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Huanglongbing (HLB) is the most severe bacterial disease of citrus crops caused by
Candidatus Liberibacter spp. It causes a reduction in fruit yield, poor fruit quality, and
even plants death. Due to the lack of effective medicine, HLB is also called citrus “AIDS.”
Currently, it is essential for the prevention and control of HLB to use antibiotics and
pesticides while reducing the spread of HLB by cultivating pathogen-free seedlings,
removing disease trees, and killing Asian citrus psyllid (ACP). New compounds [e.g.,
antimicrobial peptides (AMPs) and nanoemulsions] with higher effectiveness and less
toxicity were also found and they have made significant achievements. However, further
evaluation is required before these new antimicrobial agents can be used commercially.
In this review, we mainly introduced the current strategies from the aspects of physical,
chemical, and biological and discussed their environmental impacts. We also proposed
a green and ecological strategy for controlling HLB basing on the existing methods and
previous research results.

Keywords: citrus huanglongbing, sustainable development, physical method, antibiotic, antimicrobial peptide,
genetically modified technology, nanotechnology, microbial therapy

INTRODUCTION

Huanglongbing (HLB), named for the leaf yellowing of diseased citrus, was first discovered in the
Chaoshan area of Guangdong Province, China in the 1910s (Reinking, 1919). The typical symptoms
of HLB-infected citrus are leaf yellowing, and roots rot in varying degrees (Bové and Barros, 2006).
Even worse, HLB-affected fruits become smaller, taste sour, and bitter, and are prone to abscission
(Bassanezi et al., 2009). HLB has caused a huge financial loss in the citrus industry. With the
deepening of globalization, HLB has spread from Asia to Africa and the Americas (Faghihi et al.,
2010; Lopes et al., 2010; Bassanezi et al., 2020). It has affected major citrus-producing areas and
severely hindered the development of the citrus industry. Due to HLB, 7.4 million trees were lost
in Guangxi, China alone in 2020, and more than 10 million diseased trees were destroyed all over
China each year (Zhou, 2020). Many countries, namely China, the United States, and Brazil, have
attached great importance to the prevention and control of HLB and invested heavily in related
fields. How to defeat HLB has long been a common problem faced by all countries.
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It goes through the process of the nematode from fusarium to
a virus to mycoplasma in the understanding of HLB pathogens.
With the maturity of microscope technology, the peptidoglycan
layer was observed under the electron microscope between the
outer membrane and inner membrane of the HLB pathogen,
which proved that it belongs to Gram-negative bacteria (Garnier
et al., 1984). At present, it is commonly believed that the
HLB pathogen belongs to Candidatus Liberibacter spp. of the
α-proteobacteria, mainly divided into Candidatus Liberibacter
asiaticus (Ca.Las), Candidatus Liberibacter africanus (Ca.Laf),
and Candidatus Liberibacter americanus (Ca.Lam) according to
regionality, heat sensitivity, and 16S rDNA (Bové, 1974; Bové
and Barros, 2006). Among them, Ca.Las is the most pathogenic
and widely distributed species. HLB caused by Ca.Las has been
reported in more than 20 countries and regions (Sechler et al.,
2009; Hartung et al., 2010).

Candidatus Liberibacter asiaticus can infect almost all parts of
the plant, but its distribution varies in different tissues (Johnson
et al., 2014; Hajeri and Yokomi, 2019). The bacterial titer of
leaves and stems is higher than in other parts of the plant. The
Asian citrus psyllid (ACP) feeds on the phloem sap of citrus
trees. Ca.Las enters into the body of ACP and multiplies in
the insect gut by this way. Then, they spread from the gut to
the salivary gland and gonad by blood circulation. Eventually,
Ca.Las is transmitted to new hosts during ACP sucks sap from
healthy plants (Grafton-Cardwell et al., 2013; Kruse et al., 2019).
Bacteria deliver effector proteins into host cells through many
kinds of secretion systems. Ca.Las only encodes genes for type
I secretion system (T1SS) and Sec-dependent secretion system,
whereas the genes of other secretion systems are lacking (Duan
et al., 2009; Wang et al., 2017). The gene encoding a protein of
the serralysin family was found next to the T1SS of Ca.Las. The
previous study has shown that this protein played an important
role in the bacteria against host defense. It also has strongly
expressed in citrus phloem (Felfoldi et al., 2009; Faghihi et al.,
2010; Cong et al., 2012). Thus, this protein may be a potential
effector protein. Virulence factors of Ca.Las are secreted to the
phloem elements or companion cells of citrus primarily by the
Sec-dependent secretion system (Samiksha et al., 2016; Wang
et al., 2017). The Sec-dependent secretory protein 1 (SDE1) has
been identified in detail. It can suppress host defense response to
promote bacterial invasion and colonization by interacting with
citrus papain proteases (Marco et al., 2016). In addition, Zhang
et al. (2020) found that the secretory protein CLIBASIA_04405
could inhibit the hypersensitivity and H2O2 accumulation in
tobacco. The discovery of secretory proteins provides the basis for
studying the pathogenicity mechanism of Ca.Las. Because most
of Ca.Las cannot be purified and cultured in vitro, studies that
the microbial-host molecular level has been greatly limited.

The struggle against HLB has been persisted for more than
one century. Numerous scholars have made great contributions
to the research of HLB during this period (Bassanezi et al., 2020).
However, there is no cure. Some medicines have been widely
used to ensure the healthy development of the citrus industry,
such as antibiotics, pesticides, and immune inducers, which
have achieved remarkable results (Zhang et al., 2011; Stockwell
and Duffy, 2012). In 2018, the United States Department

of Agriculture and Environmental Protection approved the
combination of terramycin and streptomycin to control citrus
HLB (Hijaz et al., 2021). Besides, cutting off the transmission
route is also an essential step for controlling HLB (Zheng
et al., 2018). Regrettably, these methods cannot completely get
rid of the pathogen. With the increasing awareness of human
environmental protection, the trend of biological control of HLB
is becoming increasingly popular. The identification of new
antimicrobial peptides (AMPs) and the application of transgenic
technology have provided new hope for the control of HLB.

Fosthiazate (FOS) is a commercial organophosphorus
pesticide that can effectively kill nematodes, and cupric-
ammonium complex (CAC) is a broad-spectrum fungicide with
low toxicity. Our laboratory found that the combined therapy
of CAC and FOS was effective for HLB (Duan et al., 2021).
Accumulated pieces of evidence show that a single measure is not
strong enough to control HLB, and management of HLB requires
integrating prevention with control. In this article, we summarize
and discuss the HLB control methods, such as physical methods,
chemical methods, and biological methods (Figure 1), hope to
provide a reference for the comprehensive administration of
HLB. In addition, we also propose an environmentally friendly
strategy for controlling HLB (Figure 2).

PHYSICAL METHODS

Heat Therapy
Heat therapy has long been used in the field of plant disease
management because high temperatures can cause cell lysis and
thus kill bacteria (Schuster et al., 1973). In apple trees, the
rubberwood virus can be eliminated by heat therapy (Campbell,
1961). In the 1960s, heat therapy has been utilized to treat citrus
HLB by Kongxiang Lin (Lin and Luo, 1965). Nowadays, this
approach has already been shown productive and widely used in
the study of HLB. Among the three pathogenic bacteria, Ca.Las is
able to tolerate temperatures above 35◦C (Bové, 1974). Therefore,
a temperature above 40◦C is usually selected as a heat treatment
condition in the greenhouse. We compared the results from
different investigators and found that the symptoms of HLB-
infected trees were alleviated to a certain extent after continuous
treatment between 40 and 50◦C. The Ca.Las titer decreased to
undetectable levels and most of the trees restored health in treated
groups compared with untreated groups (Hoffman et al., 2013;
Fan et al., 2016; Munir et al., 2018). All these experimental results
show that heat therapy is effective against HLB. Although it has
been proposed that heat stress may damage the citrus plants,
many studies show that it can enhance plant metabolism and thus
increase plant growth vigor and productivity (Lin and Luo, 1965).
However, the presence of germs in citrus roots results in difficulty
treating in wild. Limited by human and material resources, heat
therapy is currently difficult to be applied in orchards.

Interrupting the Pathway of Transmission
The two major transmission pathways of HLB are grafting
diseased branches and spreading by ACP. Therefore, interrupting
the pathway of transmission can effectively reduce the spread of
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FIGURE 1 | The control strategies of citrus HLB mainly include physical methods, chemical methods, and biological methods. HLB, huanglongbing.

HLB. The “three-step method” has been proved to be effective in
reducing the spread of HLB (Lin, 1963), which is still adopted by
countries all over the world.

The Cultivation of Pathogen-Free Seedlings and
Uprooting Diseased Trees
Using the seedlings which are acquired from diseased trees or
polluted breeding bases is responsible for the crazy spread of
HLB in citrus. So, building a citrus pathogen-free breeding system
is important for containing the transmission of HLB (Navarro,
1992). Presently, there are mainly three kinds of acquiring
pathogen-free seedlings: (1) heat treatment: the pathogen can
be fully cleared in quality buds by treating for consecutive
8 h and total for at least 40 h at 40−50◦C (Hoffman et al.,
2013; Fan et al., 2016). (2) Stem tips culture: plant apex tissues
containing little or no germs and viruses are the ideal material
to obtain pathogen-free seedlings (Prasad et al., 2012; Juárez
et al., 2015). This technology has become one of the main
techniques to culture pathogen-free seedlings. (3) Micrografting:
micrografting technology is a method that combines stem tips
culture and grafting, and culturing pathogen-free seedlings are
mainly achieved by grafting pathogen-free stem tips onto a sterile
plate (Starrantino and Caruso, 1988; Abbas et al., 2008). It is
worth noting that every detoxification technology is inseparable
from heat treatment. The pathogen-free seedlings must be
identified (phenotypic identification or qPCR detection) before
the promotion and application (Arredondo Valdés et al., 2016).
Because all parts of diseased citrus may carry the pathogen, it
is ineffective to control HLB only by cutting diseased branches
(Lopes et al., 2007). Therefore, suspected diseased trees should

be detected as soon as once they were found in the orchard.
Once confirmed, it needs to uproot the HLB-infected trees, and
the stumps should be perfused with herbicide and covered with
film to prevent regeneration. In theory, the primary location
should not be re-implanted for a number of years. In addition,
strengthening orchard management can effectively reduce the
burst rate of HLB (Bové and Barros, 2006). The orchards with
poor management are more likely to relapse HLB than a well-
managed orchard.

Controlling Asian Citrus Psyllid
Asian citrus psyllid is another major transmission medium
of HLB, so controlling ACP is essential for preventing HLB
(Grafton-Cardwell et al., 2013; Bassanezi et al., 2020; Li et al.,
2020). ACP is easily attracted to yellow objects and methyl
salicylate. Yielding lots of methyl salicylate and leaf yellowing
further attract ACP to suck the sap of diseased trees results in
the spread of HLB (Tiwari et al., 2010). Thus, it is necessary
to eliminate ACP in time to prevent the spread of HLB after
finding diseased trees (Grafton-Cardwell et al., 2013). Currently,
the most frequent method of reducing ACP is through the use
of chemical drugs, such as pyriproxyfen (Boina et al., 2010),
imidacloprid (Katsuya et al., 2010), horticultural mineral oil
(Teck et al., 2012), and aldicarb (Qureshi and Stansly, 2010). It
was found that the cytochrome P450 monooxygenases (CYP4)
genes were associated with insecticides resistance in ACP. The
CYP4 expression of Ca.Las-infected ACP was lower than non-
infected ACP, this showed that infected ACP was more sensitive
to insecticides (Tiwari et al., 2011a,b). However, chemical drugs
are unfriendly to the environment, other beneficial insects, and
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FIGURE 2 | Green strategies to prevent and control HLB. There are mainly three steps: first of all, enhancing the management of orchards by manual or mechanical
weeding, intercropping ACP-averse crops, and releasing the natural enemies of ACP. Secondly, improving plant immunity. Using bio-organic fertilizer, spraying
metabolic photosynthetic accelerators, and stress-resistant ionic liquids to enhance plant immunity. Finally, removing the severely diseased citrus to cutoff HLB from
the source. HLB, Huanglongbing; ACP, Asian citrus psyllid.

FIGURE 3 | The interaction process between citrus and Candidatus
Liberibacter asiaticus (Ca.Las). Ca.Las can more easily colonize in roots,
stems, and leaves of citrus through effector proteins. To analyze the
interaction mechanism of plant and pathogen is conducive to promote the
development of HLB prevention and control. HLB, Huanglongbing.

human health. Due to the short life cycle and strong reproductive
capacity of ACP, the drugs are regularly applied every year.
The resistance of ACP may be enhanced under intensive
application of insecticides and thus lead to the weakening effect
of the drugs (Liu and Tsai, 2000; Wenninger and Hall, 2007).
Hence, compared with chemical drugs, biological control of
ACP has greater development prospects, mainly including (1)
entomopathogenic fungal therapy: Isaria fumosorosea (Meyer
et al., 2008; Hoy et al., 2010; Hunter et al., 2011), Hirsutella
citriformis (Meyer et al., 2007; Casique-Valdes et al., 2011), and

other fungi are known to be able to infect ACP and also powerful
candidates for biocontrol. (2) Parasite therapy: Tamarixia radiata
and Psyllaephagus are two important ACP parasitic insects
(Waterston, 1922; Hoy, 2001) that can be used to control ACP
populations. (3) Insect viruses therapy: insect viruses are also
candidates for biocontrol of ACP. For example, Diaphorina
citri-associated C virus, Diaphorina citri picorna-like virus, and
Diaphorina citri flavi-like virus are expected to be potential
vectors for delivering RNA interference (RNAi) directly to ACP
instead of Citrus tristeza virus (CTV) vector system (Britt
et al., 2020). (4) Natural enemy predation therapy: ladybugs,
spiders, and syrphid flies are natural enemies of ACP (Qureshi
and Stansly, 2009; Shivankar and Rao, 2010). To some extent,
releasing these natural enemies is also in favor of limiting ACP
population growth. Subsequently, it was found that guava leaves
and their volatiles (Onagbola et al., 2011), lavender essential oil,
rose essential oil, tea tree essential oil, rutin essential oil, and
other natural organic compounds exerted a repellent effect on
ACP (Tiwari et al., 2010). Therefore, intercropping citrus with
ACP-averse crops is also a method to reduce HLB transmission.
Of course, biological control of ACP is not a highly effective
control method. It is not highly reliable, and it can be influenced
by so many other factors. Organic growers might use it but
conventional growers cannot rely solely on biological control.
Using insecticides is the cost-effective and most efficient strategy
for controlling ACP (Li et al., 2020). To reduce the frequency of
use of insecticides and mitigate the resistance of ACP, we propose
adopting comprehensive management strategies that include
releasing ACP natural enemies, intercropping ACP-averse crops,
and using insecticides after attracting and aggregating ACP by the
yellow sticky board or transgenic citrus.

Depending on interrupting the pathway of transmission can
only stop the spread of HLB instead of curing it.
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CHEMICAL METHODS

Antibiotics
Since antibiotics were discovered, they have made a significant
contribution to the control of bacterial diseases in plants
(Stockwell and Duffy, 2012). Tetracycline has been widely used
to treat HLB in various countries as early as the 1970s (Su and
Chang, 1974). However, it was later replaced by other antibiotics,
such as penicillin, streptomycin, and terramycin, according to
the poor results of assessment for tetracycline (Zhang et al.,
2012, 2014; Hu et al., 2018). In fact, co-treatment with two
antibiotics worked better than that of either antibiotic alone.
Zhang et al. (2011) found that the regeneration rate of plants
after stems of HLB-infected trees was immersed in penicillin
(100 µg/ml)-streptomycin (10 µg/ml) for 4 h was higher than
other treatments. Today, hygromycin and streptomycin have
been allowed to be used commercially (Hijaz et al., 2021).
To investigate the transport process of antibiotics in citrus,
fluorescence-labeled penicillin was injected into citrus and
observed with fluorescence microscopy (Carl Zeiss Microscopy
GmbH, Göttingen, Germany). The fluorescence was detected in
tissues of the plant and ACP (Killiny et al., 2019). The hygromycin
also was observed in xylem- and phloem-related tissues after 24 h
when trunk injection. It was detected in leaves after 3 days, and
only very little was detected in roots (Hijaz et al., 2020, 2021).
These results suggest that antibiotics are transported to various
organs following the “vascular system” of the plant, and the
transport efficiency varies depending on the tissues. The influence
of antibiotics on the plants’ growth and fruit quality is the major
concern problem. It was shown that the application of penicillin
and hygromycin increased N, P, K, S, and Zn contents in leaves,
soluble organic matter content in fruits, and the nutritional status
of citrus trees (Zhang M. et al., 2021). Although antibiotics
brought convenience to agricultural production, their usage was
controversial. The first point was the costs and the damage to
plants of antibiotics (Zhang et al., 2014; Li et al., 2020). On the
other hand, antibiotics may also increase bacterial resistance and
cause superbugs (Bryson and Demerec, 1955). In addition, trunk
injection leads to a better effect of antibiotics than traditional
spraying. But it is very difficult in actual practice due to the large
costs of human and material resources. The development of an
efficient and convenient trunk injection method will play a key
role in the treatment of HLB.

Antibacterial Peptides
Antimicrobial peptides are small-molecule proteins with
extensive antimicrobial activity secreted by the host and have
a regulatory effect on immune response (Koczulla and Bals,
2003). Ca.Las mainly infects Citrus and its related genera
of Rutaceae, but different varieties have different sensitivity
to HLB (Folimonova et al., 2009). When infected, severe
symptoms of leaves yellowing and easily fall off occurred in
most commercial citrus whereas Citrus medica (C. medica)
and Poncirus trifoliata (P. trifoliata) with tolerance to HLB had
mild or no symptoms and normal growth and development
(Albrecht and Bowman, 2011, 2012). Huang et al. (2021) have

identified a short antimicrobial peptide (SAMP) that was only
present in HLB-tolerant citrus by analysis of small RNA and
mRNA between HLB-susceptible and HLB-tolerant citrus
cultivars. Compared with antibiotics, the greatest advantages
of SAMP were its thermal stability and high efficiency, which
made it more suitable for practical application. Moreover, the
SAMP was extremely easy to be degraded by pepsin and had
higher safety (Wang et al., 2021). AMPs have been studied for
a long time in citrus HLB control. Stover et al. (2013) used
the Agrobacterium tumefaciens, Sinorhizobium meliloti, and
Xanthomonas citri subsp. citri as experimental materials to
explore the bactericidal effect of 44 broad-spectrum AMPs. It was
also bactericidal property at lower concentrations (1 µM). AMPs
as safe and efficient antibacterial agents are suitable alternatives
to antibiotics in agricultural production. However, the studies of
AMPs are primarily focused on the level of basic research, and
also the preparation cost of AMPs is too high for its commercial
applications in controlling HLB.

Nanotechnology
Nanotechnology is an interdisciplinary technology with a wide
range of applications. In the agricultural field, it is mainly
used for disease management and control (Rai and Ingle,
2012) and includes (1) diagnosis of the crop diseases by
using nanosensors (Gitaitis and Walcott, 2007). (2) Metal
nanomaterials control crop diseases. (3) To improve drug
utilization through nanoemulsion complexes. Spraying on the
leaves is the major form of drugs administered in the field.
However, the drug uptake efficiency of plants is greatly hindered
due to the presence of the hydrophobic wax layer on the
surface of citrus leaves. Due to the small size, nanoparticles
can modify the property of drugs and enhance the absorption
rate of plants for drugs. In recent years, nanotechnology has
also been applied to treat citrus diseases and achieved good
results. Young et al. (2018) applied ZnO–nCuSi with the low
phytotoxic composite to treat citrus. Field experiments showed
that ZnO–nCuSi had strong antibacterial activity to effectively
control citrus canker. Kumar et al. (2018) found that nano-
ZnO-2S albumin protein was able to significantly inhibit the
growth of Ca.Las. Although some metal agents (such as ZnO)
have been considered as fertilizers for agricultural production,
they do not play the biggest function due to their low solubility.
This problem was not solved until the advent of nanoscale metal
agents, which have high solubility and larger specific surface
area, can catalyze the production of singlet oxygen and show
strong bactericidal ability. Currently, nanoscale ZnO and silver
nanoparticles (AgNPs) have been proved that not only have good
bactericidal effects but effectively enhance plant resistance to
fungal diseases, such as citrus scab and melanosis too (Graham
et al., 2016; Stephano-Hornedo et al., 2020). Compared with the
treatment of β-lactam antibiotics, the content of starch granules
present in phloem sieve tubes and the Ca.Las titers were also
significantly reduced after being treated by using AgNPs in HLB-
infected trees (Stephano-Hornedo et al., 2020). Nanotechnology
has brought new ideas for the prevention and treatment of
HLB. Nanocomposites not only improve the utilization of drugs,
they reduce the usage of drugs and also alleviate environmental
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pressure. Because we successfully silenced the NPR1 gene using
AuNPs carrying siRNANPR1 (Lei et al., 2020). Our laboratory
is developing a nano-genetic technology to activate a defense
system for improving resistance by transferring resistant genes
to hosts through nanomaterials, hoping to contribute to the
prevention and treatment of HLB.

Pesticides
Citrus trees often suffer damage from nematodes (Cobb, 1914;
Verdejo-Lucas and Mckenry, 2004). So far, more than 40 species
of citrus parasitic nematodes have been identified worldwide,
with two main common species: Meloidogyne and Pratylenchus
spp. (Govaerts et al., 2007; Collange et al., 2011). The nematodes
not only damage citrus roots and reduce new roots growth,
but they can also affect roots development and the ability
to absorb nutrients result in the decreased ability to resist
diseases (Damadzadeh and Maafi, 2008). It was well known
that sieve tube occlusion of HLB-infected citrus caused difficulty
in transporting organic matter from leaves to the roots. The
nematode colonization was a double blow to roots and thus
making symptoms worse (Pourreza et al., 2016). Our study also
found the presence of Tylenchulus semipenetrans juveniles in the
roots of heavily diseased citrus (Duan et al., 2021). Therefore,
controlling nematodes is also a necessary step in the treatment
of HLB. Some herbicides are also commonly used in agricultural
management, such as glyphosate (Duke and Powles, 2010),
paraquat (Manning-Bog et al., 2002), atrazine (Hayes, 2002),
and FOS (Duan et al., 2021). The use of pesticides provides
conveniences in orchard management while safety concerns also
cannot be ignored. For instance, the accumulation of pesticides
can destroy the ecological balance and endanger human body
health. Therefore, it is better to adopt hand or mechanical
weeding and the way of soil fumigation and deep tillage to reduce
nematodes during the process of HLB prevention and control
(Eden and Stirlingl, 2008). In addition, the use of pesticides
should be reduced, and organic fertilizers should be properly
applied to restore the soil condition.

Chemical Immune Inducers
Systemic acquired resistance (SAR) is a crucial defense
mechanism against pathogen invasion mediated by salicylic acid
(SA) in plants (Mou et al., 2003). SA is one of the important
signaling molecules in the SAR pathway. A large amount of
methyl salicylate, which can be transformed into SA under
the action of SA methyltransferase, is rapidly synthesized when
Ca.Las invades citrus. The expression of pathogen-associated
proteins (PRs) induced by SA can improve the disease resistance
of plants (Kumar and Klessig, 2008; Herrera-Vásquez et al., 2015).
However, the genome annotation results showed that there were
genes encoding SA hydroxylase in Ca.Las, Ca.Laf, and Ca.Lam
(Duan et al., 2009; Lin et al., 2013; Katoh et al., 2014). It can
degrade SA to hydroxyl SA which cannot induce the expression
of PRs, and thus reduce the disease resistance of the plants
(Li et al., 2017). Some exogenous chemical reagents have the
function of activating plant immunity and can be used as a
substitute for SA, such as imidacloprid, β-aminobutyric acid,
2,3-benzothiadiazole, and 2,6-dichloroisoniazid. These immune

activators are more stable than SA and not easily degraded by SA
hydroxylase secreted by bacteria. It has been shown that surface
spraying or trunk injection immune inducers could induce PRs
expression and enhance plant resistance for a period of time
(Francis et al., 2009; Graham and Myers, 2013; Li et al., 2016;
Palmer et al., 2019). Field experiments showed that these immune
inducers could also control the development of HLB and had a
positive impact on citrus yield and fruit quality (Li et al., 2016).

Natural Hormones
Natural hormones are also important regulators for plant growth
and development (Yokota, 1997). High brassinosteroid (HBR), a
kind of brassinosteroids (BRs), is a natural hormone that is widely
distributed in pollen, seeds, stems, and leaves of plants and plays
an important regulatory role in plant growth metabolism (Grove
et al., 1979; Bishop and Takao, 2001). BRs can not only help
plants cope with various extreme environmental stresses (Divi
et al., 2010; Xia et al., 2011) but also improve plant resistance
to pathogens (Ali et al., 2013). HBR was used to treat 2-year-
old diseased citrus in the greenhouse in Cuba, the results showed
that the symptoms were significantly improved and the bacterial
titer of diseased citrus even decreased to an undetectable level
(Canales et al., 2016). Melatonin is also an important plant
regulator of inhibition effect on Ca.Las (Nehela and Killiny,
2020). In addition, other natural hormones also play a key role
in host response under biological or non-biological stress, such
as SA, jasmonic acid (JA), and ethylene (ET) (Mur et al., 2006;
Bari and Jones, 2009). Other plant metabolites may also have
directly or indirectly influenced the immune regulation against
HLB. However, the regulatory mechanisms of most metabolites
are unknown and need further research. Although these immune
activators improve the nutritional status of citrus, the effect
of immune inducers is negatively correlated with the age and
disease severity of citrus trees (Li et al., 2016). Therefore, immune
activators can be used as adjuvants to prevent HLB.

Enhancing Plant Nutrition
The early symptoms caused by HLB are similar to those caused
by the lack of trace elements (Mattos et al., 2020). Zn and P
deficiencies could also promote HLB occurrence (Zhao et al.,
2013). Sieve tube occlusion caused by Ca.Las can limit the
transport and absorption of nutrients. Therefore, an additional
nutrient supply can alleviate HLB symptoms and prolong plant
life (Pustika et al., 2008). Studies have indicated that the N,
Mn, Zn, and SA contents were significantly higher in the leaf
of nutrient supply trees than the no-nutrient supply trees (Shen
et al., 2013). The microbiota has a regulatory effect on plant
growth and development and that the microbial abundance could
be changed by using Zn-containing additive (Zhang et al., 2016).
This further demonstrated the important function of increasing
additional nutrients in plant growth. Because the effect is related
to the level of disease, additional nutrient supply is more effective
when it is applied at the earlier phase of infection. Certainly,
only enhancing nutrition does not effectively control HLB, or
even bacterial titer can be increased in the short term (Gottwald
et al., 2012). Therefore, it should be treated with the simultaneous
use of nutrients (e.g., nitrogen fertilizer and mixed fertilizer) and
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defense activators for the early control of HLB (Li et al., 2019;
Zhang et al., 2019).

Since there are no specific drugs that can cure HLB, the
overuse of chemical drugs may cause a series of safety problems in
the environment and biology. So biological method is the general
trend of the prevention and treatment of HLB and also has made
a great contribution to the control of other agricultural diseases.

BIOLOGICAL METHODS

Hybrid Breeding
New varieties with excellent traits were obtained by hybrid
breeding (Ohgawara et al., 1994; Viloria and Grosser, 2005;
Grosser et al., 2007, Grosser and Gmitter, 2011, and this
technology has been often used to improve the stress resistance
of citrus (Grosser, 2003). The resistance traits obtained through
the somatic hybridization technique can be stably inherited
to offspring. However, the leaf malformation was found in
a new plant that fused the somatic cells of Citrus sinensis
and Murraya exotica (Grosser and Olivares-Fuster, 2000).
Reproductive isolation between citrus and its distant relatives
results in these materials being unusable. Disease-resistant
materials were obtained primarily through rootstock breeding in
citrus, because of the long breeding cycle and complex operations
of traditional breeding (Bowman and Joubert, 2020). P. trifoliata,
C. medica, Citrus limon (C. limon), and other citrus germplasms
that have HLB tolerance are the main rootstock source for citrus
(Miles et al., 2017). Because rootstock affects the life, nutrition,
and growth of citrus (Sabatino et al., 2019), different regions
should choose suitable rootstock varieties. The plant traits of
P. trifoliata and C. sunki are compatible so that their hybrids
can obtain the characteristics of HLB tolerance and have mild
disease symptoms when infected (Ramadugu et al., 2016; Curtolo
et al., 2020). The application of hybrids with HLB tolerance
is conducive to alleviating the pressure caused by HLB in the
short term. These results not only indicate that there are defense
mechanisms against Ca.Las in HLB-tolerant plants but also
tolerance characteristics can be inherited. Curtolo et al. (2020)
revealed that the HLB tolerance mechanisms were related to
the downregulation of gibberellin (GA) and the enhancement
of the cell wall. The sensitivity of different plants to HLB may
be related to the difference in phloem cell activity (Fan et al.,
2012). These results are crucial for identifying key tolerance-
associated genes, and candidate genes are expected to construct
HLB-tolerant citrus through genetic engineering technology.

Transgenic Technology
Transgenic technology was widely used to improve varieties
in agriculture and animal husbandry (Mitchell and Sheehy,
2000). The progress of cultivating new plants is slow through
traditional hybrid breeding technology because of the long
breeding cycle of citrus. Transgenic technology can not only
shorten the production cycle but also break the incompatibility
barrier of distant hybridization, and also keep the genotypic and
phenotypic integrity of transgenic citrus. Recently, Endo et al.
(2020) developed a fast-track breeding system to transfer the

CTV resistance of trifoliate orange into citrus germplasm, which
greatly shortened the breeding cycle and was in favor of the
application of transgenic technology.

The non-expresser of pathogenesis related protein 1 (NPR1),
as a SA receptor, plays an important role in the SAR pathway
(Mou et al., 2003; Spoel, 2003). Overexpression of AtNPR1 (the
NPR1 of Arabidopsis thaliana) enhanced the disease resistance
in transgenic crops, such as rice, apple (Chern et al., 2005;
Malnoy et al., 2007; Sajad et al., 2017), and sweet orange (Zhang
et al., 2010; Boscariol-Camargo et al., 2016). It was later found
that transgenic citrus plants overexpressing AtNPR1 exhibited
tolerance to HLB (Dutt et al., 2015). Transgenic plants had
lower Ca.Las titer and better growth state than non-transgenic
plants under HLB stress (Dutt et al., 2015; Caserta et al., 2020).
Citrus thionein is a known antibacterial agent, and transgenic
citrus overexpressing thionein performed better under HLB
stress compared to the non-transgenic citrus (Hao et al., 2016).
The AMP genes previously mentioned are strong candidates for
the construction of transgenic plants. For instance, transgenic
plants overexpressing D4E1 obtained HLB tolerance because
synthetic peptide D4E1 could lead to bacterial cell membrane
lysis (Attílio et al., 2013; Caserta et al., 2020). However, transgenic
plants can only increase tolerance to HLB, but cannot solve the
problem fundamentally.

Transgenic technology is also applied to control ACP. Bacillus
thuringiensis (Bt) toxin can effectively kill lepidopteran insects
(Naranjo, 2011). Transgenic Bt citrus greatly reduced the use of
pesticides and suppressed pests’ growth. Some volatile organic
compounds, such as the volatile β-caryophyllene, could repel
ACP by affecting the behavior of pests, and the transgenic citrus
had a low attraction for ACP to reduce the spread of HLB
(Alquézar et al., 2017). Thus, it is considered an environmentally
friendly way of controlling pests, and there is no obvious
phenotypic change in transgenic citrus. However, transgenic
products are facing great controversy. Since exogenous genes are
expressed in fruits, the impact on human health is unknown.
Especially in the EU and Japan, people generally oppose the
application of this technology. In the future, solving and
balancing this problem is inevitable (Grosser et al., 2009).

Citrus tristeza virus is a ubiquitous virus in citrus that can
enter the ACP body by consuming sap. RNAi technology based
on CTV has also become a new method for controlling pests.
This transient expression vector is very stable and therefore
considered for citrus HLB control (Folimonov et al., 2007). At
present, some progress has been made in the field. Key genes
involved in metabolism and growth are silenced in ACP when
CTV-RNAi is ingested. Reducing the expression of the abnormal
wing disc (Awd) gene could not only cause ACP malformation
but also increase mortality of adults (Hajeri et al., 2014). Besides,
the ACP can be killed by insecticides, whereas this may lead to
resistance to drugs. Thus, when CYP4 was silenced, the resistance
would be reduced and allow insecticides to act at high potency
(Killiny et al., 2014). CTV-t phytoene desaturase-silenced (PDS)
plants can attract and gather ACP when planted in orchards. It is
convenient to use insecticides to kill ACP. Just CTV-tPDS trees
may appear photo-bleaching phenotype (Killiny et al., 2021).
The application of a CTV-based vector system is much mature
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and simpler to apply than insect-virus-based vector technology.
Citrus nurseries can start the seedling already inoculated with a
CTV-based vector hence the whole new orchard is pre-treated
with CTV-based biological control. In addition, a CTV-based
vector can be applied to the existing trees in the field without
the need to replant the whole orchard. It can be done by graft
inoculating the existing trees with plant material carrying a
CTV-based vector. On the other hand, insect-virus-based vectors
are still under research, and researchers have no idea how to
introduce the insect virus safely in the environment. How these
ACP-insect viruses going to impact the other beneficial insects is
untested territory.

Microbial Therapy
Soil is a natural large microbial storage, and plant roots are
the major sites of microbial interaction (Zhang K. et al.,
2021). Improving soil biodiversity is beneficial to strengthen
the interaction between soil function and biological elements
(Artursson et al., 2006). The benign cycle of root microbial flora
is conducive to both improving the growth environment of citrus
roots and the prevention and control of HLB (Trivedi et al., 2010).
Compared to HLB-infected trees, there are lots of beneficial
bacteria, such as Burkholderia spp. and S. meliloti, in the
rhizosphere soil of healthy citrus. These beneficial bacteria can
both compete with harmful bacteria and regulate the metabolic
activities of citrus roots by inducing the secretion of secondary
metabolites (Zhang et al., 2017). There are some seemingly
healthy trees in diseased citrus orchards, which are called HLB
“escape trees.” Beneficial bacteria with antibacterial ability were
also isolated from these citrus roots (Riera et al., 2017). These
results further demonstrate that beneficial bacteria are essential
for plant growth and health. A study showed that Burkholderia
spp. that colonize host roots could increase the expression levels
of SA pathway-related genes to improve the antiviral ability
of plants (Zhang et al., 2017). According to the characteristics,
microbial agents that contain actinobacteria, yeast, rhizobium,
other beneficial bacteria, and plant growth regulators have been
developed and applied to control HLB. The harm of microbial
agents is much smaller than chemical fertilizers, which can avoid
soil hardness and fusarium root rot caused by excessive use of
drugs and fertilizers.

CONCLUSION AND PERSPECTIVE

Nowadays, to protect the environment, countries all over the
world are paying more and more attention to sustainable
agricultural development. Therefore, a combination of the above,
we propose a more environmentally sustainable route for the
control of HLB (Figure 2). First of all, it is imperative to
enhance orchard management by green and integrated approach

that includes hand or mechanical weeding, suppressing ACP
in combination with chemical and biological methods, such
as the use of insecticides and the release of pests natural
enemies. In addition, corresponding treatment measures should
be taken when other major citrus diseases are present. Secondly,
strategies, such as using bio-organic fertilizer and spraying
immune activators that improve the plants’ growth environment
and enhance plant immunity, have a great promise for controlling
HLB. Finally, removal of severely diseased citrus is key to
reducing transmission because the effect of medications is guided
by the disease severity of HLB-infected citrus. We hope these
strategies are useful for HLB.

Since the 21st century, rapid growth in science technologies
has also promoted the development of HLB-related research.
Transgenic technology and nanotechnology as green strategies
have become a hotspot attracting many researchers worldwide.
However, lacking HLB resistance genes is the biggest challenge
for the application of transgenic technology. But global citrus
resources are very abundant and most of them have not been
systematically evaluated. It cannot be concluded that resistance
genes are absent altogether. In fact, controlling HLB is still a
challenging task for investigators and planters who have to face.

In our opinion, future research should focus on two key
points, such as (1) the interaction mechanisms of plant–pathogen
(Figure 3). Studying the physiological and biochemical changes
of diseased trees is important to clarify the pathogenesis of HLB
and search for efficient treatment strategies. It is also favorable for
the targeted transport of nanoparticles in the host and facilitates
the applications of nanotechnology. (2) Screening HLB-tolerant
plants and resistance genes. This is a critical step in resistance
breeding. Driven by the government policies, the development
of HLB has largely been inhibited by current prevention and
control strategies, and we believe that this problem will be
overcome in the future.
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