST is the total sum of squares, SSR is the regression sum of
squares, and SSE is the residual sum of squares. yi is the true value,
fi is the predicted value, y is the average of the true value, and m
is the number of points to be fitted.

Based on the feature vector constructed above, a dynamic
time warping (DTW) (Vintsyuk, 1968; Müller, 2007) algorithm
was adopted in this study to measure the similarity of two
feature vectors. DTW was first applied in the field of speech
recognition, and it can solve a template matching problem with
different pronunciation lengths based on the idea of dynamic
programming (DP) (Nair and Sreenivas, 2008). Due to climate
change, the inter-annual sowing and harvesting time of the same
plot will be earlier or delayed, resulting in the phenomenon of
inter-annual spectral characteristics misalignment of the same
crop, which is similar to the pronunciation length problem in
speech recognition. In each historical sample and its “feature
curve” of 5∗5 points to be inferred in the target year, this study
took 100 scattered points at equal intervals, calculated their
distance D

(
i,j
)
, and then obtained similarity with Formula (6)

(Li et al., 2007):

S = e[−D(i,j)]/max(m,n) (6)

where S is the similarity, m and n are the lengths of two “feature
curve,” and D

(
i, j
)

is the distance calculated with DTW.
After calculating the feature similarity between the historical

sample and neighboring pixels, the pixels were screened based
on this similarity to obtain potential samples. Since the spatial
distribution of samples will affect classification results and
accuracy (Wu and Li, 2004), only one pixel with the greatest
similarity was kept in 25 pixels around the historical samples in
this study, so as to ensure that the spatial distribution of potential
samples was similar to that of samples collected in the field to the
greatest extent. It avoided generating multiple potential samples
based on one historical sample, which will lead to the problem of
large sample size but poor representativeness.

Sample Screening
The potential samples obtained by the above method were the
ones with the greatest similarity near the historical sample, but
it was still not guaranteed to be the same crop. Therefore, it
was necessary to screen the potential samples to further improve
the accuracy of the samples. In this study, a cluster analysis of
potential samples of the same crop was performed to improve
the accuracy. Due to small differences in crop growth curves
and the limitation of the image time phase, it was difficult
to effectively distinguish samples by clustering directly using
time series curves. Therefore, in this study, we extracted the

reflectance at the mean, SD, minimum, maximum, 25, 50, and
75% of the growth curve as the clustering features, and we
clustered for each crop type, in which the number of clusters
ranged from 2 to 20. Then, the silhouette coefficient (SC)
was used to determine the optimal clustering category, and
finally, the category with the most pixels was retained as the
new sample. The SC is a way to evaluate the quality of the
clustering. It was first proposed by Rousseeuw (1987), and its
value range is [−1, 1]. When the SC is −1, the clustering
result is bad; when it is +1, the instances within the cluster
are compact; when it is 0, the clusters overlap. The larger
the SC, the more compact the instances within the cluster
are and the larger the distance between the clusters is, which
means that the clustering is better. The calculation formula is as
follows:

b (i) = min
{

b (i1) , b (i2) . . . . . . b
(
ik
)}

(7)

S (i) =
b (i)−a (i)

max
{

a (i) , b (i)
} (8)

SC =
1
N

N∑
i = 1

S (i) (9)

where b
(
ik
)

is the average dissimilarity degree of i to other
clusters, and k is the number of clusters. a (i) is the similarity
within the cluster, which is the average of the dissimilar degrees
from i to other points in the same cluster, reflecting the cohesion;
b (i) is the dissimilarity between clusters, which is the minimum
value of the average dissimilar degree [b

(
ik
)
] from i to other

clusters, reflecting the degree of separation. N is the number of
clusters; SC is the silhouette coefficient, which is the mean of S (i).

Classifier Training
In this study, a random forest algorithm was used for
classification. Random forest is an integration algorithm that
belongs to the Bagging type. The final result is obtained by
combining the votes of multiple weak classifiers, so the result of
the overall model has high accuracy and generalization ability. It
uses a CART decision tree as a weak classifier. During the training
of the model, multiple trees are generated, and the features
selected by each tree are only a few features randomly selected
(Liu J. et al., 2018).

The random forest can handle high-dimensional data well,
and it has significant advantages when the size of samples and
features are large. In the process of using historical data, a large
number of samples were generated in this study, and the timing
information of the six features led to a large number of features.
Therefore, the random forest algorithm was adopted with a total
of 150 decision trees in this study, and the number of features of
each tree was the square root of the number of input features. The
sample size selected by each tree was consistent with the number
of training sets (Zhang et al., 2019).

In this study, with 2018 as the target year, four combinations
of historical years were designed: one used only a single historical
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year (2013, 2014, 2015, 2016, and 2017), the other fixed the
start year as 2013 (2013–2014, 2013–2015, and 2013–2016), the
third fixed the ending year as 2017 (2014–2017, 2015–2017, and
2016–2017), and the fourth used five historical years (2013–
2017). Based on the samples generated by the above scheme and
relying on the RDCRMG grid system, the random forest classifier
was used to implement parallel processing with a 10-km∗10-
km grid as the classification unit, and classification models
were constructed.

Accuracy Assessment
Seventy percent of the samples in the target year were used
to train a model, and the remaining 30% (2147) were used as
validation samples. Among them, the number of maize, rice,
soybean, and “other” was 1,070, 167, 621, and 289, respectively.
Using the validation samples to construct a confusion matrix
to evaluate the classification results, four accuracy evaluation
indicators were obtained: overall accuracy (OA), producer
accuracy (PA), user accuracy (UA), and F1. OA is the proportion
of correctly classified samples in the total number of samples,
PA is the proportion of correctly classified samples to the total
number of such samples, and UA is the ratio of correctly classified
samples to the total number of pixels classified into this category.
F1 is the harmonic mean of the PA and UA, and it is less
affected by extreme values and more suitable for evaluating the
classification of unbalanced data (Foody, 2020). The calculation
formulas of each indicator are as follows:

OA =
TP + TN

N
(10)

PA =
TP

TP + FN
(11)

UA =
TP

TP + FP
(12)

F1 =
2 ∗ PA ∗ UA
(PA + UA)

(13)

RESULTS

Sample Production
It mainly included two steps using the historical samples to
produce new samples: one was to obtain potential samples, and
the other was to screen them to generate new samples.

Obtaining Potential Samples
In this study, potential samples were obtained by comparing the
similarity of “feature curve” between historical samples and their
adjacent pixels in the current year, and three fitting methods
were selected to construct the “feature curve.” Figure 6 shows
the result of each feature under the best fitting method. We can
find that the blue, green, and red bands all had poor results even
under the best fitting method. The best fitting results for NIR,
NDVI, and NDWI were cubic polynomial, five-parameter linear
harmonic model, and Gaussian function, and R2 was 0.897, 0.929,

and 0.807, respectively. Therefore, feature vectors constructed by
NIR, NDVI, and NDWI were selected as the basis for similarity
calculation in this study.

Based on the “feature curve” above, the similarity was
calculated by DTW, and the distribution of similarity of the
potential samples in each year is shown in Figure 7. As can be
seen, from the perspective of different crops, the variation range
of similarity of the three crops was basically the same. The 5-
year average of maize, rice, and soybean was 0.57, 0.57, and 0.58,
respectively, which were lower than the average of “other,” with
0.61. The average similarity of maize, soybean and “other” in 2015
was highest with 0.58, 0.58, and 0.62, respectively, while in 2014
rice had the highest at 0.58. The lowest average similarity of each
crop appeared in 2016, and the range of similarity during that
year was also small.

Generating New Samples
Furthermore, a cluster was used to screen new samples from
potential samples. As shown in Figure 8, in the clustering of
different crops in different years, the SC shows a trend of gradual
decline. When the number of clusters was 2, the SC reached
the highest, that is, the clustering effect was the best. Therefore,
the number of clusters was selected as 2. Due to the relatively
stable inter-annual crop planting structure in the study area,
the crop types of most potential samples were considered to
be accurate. Therefore, the cluster with the larger number was
retained as the sample.

Based on the above method, new samples were produced. The
number of new samples in different historical years is shown in
Table 2. In terms of quantity, the number of samples from 2013
to 2017 was 4,552, 4,588, 3,374, 3,219, and 4,341, respectively. The
year with the largest and lowest sample sizes were 2014 and 2016.
This was also consistent with the low similarity in 2016. Maize,
rice, and ’other’ all received the largest sample size in 2014, while
soybean had the largest sample size in 2017, with 1633. In terms of
proportion, the proportion of maize was the highest, accounting
for 48.42% of the total 5 years. In 2017, the proportion of each
crop was more balanced.

The NDVI timing in 2018 of the real samples and new
samples generated based on different historical years are shown in
Figure 9. On the whole, the trend of the newly produced samples
was consistent with that of the real samples in 2018. The DOY was
between 139 and 294, which can completely describe the growth
period of different crops. Most crops reached the peak of NDVI
in the DOY of 192–212. In terms of different years, the trends
of 2013, 2014, and 2017 were relatively consistent, with small
differences among different categories. But the changes of 2015
and 2016 were consistent. In these 2 years, the variation ranges
of the three crops overlapped greatly. When the DOY was 164–
212, “other” was obviously different from the other three crops.
In the early stage, compared with dry crops such as maize and
soybean, rice had a larger range of changes, which may be due
to a large amount of water covering paddy fields in this period.
However, in the middle stage, “other” had higher values, and the
variation ranges of “other” increased significantly, which may be
due to the fact that “other” contained a variety of small crops, and
that the growth difference among small crops was large during
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FIGURE 6 | Curve fitting result, where (A–D) are the cubic polynomial fitting results of the blue, green, red, and NIR bands, (E) is the NDVI fitted by the 5-parameter
linear harmonic model, and (F) is the NDWI fitted by the Gaussian function.

this period. In the later period, the NDVI of rice was higher than
that of the other three types.

Classification and Accuracy Assessment
Based on the two sets of newly produced samples collected
in the field, the study area was classified, respectively, and

four combinations of historical years were tested. The overall
accuracy and F1 of each experimental scheme are shown in
Figure 10. The Y-axis represent different experimental schemes,
where “2018” represents the experimental scheme using the
field samples of the target year. It has the highest overall
accuracy at 80.58%.
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FIGURE 7 | Similarity distribution of potential samples in each year.

FIGURE 8 | Score of silhouette coefficient.
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TABLE 2 | The number of new samples.

Number of samples Proportion of samples

Maize Rice Soybean Other All Maize Rice Soybean Other

2013 2347 452 1046 707 4552 51.56% 9.93% 22.98% 15.53%

2014 2443 608 780 757 4588 53.25% 13.25% 17.00% 16.50%

2015 1828 359 664 523 3374 54.18% 10.64% 19.68% 15.50%

2016 1719 357 676 467 3219 53.40% 11.09% 21.00% 14.51%

2017 1383 572 1633 753 4341 31.86% 13.18% 37.62% 17.35%

2013–2017 9720 2348 4799 3207 20074 48.42% 11.70% 23.91% 15.98%

2013–2014 4790 1060 1826 1464 9140 52.41% 11.60% 19.98% 16.02%

2013–2015 6618 1419 2490 1987 12514 52.88% 11.34% 19.90% 15.88%

2013–2016 8337 1776 3166 2454 15733 52.99% 11.29% 20.12% 15.60%

2014–2017 7373 1896 3753 2500 15522 47.50% 12.21% 24.18% 16.11%

2015–2017 4930 1288 2973 1743 10934 45.09% 11.78% 27.19% 15.94%

2016–2017 3102 929 2309 1220 7560 41.03% 12.29% 30.54% 16.14%

The bold value has two meanings: one is the value with the largest sample size and the highest proportion of each type in a single year from 2013 to 2017. Second is the
value of the type with the highest proportion in the five years from 2013 to 2017 (48.42%).

As shown in Figure 10A, the accuracy of classification based
on a single historical year sample was generally low. The average
classification accuracy of a single year from 2013 to 2017 was
57.02%, of which the highest accuracy was 60.64% in 2013
and the lowest was 49.65% in 2017. The main reason for this
phenomenon was that the sample structure from 2017 was
quite different from 2018. Soybean accounted for the highest
proportion of samples produced in 2017 at 37.62%. However,
in the field samples in 2018, maize was the majority, accounting
for 50.19%, and rice, soybeans and “other” accounted for 8.16%,
28.67%, and 12.97%, respectively. Among the newly generated
samples, the proportions of four types in 2013 were 51.56,
9.93, 22.98, and 15.53%, respectively, and there were most
similar to those in 2018. Therefore, it is not that the closer
the historical year with the target year, the higher the accuracy
is, but the more similar sample proportions can obtain higher
classification accuracy.

As shown in Figure 10B, based on the classification of
multiple historical years, it is the most accurate among the four
classification schemes when fixing starting year is 2013, with an
average accuracy of 61.42%. Among them, the accuracy based
on 2013–2015 was the highest, which was 61.57%. This was
mainly because the sample proportions in 2013, 2014, and 2015
were similar to those in 2018, and the accuracy in single-year
classification was high. Therefore, when the accuracy of a single
year is high and the sample proportion is similar to the target
year, increasing the number of years will improve the accuracy
of classification.

As shown in Figure 10C, when fixing end year is 2017,
the accuracy is low, with an average of 55.77%, among which
the highest was 57.2% in 2014–2017. This was mainly due to
the low classification accuracy of a single year in 2017. When
the number of years increased, the classification accuracy was
improved but still at a low level. This also proves that increasing
the number of historical years can improve classification
accuracy to some extent.

As shown in Figure 10D, the accuracy of classification based
on five historical years from 2013 to 2017 is 58.69%. The
number of historical years was the largest, but the accuracy
was not the highest. The main reason was that there was
a big difference between the sample structure produced in
2017 and the actual sample in 2018, resulting in low overall
accuracy. Therefore, when historical samples are used for
classification, it is not that the more years could get the
higher accuracy.

Therefore, compared with the time span between the historical
year and the target year and the number of historical years, the
proportion and structure of samples have a greater impact on
accuracy. When the sample structure is consistent with the year
to be classified, the increase of years is helpful to improve the
classification accuracy.

Through the above experiments, it was found that the
classification accuracy was highest based on the samples
produced in 2013–2015. The global 10-m land use data published
by Gong (Gong et al., 2019) were used to mask cultivated land,
and the crop classification map is shown in Figure 11. Figure 11A
shows the classification map based on samples produced in 2013–
2015, and Figure 11B shows the mapping of real samples in
2018. On the whole, the planting range of maize and rice was
basically the same but that of soybean was quite different. This
was mainly due to the fact that since 2016, planting structure
adjustments had been carried out in China, and that seven cities
in Heilongjiang province had been selected to encourage farmers
to rotate soybean, so soybean acreage significantly expanded
compared to historical years (Yang et al., 2019). However,
when classifying based on historical samples, it was difficult to
adapt well to the impact of policy adjustments, resulting in the
soybean area of classification being relatively small. In terms
of different crops, maize had the largest acreage, followed by
rice, and finally, soybean, which was consistent with the area
ratio of the three major crops in the statistical yearbook. Since
there are Daxinganling and Xiaoxinganling in the northwest and
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FIGURE 9 | Time series box diagram of NDVI in newly generated samples.

middle, the three crops are mainly distributed in the Songnen
Plain in the southwest and the Sanjiang Plain in the northeast
of Heilongjiang. Maize is mainly distributed in the southwest
of Heilongjiang such as Qiqihar, Daqing, Suihua, and Harbin
City, rice is mainly distributed in Hegang, Jiamusi City in the
northeast and Jixi City in the southeast, and soybean is mainly
distributed in Heihe City.

Figure 12 shows the classification details of the nine 10-
km grids, which were distributed evenly throughout the study
area and contain different dominant crops. It can be found
that, compared with the classification of the actual sample in

2018, rice was better identified when classified based on the
samples produced in 2013–2015, the outline of the paddy field
was clearer, and there were fewer misclassified into maize. The
main reason is that there were more rice samples in the new
production samples than those collected in the field. In grids
with less soybean planting and maize as the dominant crop, the
classification results of maize were basically consistent mainly
because the proportions of maize samples were basically the same
in the two cases, which were 50.19 and 52.88%, respectively. In the
grid with soybean as the dominant crop, the mixing of soybean
and maize was more serious, and the soybean plots obviously
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FIGURE 10 | (A) Accuracy of single year. (B) Accuracy of fixing starting year as 2013. (C) Accuracy of fixing ending year as 2017. (D) Accuracy of five years.
Classification accuracy assessment.

FIGURE 11 | Classification map where (A) is the result of the newly generated samples from 2013 to 2015, and (B) is the result of the samples in target year (2018).
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FIGURE 12 | Classification results details of Heilongjiang based on newly generated samples from 2013 to 2015 and current samples in typical regions.

appeared the phenomenon of salt and pepper. This is mainly due
to the different proportions of samples of soybean obtained with
the two methods, which were 28.67 and 19.9%, respectively. The
number of soybean in the newly generated samples was relatively
small, and the growth process of soybean and maize was similar,
leading to serious mixing.

DISCUSSION

Features of This Method
This study proposed a method for generating new samples
based on environmental similarity and historical samples, which
obtained a considerable number of new samples, and the classifier
training based on these samples also achieved a classification
result consistent with the real sample. The main feature of this
method is that based on the principle of environmental similarity,
feature vectors were constructed sample-by-sample in a custom
spatial range to establish the relationship of similarity. This
method is not limited by the number and location of samples,
and will not lead to a sharp increase in data volume when
the study area is expanded. The second feature is that when
constructing the feature vector, the three curve fitting methods of
cubic polynomial, Gaussian function, and five-parameter linear
harmonic function were used to fit the blue, green, red, NIR,
NDVI, and NDWI. As shown in Table 3, compared to the
bands of blue, green, and red, NIR, NDVI, and NDWI achieve
better fitting results and inter-annual stability. Their R2 in
cubic polynomial, five-parameter linear harmonic, and Gaussian
functions were 0.897, 0.929, and 0.807, respectively, which shows
that these three indicators were more suitable for the calculation
of features similarity and construction of classification models
across years. The third feature is that when classification is based
on new samples, the influence of the number of historical years is
discussed. When planting structure in the study area is relatively
stable, single-year samples can be used for classification, but as
the number of years increases, a change in classification accuracy
is an issue worth exploring. Based on this, this study designed
four experimental schemes to discuss the results of using only a

single year, fixing starting year as 2013, fixing ending year as 2017,
and using all historical years, respectively.

Comparison With Existing Methods
At present, there are several methods for crop classification using
historical samples. The idea in this study is subordinate to the
method of generating new samples for classification. Compared
with other methods, this method can effectively circumvent the
problem of identical objects with different spectra between years,
does not require a balanced and comparable time series in inter-
annual images, and does not limit the number of historical years.
So, it is more flexible and convenient.

Compared with Hao et al. (2016c), the method proposed
in this study does not only use the information on historical
years but comprehensively considers image characteristics in a
target year, which can alleviate the problem of spectral curve
inconsistency in the same crop due to environmental differences
between years. Different from the method used by Zhang et al.
(2019) to produce samples based on classification results of
historical years, this method does not need to classify historical
years first but only needs to deal with pixels adjacent to
historical samples, thus avoiding the quadratic error attached
with classification results. The accuracy of the above research is
relatively high, but the study area is small, which is less than 1/20
and 1/150 of that in this study, respectively. When the study area
is small, limited samples can represent the characteristics of the
whole study area and achieve high classification accuracy. When
the study area is large, its own ground features and environmental
conditions vary greatly. However, due to the limited number of
samples, it is difficult to completely cover the characteristics of
the whole study area, which leads to lower classification accuracy.

Future Studies
When constructing the feature vector in this study, although the
R2 of NIR, NDVI, and NDWI was higher, due to the limitation
of the data source, the number of selected variables is limited.
Moreover, the fitting method used was also less. Therefore, in the
follow-up research, we can consider the idea of fusing multiple
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TABLE 3 | Curve fitting analysis.

Bands Type Cubic polynomial function Gaussian function 5-parameter linear harmonic model

RMSE R2 RMSE R2 RMSE R2

Blue Maize 155.97 0.473 155.32 0.424 163.12 0.153

Rice 219.80 0.341 224.24 0.318 202.88 0.173

Soybean 177.95 0.584 173.54 0.563 186.00 0.350

Other 141.25 0.508 136.48 0.454 144.72 0.177

Mean 173.74 0.477 172.39 0.440 174.18 0.213

Green Maize 141.51 0.552 140.31 0.482 156.00 0.166

Rice 198.75 0.320 227.93 −0.024 187.47 0.141

Soybean 159.86 0.726 162.98 0.620 191.17 0.374

Other 122.03 0.712 121.91 0.642 142.47 0.317

Mean 155.54 0.577 163.29 0.430 169.28 0.249

Red Maize 169.31 0.509 164.09 0.567 161.46 0.395

Rice 225.15 0.488 292.68 −0.003 181.35 0.555

Soybean 184.39 0.565 181.87 0.536 211.56 0.192

Other 130.80 0.565 145.27 0.326 137.78 0.202

Mean 177.41 0.532 195.98 0.356 173.04 0.336

NIR Maize 262.44 0.903 253.77 0.909 248.32 0.917

Rice 193.79 0.939 247.96 0.875 237.06 0.895

Soybean 471.46 0.799 378.92 0.878 406.65 0.857

Other 166.72 0.945 216.24 0.896 255.46 0.858

Mean 273.60 0.897 274.22 0.890 286.87 0.882

NDVI Maize 0.07 0.882 0.06 0.915 0.05 0.933

Rice 0.08 0.858 0.05 0.927 0.05 0.936

Soybean 0.09 0.786 0.05 0.947 0.06 0.931

Other 0.04 0.926 0.05 0.912 0.05 0.918

Mean 0.07 0.863 0.05 0.925 0.05 0.929

NDWI Maize 0.06 0.822 0.05 0.859 0.05 0.842

Rice 0.07 0.781 0.06 0.836 0.06 0.829

Soybean 0.07 0.697 0.07 0.755 0.07 0.716

Other 0.04 0.778 0.04 0.778 0.04 0.724

Mean 0.06 0.770 0.06 0.807 0.06 0.778

The meaning of the bold values are the maximum values of R2 for different spectral features.

data sources and adding more variables and fitting methods to
construct a more robust “feature curve.”

When generating new samples in this study, according to
the characteristics of agricultural production and environmental
similarity, we only consider the range of 5 pixels∗5 pixels adjacent
to the historical samples, but whether this range is reasonable
still requires further discussion. In addition, in the process of
obtaining potential samples, only the pixel with the greatest
similarity near the historical samples was selected, which ensures
maximum consistency with the distribution of samples collected
in the field. However, due to differences in the feature vectors
of the same crops between years, choosing blindly based on
maximum similarity may result in the purity of selected pixels
being too high, and mixed pixels in the boundary of the plot
cannot be well identified. Therefore, in future studies, similarity
should be stratified, and part of pixels would be extracted from
different layers to improve the breadth of pixel representation.

When constructing the classification model in this study, the
classification obtained based on historical samples was consistent
with that based on field samples of the target year, but the
overall classification accuracy was lower. In the four combined

experimental schemes of historical years, the classification
accuracy of soybean was the lowest. This may be because the
classification features selected in this study are not sensitive
enough to the change in soybean, and the growth processes of
maize and soybean are very similar. In addition, the sample size
of maize is too large, which leads to serious misclassification of
soybean into maize. Therefore, in the follow-up study, we should
add characteristics that can better identify soybean. In addition,
due to the small sample size, the misclassification of rice into
maize is also serious. Therefore, optimizing sample structure is
an important direction to improve classification accuracy. In the
following research, based on stratified sampling, we will explore
the specific impact of sample structure on classification results.

In addition, this method is not well adapted to the inter-
annual impact brought about by the policy adjustment of
planting structure, which will cause a slight difference between
classification results and the actual situation. Therefore, in
subsequent mapping, annual agricultural policy factors should
be introduced to new sample screening and proportion
optimization to improve inter-annual generalization ability.
Finally, Heilongjiang is the largest agricultural production area in
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China, and different ecological zones in this province vary greatly
in environmental conditions, crop structure, and growth process.
To further improve classification accuracy, it may be helpful to a
model based on ecological zones separately.

CONCLUSION

In order to improve the utilization of historical samples and
reduce the dependence of annual sampling. Based on the
environmental similarity, this article studies how to find new
samples near the historical crop samples, which are planted with
the same crops as the historical year in the target year. Then, the
new samples are used for classification. Taking Heilongjiang as
the study area, 2013–2017 as the historical year, and 2018 as the
target year, the key findings are as follows: First of all, based on
environmental similarity, historical samples, and spectral features
of the target year, using DTW to calculate similarity, new samples
can be generated within the range of 5 pixels∗5 pixels, and the
proportion in various crops is basically consistent with field data
in the historical years. Second, when using new samples for
classification, the more similar the proportion of samples between
the historical year and target year, the higher the accuracy of
reusing the samples of that historical year. In addition, the
number of historical years and the distance from the target year
are not proportional to classification accuracy. The classification
accuracy of using newly generated samples and real samples
are 61.57 and 80.58%, respectively. However, the classification
mapping based on the new samples is highly consistent with
the results of the field data. When classifying based on new

samples, the identification of the paddy field is better, and the
outline is clearer.

For areas with majority fields having no rotation, the method
proposed in this study, which is generating new samples based
on environmental similarity and historical samples, largely
overcomes the difficulty of high cost in sampling and effectively
improves the utilization of historical samples. It provides a
new idea for crop mapping in many areas lacking samples of
the target year.
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