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Microscopic wood identification plays a critical role in many economically important
areas in wood science. Historically, producing and curating relevant and representative
microscopic cross-section images of wood species is limited to highly experienced and
trained anatomists. This manuscript demonstrates the feasibility of generating synthetic
microscopic cross-sections of hardwood species. We leveraged a publicly available
dataset of 119 hardwood species to train a style-based generative adversarial network
(GAN). The proposed GAN generated anatomically accurate cross-section images with
remarkable fidelity to actual data. Quantitative metrics corroborated the capacity of
the generative model in capturing complex wood structure by resulting in a Fréchet
inception distance score of 17.38. Image diversity was calculated using the Structural
Similarity Index Measure (SSIM). The SSIM results confirmed that the GAN approach
can successfully synthesize diverse images. To confirm the usefulness and realism of
the GAN generated images, eight professional wood anatomists in two experience levels
participated in a visual Turing test and correctly identified fake and actual images at rates
of 48.3 and 43.7%, respectively, with no statistical difference when compared to random
guess. The generative model can synthesize realistic, diverse, and meaningful high-
resolution microscope cross-section images that are virtually indistinguishable from real
images. Furthermore, the framework presented may be suitable for improving current
deep learning models, helping understand potential breeding between species, and may
be used as an educational tool.

Keywords: wood anatomy, machine learning, artificial intelligence, wood image transformation, microscopic
images, StyleGAN

INTRODUCTION

Transverse microscopic cross-sections of wood species have long been used for forensic wood
identification, for analysis of critically important properties such as permeability and treatability
with chemical agents, and to gain an understanding of the functioning of the tree (Zhang and Cai,
2006; Esteves and Pereira, 2008; Martins et al., 2013; Leggate et al., 2020; Lengowski et al., 2020;
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Słupianek et al., 2021). Microscopic capture of various anatomical
features is accomplished in the lab by preparing individual thin
slices of wood samples through standard stringent procedures
that include several manually intensive steps: softening, cutting,
clearing, staining, dehydrating, and mounting of the thin wood
sections (Jansen et al., 1998).

Historically, creating and curating large datasets of
microscopic wood images has been cumbersome with only
a handful of datasets available to the public for research
and development. The dataset produced by Martins et al.
(2013) is perhaps the most used dataset for benchmarking
several different wood identification approaches. The art of
wood identification using such datasets is limited to only
highly trained and experienced wood anatomists, due to the
complexity of the wood structure within species and among
a multitude of different species. Moreover, the number of
senior wood anatomists with broad taxonomic expertise is
declining (Lens et al., 2020). These limitations have set the
stage for new artificial intelligence/machine-learning (AI/ML)
technologies to make significant advances into the wood
identification process.

Currently, deep learning in the form of convolutional neural
networks (CNN) and optimization algorithms is beginning
to revolutionize wood identification services. In fact, this
technology is matching or surpassing expert wood anatomists
in both macroscopic and microscopic image recognition and
is being increasingly proposed as an adjunct to human wood
identification decision-making (Hafemann et al., 2014; Lens et al.,
2020; Lopes et al., 2020, 2021 ; Olschofsky and Köhl, 2020;
de Geus et al., 2021; Fabijańska et al., 2021). The growth of
computer-based wood identification and many other recognition
tasks is facilitated by recent advancements in computational
power, especially with graphical processing units (GPUs), which
have enabled the widespread use of supervised machine-learning.

The AI/ML approaches have a rich potential within wood
science and technology. For example, computer vision
approaches could help identify and protect forests in the
future (Lens et al., 2020). In this case, the expansion of computer
vision-based wood identification would heavily depend on either
establishing traditional extensive collaborations across wood
science organizations as explained by Hwang and Sugiyama
(2021) or through the development and application of artificial
intelligence solutions that are novel, economically relevant,
innovative, and stakeholder-engaged.

Successful applications of deep learning for wood
identification are based on supervised learning algorithms
that critically depend on labeled data for training purposes
(Hwang and Sugiyama, 2021). For example, Martins et al.
(2013); Filho et al. (2014), and Hafemann et al. (2014) applied
deep CNN models on macroscopic and microscopic images by
manually labeling the forest wood species. Their custom deep
learning-based model achieved 96.0 and 97.0% accuracies on the
macroscopic and microscopic datasets, respectively. Similarly,
Fabijańska et al. (2021) automatically identified 14 European
tree species using a residual convolutional encoder network
in a sliding window with 99.0% accuracy. Collecting large sets
of labeled training data constitutes a non-trivial bottleneck

in AI/ML workflows. However, AI/ML has the potential to
artificially synthesize the requisite labeled data, which we will
explore in this manuscript.

Generative adversarial networks (GANs) are special types
of deep learning where two neural networks are trained
simultaneously, with the generator Network G, focusing on
image generation from feedback given by a discriminator
Network D, that is designed to determine whether a given
input data is from an actual dataset or is synthetically generated
(fake) by G (Yi et al., 2019). The GANs can achieve state-
of-the-art synthetic generation of remarkably realistic images
using CNN in an unsupervised manner. The GANs have been
successfully applied in many fields including medical analysis,
satellite imagery, computational fluid dynamics, and precision
agriculture (Goodfellow et al., 2014; Nie et al., 2018; Wu et al.,
2020; Pang et al., 2021).

Given the ability to use deep learning to synthesize images
from multiple domains, we herein seek to explore the utility of
GANs to map and generate labeled microscopic images on a
large number of hardwood species. Therefore, the purpose of
this manuscript is fourfold: (1) to demonstrate the feasibility
of image synthesis in the field of wood anatomy; (2) to
quantitatively and qualitatively assess the quality of generated
images; (3) to present synthetically generated images to experts
in the field through a visual Turing test (VTT); and (4) to
raise awareness of the potential of deep learning techniques for
steering the forestry and forest and wood products industry
toward transformative directions.

To our knowledge, no study has been conducted using
GANs to synthesize and critically evaluate microscopic cross-
sectional images of hardwood species or in wood anatomy
in general. This study seeks to demonstrate proof-of-concept
technical and computational feasibility of performing image
domain transformation to better equip wood anatomists and to
introduce the wood science and technology communities to a
novel AI/ML-based approach.

MATERIALS AND METHODS

Transverse Microscopic Hardwoods
Section Dataset
This study was conducted using a publicly accessible transverse
section of microscopic hardwood species dataset obtained from
the Xylarium Digital Database (XDD) for Wood Information
Science and Education – Kyoto University Research Information.
This database was created, curated, processed, and labeled by
Sugiyama et al. (2020). It was created in an effort to expand
research and development in the area of wood anatomy and
wood identification. The methods for obtaining the cross-section
of the wood species are thoroughly described in the series of
manuscripts published by the XDD research team in Hwang et al.
(2018, 2020a,b) and Kobayashi et al. (2019). Figure 1 shows eight
different woody species present in the dataset.

Observing Figure 1, it is evident the diversity in anatomical
structure with clear growth rings distinction, latewood and
earlywood transitions, parenchyma cells, arrangement of
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FIGURE 1 | (A) Betulaceae - Alnus firma; (B) Cannabaceae - Aphananthe aspera; (C) Fagaceae - Quercus crispula; (D) Fagaceae - Fagus japonica; (E) Lauraceae -
Sassafras tzumu; (F) Magnoliaceae - Liriodendron tulipifera; (G) Sapindaceae - Acer distylum; (H) Ulmaceae - Ulmus laciniata. Refer to the dataset for full dataset
description.

parenchyma cells, fiber, vessel elements, pores and pores
arrangement, multiple porosity classifications (ring, semi-ring,
semi-diffuse, and diffuse porous), pore structure, and rays.
These features are examples of key anatomical elements for
hardwood identification. The full list of features and their
terminology can be seen in Wheeler et al., 1989. The XDD
dataset contained 7,051 images from 33 genus, 119 species, and
540 individuals at a resolution of 2.96 µm/pixel in a compressed
HDF5 file at a grayscale resolution of 900 pixels × 900
pixels in JPEG (Joint Photographic Expert Group) format.
The full description of the wood species can be seen in the
Supplementary Material 1.

Custom Training the Generative
Adversarial Network
We leveraged the style-based generative adversarial network,
henceforth StyleGAN model developed by Karras et al. (2019) to
generate realistic microscopic cross-section images of hardwood
species. The StyleGAN includes the progressive increase of
resolution by adding layers to the network as described in
Karras et al. (2018) with a series of later modifications
described in Karras et al. (2019). The main reason for choosing
StyleGAN was that it achieves state-of-the-art in human face
transformations with extraordinary levels of detail. Similarly,
to human faces, wood is a biological material with high-level
attributes and stochastic variation in its structure, which requires
an AI/ML framework that generates small and subtle intricacies
of wood anatomy such as fibers, cells, pores shapes, pore
arrangements, and rays, etc.

As the original image size was 900 pixels × 900 pixels,
we resized the images to be 512 pixels × 512 pixels without
further image processing. In this implementation, the StyleGAN
progressively increased image size from 42 pixels to 5122 pixels.
We used 5,650 images for training. A latent vector of dimension
512 was used. The batch size decreased from 256 to 4 as training
progressed. The adaptive momentum estimator (Adam) (Kingma
and Ba, 2015) optimizer was used for training. The learning rate
for the discriminator and generator were initially set to 0.0015
up to the resolution of 1282 pixels and slowly increased to 0.02
and 0.03 for resolutions of 2562 and 5122 pixels, respectively.
The training setup doubled the image resolution when 600,000
images were shown to the discriminator. Training finished
when the model had seen 7.5 million synthesized images. The
Wasserstein GAN-gradient penalty (WGAN-GP) loss developed
by Gulrajani et al. (2017) with modifications included by Karras
et al. (2019) was used.. Throughout the training session, the
model serialized checkpoints for later inference by using a script
for image generation. The training took approximately 10 days.
The computational resources used for this study included a
workstation powered by 4 × NVIDIA GeForce RTX 2080Ti
graphics processing units (GPU) with 11 GB of memory each and
an Intel Core i9-9920K with a central processing unit (CPU) with
128 GB of memory.

Quantitative Analysis of Generative
Adversarial Network Images
There is no unified and universal metric to compare and evaluate
generative adversarial networks (Borji, 2019). In the case of wood
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anatomy, the quantitative measure of GANs is limited or even
non-existent. This work, to the best of our knowledge, is the first
study to present GAN metrics in the domain of wood anatomy.
For GAN metrics, we relied on the Fréchet inception distance
(FID) by Heusel et al. (2018) and the Structural Similarity Index
Measure (SSIM) by Hore and Ziou (2010) to assess the realism
and diversity of the images generated by the StyleGAN.

The FID score is a metric that measures the maximum
Gaussian entropy distribution for given mean and covariance.
The difference of two Gaussians is then measured by Eq. 1:

FID =
∣∣∣∣µr − µg

∣∣∣∣2
+ TR

(
Cr + Cg − 2

(
CrCg

) 1
2
)

(1)

where, µr and µg and Cr and Cg are the mean and covariance of
real and generated images.

The lower FID score means higher accuracy in synthetically
generating microscopic cross-sectional images. The FID score
enables a quantifiable anatomical comparison between a ground-
truth image and a GAN generated image with respect to the
fidelity of generated images.

The SSIM is a quality metric used to measure the similarity
between two images. It is considered to be correlated with the
quality perception of the human visual system (HVS) (Hore
and Ziou, 2010). The SSIM is designed by modeling any image
distortion as a combination of three factors, namely loss of
correlation, luminance, and contrast distortions. The SSIM was
defined by Eq. 2:
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Equations 3–5, respectively, refer to the luminance comparison
function that measures the closeness of two images mean
luminance (µf and µg); the contrast comparison function, which
calculates the closeness of the contrast of the two images by the
standard deviation (σf and σg); and the structure comparison
function that measures the correlation coefficient between the
two images, f and g. The σfg argument is the covariance between
f and g. A value of zero (0) means no correlation between images,
and a value of one (1) means that f = g (Hore and Ziou, 2010).

Visual Turing Test
To compare between actual and generated microscopic cross-
section images of hardwood species, we used a VTT based
on Park et al. (2021) and Chuquicusma et al. (2018). Our
VTT experiments were conducted by a group of eight wood
anatomy experts divided into two levels of expertise for analysis
of microscopic wood images, namely, four intermediate wood

anatomy experts [more than 1 and less than 5 years of experience
(Group I)], and four advanced wood anatomy experts [more than
5 years of experience (Group II)].

The wood anatomists were blinded to each other’s evaluations
of experiments and were not shown real or generated images
prior to the experiments. The VTT contained 60 distinct 5122

images (30 actual images and 30 generated images). We randomly
selected the images from the actual dataset, such that a minimum
of three images were selected from each family. To avoid any
bias, the generated image data were automatically generated by
the StyleGAN. Furthermore, these images were not individually
selected by our group.

The experts were given two choices to classify the fidelity of
the images, namely, actual image or generated image. A website
(Google Forms) was created to upload the images in a random
manner. The link for the website can be seen in the GitHub.1 The
visuals evaluated did not contain any information about the wood
species and only the microscopic cross-section of hardwood
species was presented.

In this experiment, the experts were not informed how many
of the images were real or not real. The non-disclosed ratio
allowed the evaluation of three important metrics: (1) number
of incorrectly identified actual images (a high number represents
how real the generated images look), (2) number of corrected
identified real images (a high number represents how accurately
the experts recognized salient anatomical features), and (3) a
confusion metric that represents how effective our results were
to confuse experts in identifying actual versus generated images.

The mean sensitivity, specificity, and accuracy of the eight
expert VTT evaluations were calculated by Eqs 6–8.

Sensitivity =
True positive

(True positive+ False negative)
(6)

Specificity =
True negative

(True negative+ False positive)
(7)

Accuracy =
(True positive+True negative)

Number of observations
(8)

A statistical t-test was used to compare the means of the experts’
evaluations across the experiment. The scientific computing
Python package Pauli et al. (2020) was used for the statistical
analyses with the significance level set at p ≤ 0.05.

RESULTS AND DISCUSSION

Feasibility of StyleGAN Generative
Adversarial Network Training
The first goal of the study was to demonstrate the feasibility
of training StyleGAN from scratch to generate realistic
microscopic cross-section images of hardwood species. We
found concomitant training improvement of the model up to
approximately 7.5 million images seen by the discriminator,

1https://github.com/LignumResearch/stylewood-model-usage
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which corresponded to training at the final resolution of 5122

pixels. Figure 2 illustrates the progress of image generation as
the resolution increased during training from 42 to 5122 pixels.
Initially, at 42 pixels resolution, the generated images were pure
abstract noise with concomitant progress in image quality with
remarkable realism obtained at resolution of 5122 pixels. The
StyleGAN trained as expected and was found to generate visually
acceptable synthetic cross-section images of hardwood species.

Qualitative Analysis of Generated Images
Artificial intelligence and deep learning frameworks are
revolutionizing interpretation, identification, and decision-
making in wood species recognition. As data quantity and quality
are critical to train deep learning-based image recognition
systems, the proposed method herein should be useful to
assist the computer vision wood identification community by
providing realistic and meaningful microscopic images of cross-
section of hardwood species. Using trained StyleGAN model,
examples of the random generation of synthetic microscopic
cross-section hardwood species are shown in Figure 3.

Qualitatively, a remarkable variety of anatomical elements
was generated by the trained generative adversarial StyleGAN
network. The StyleGAN was capable of synthesizing high detail
levels of the earlywood and latewood bands and growth ring
transitions; ray width, height, and arrangement of apotracheal
and paratracheal parenchyma cells; porosity such as ring-
porous, semi-ring, semi-diffuse, and diffuse porous; and vessels
with different arrangements and diameters were produced and
recognized. Such detailed anatomical elements are what enable
wood anatomists to scientifically identify wood species. Correct
wood identification promotes reliable utilization of wood in
various forms as in flooring, structural elements, plywood,
particleboard, cross-laminated timber (CLT), various engineered
wood products, and many other structural applications. Figure 4
illustrates the learned anatomical elements by the generative
model in detail. Figures 4A–D should be carefully analyzed
as these species do not exist, although may look similar to
actual data. They were created using the StyleGAN generator,

which allows control over various aspects of the image. They
represent the capability of the proposed network in generating
realistic and meaningful microscopic cross-section images of
hardwood species.

In Figure 4A, there is a visible transition between earlywood
and latewood growth ring bands, parenchyma and fiber cells
noticeable, and uniseriate rays that are clearly seen. Different
earlywood and latewood pores, pore arrangement, rays, initial
earlywood band, and a few nested pores or pore clusters are
also identifiable. There are also numerous solitary pores. No
tyloses or mineral deposits can be seen in the vessel elements.
The presence of paratracheal vasicentric, paratracheal aliform,
and/or paratracheal confluent longitudinal parenchyma cells
was not identifiable. Possible semi-ring-porous wood with clear
separation between earlywood and latewood pores in Figure 4A.

In Figure 4B, the growth ring bands are visible, parenchyma
and fiber cells noticeable, and uniseriate rays are clearly seen.
There are numerous pore multiples that occur throughout, where
two or more pores are connected to another pore. The radially
arranged series of pore multiples or closely arranged solitary
pores are visible as pore chains. These characteristics along with
no clear separation between earlywood and latewood pores,
small vessel element pore sizes, uniform pore size, and evenly
distribution of the pores make this a possible diffuse-porous
wood in Figure 4B.

In Figure 4C, shows a visible transition between earlywood
and latewood growth ring bands, parenchyma and tracheids cells
noticeable, and uniseriate rays are clearly seen in this cross-
sectional view. Different earlywood and latewood pores, broad
rays and pore arrangement, and initial earlywood band are
observable. The pores are arranged in irregular concentric bands
that are tangential in the earlywood are wavy bands (ulmiform
pore arrangement). A few nested pores or pore clusters are also
identifiable. Few tyloses can be seen in the vessel elements as well.
A few solitary pores that do not touch any other pores are clearly
seen. Possible ring-porous wood with clear separation between
earlywood and latewood pores in Figure 4C.

In Figure 4D, the growth ring bands are visible, parenchyma
cells noticeable, and uniseriate rays are evident. The growth ring

FIGURE 2 | Overview of StyleGAN training using progressively increased image resolution from 4 × 4 pixels to 512 × 512 pixels.
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FIGURE 3 | Examples of synthetic cross-section images of hardwood species produced by the StyleGAN.

boundary is clearly delineated by a line of marginal parenchyma
as several cells thick of longitudinal parenchyma. There are
numerous pore multiples that occur throughout, where two or
more pores are connected to another pore. The radially arranged
series of pore multiples or closely arranged solitary pores are
visible as pore chains. These characteristics along with no clear
separation between earlywood and latewood pores transitions,
the small vessel element pore sizes, uniform pore size, and evenly
distribution of the pores make this a possible diffuse-porous
wood in Figure 4D.

The potential applicability of generative adversarial in wood
science and technology is tremendous. As macroscopic cross-
section datasets become publicly available for research and
development, especially from tropical species, GANs can be
trained to generate unlimited numbers of realistic cross-sections
of endangered wood species listed by CITES (Convention on
International Trade in Endangered Species of Wild Fauna and
Flora). The synthetic and meaningful images could then be
implemented to train, validate, and test current deep learning
wood species recognition models. The methodology of this work
could potentially eliminate economic and processing burdens
in acquiring images of tropical species for machine-learning
purposes. Furthermore, the GANs framework proposed herein is
a logical step to increase collaboration among academia, research

laboratories, local, state, and federal agencies, private sector,
and the industry.

Another innovative use of the StyleGAN framework
demonstrated in this work is to generate anatomical
elements of a hybrid from two targeted parental species.
The training of GAN on microscopic cross-section images
from two parental species would potentially generate
a hybrid species. The generated hybrid would then
be validated by a real hybrid species. If the generated
hybrid possesses relevant and accurate information, this
technology could potentially steer a series of new research
directions within the wood science and technology field,
especially in breeding and genetics for estimating wood
permeability, strength, density, and calculating the hydraulic
potential of the tree trunk of a species that has not
even been planted.

While the StyleGAN implementation appears to be very
useful in creating realistic and meaningful microscopic cross-
section images for more robust deep learning models and
targeted biological engineering, it could also create content
to facilitate training and education in wood anatomy. The
realistic images could provide personalized interactions
based upon an individual’s experience and areas of expertise.
For students interested in anatomical elements, the GAN
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FIGURE 4 | Wood anatomy images generated by StyleGAN. Synthesis of anatomical elements. Potential semi-ring-porous wood (A), diffuse-porous wood (B),
ring-porous wood (C), and diffuse-porous wood (D).

frameworks could provide new content that would help
in training a new workforce faster and cheaper. In that
case, this work has the capabilities of extending the wood
anatomy and wood identification body beyond research
and development.

Quantitative Analysis of Generated
Images
The FID score was calculated on 5,650 images drawn from the
generator. The score was calculated by using the Inception-V3-
network (Szegedy et al., 2016). The FID scores are reported
in Figure 5. It was noted that as the model was trained, the
StyleGAN model decreased the FID score from 657 points to a
final value of 17.38, which indicates more realistic image quality
generation at full resolution of 5122 pixels. The lower FID score
of 17.38 means higher similarity between the two distributions,
namely, between actual and synthetic data.

In the context of wood anatomy, it is not possible to compare
the FID score to prior research or literature because this work
is the first known application of generative adversarial for wood
cross-sectional synthesis. However, GANs have been extensively
used in different non-wood domains with comparatively low
FID scores being reported. For instance, FID scores in Karras
et al. (2019) were 4.40 for Flickr-Faces-HQ (FFHQ) on human
faces, 2.65 for Large-scale Scene Understanding (LSUN) on a

bedroom, and 3.27 for LSUN on car datasets, using an identical
model. Conversely, in research by Skandarani et al. (2021), the
FID scores were 24.74, 23.72, and 29.06 for cardiac, liver, and
diabetic retinopathy datasets, respectively, also using StyleGAN.
It is worth mentioning that the datasets used in Karras et al.
(2019) were much larger than those in Skandarani et al. (2021)
and in this work.

However, FID scores do not completely ensure reliability when
evaluating diversity of image data (Borji, 2019). In order to
further quantitatively assess the quality of our image synthesis,
we calculated the structural similarity index for ground-truth
pairs and ground-truth/generated image pairs on 5,650 actual and
5,650 generated images.

The XDD dataset used in this work consisted of hundreds
of different species that would bring the SSIM to near zero
(0.00) if the images were not correlated. The lower the SSIM,
the more structurally different two given images are, which
denotes diversity. To that end, the calculated SSIM for ground-
truth training data pairs was 0.061 ± 0.015, which indicates a
highly diverse dataset. Generally, collapsed GANs would generate
similar images to the training set as explained by Srivastava et al.
(2017); Lala et al. (2018), and Thanh-Tung and Tran (2020).
In that case, the SSIM for ground-truth and generated images
for collapsed GANs would be much higher, tending to approach
1.00. In this study, the calculated SSIM for the comparison
between ground-truth and StyleGAN generated images was
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FIGURE 5 | The Fréchet inception distance (FID) score achieved by the StyleGAN generative adversarial network (GAN) on cross-section images of hardwood
species. Top images show the evolution of anatomical detail with training.

0.061 ± 0.026. The intuition is relatively simple. The lower the
SSIM, the more diverse the StyleGAN generated pairs seem to be.
Likewise, Odena et al. (2017) used the same concept to evaluate
the diversity of generated images from the ImageNet dataset.
Furthermore, in this work, the StyleGAN model generated images
as diverse as the training set, where the orange and blue curves
highly overlapped (see Supplementary Material 2).

In order to provide a clear understanding about the
StyleGAN implemented in this research, we developed a
graphic user interface where one can generate images of
microscopic hardwood species in a menu-driven and intuitive
web application. The goal of this application is to provide
knowledge about StyleGAN via user interactions. The application
is an open-source framework available at https://github.com/
LignumResearch/stylewood-model-usage. It is worth noting that
the user has the capability of generating unlimited amount of data
(images) with this pre-trained model.

Anatomic Validation via Visual Turing
Test
Table 1 summarizes the results of the realism assessment of
images from the VTT by the eight wood anatomists. The mean
accuracy obtained in the entire VTT was statistically lower than
the random guessing [221/480 (46.04%) vs 240/480 (50.00%),
respectively, p = 0.018]. In terms of correctly identifying
generated images (specificity), there was no statistical difference
between all wood anatomists and random guessing [116/240
(48.33%) vs 120/240 (50.00%), respectively, p = 0.6717]. Similarly,
there was no statistical difference between all eight wood
anatomists and random guessing to correctly identify actual
images [105/240 (43.75%) vs 120/240 (50.00%), respectively,
p = 0.064], despite the trend was in the predicted direction
(p ≤ 0.05).

By analyzing Groups I and II, there was no statistical
significant difference between the two groups for accuracy,
sensitivity, and specificity, respectively [45.0 vs 47.1% (p = 0.548),

40.8 vs 46.6% (p = 0.317), and 49.2 vs 47.5% (p = 0.873)]. The
only actual species captured (100% true positive) by all wood
anatomists was Litsea glutinosa. Additionally, none of the wood
anatomists (100% false negative) captured Zelkova serrata, which
was also an actual species. The full data regarding the VTT can be
obtained in the GitHub.

In summary, results of the VTT indicated that the StyleGAN
synthetically generated image fidelity comparable to actual data.
The VTT data suggests that the generated images were highly
realistic and indistinguishable from real microscopic cross-
section images of hardwood species, regardless of the level of
expertise in anatomical evaluation.

TABLE 1 | Assessment of the realism of 60 images by the eight professional wood
anatomists readers by the visual Turing test (VTT).

Group Accuracya (%) Sensitivityb (%) Specificityc (%)

Group Id

Wood Anatomist 02 50.0 43.3 56.7

Wood Anatomist 04 46.7 40.0 53.3

Wood Anatomist 05 46.7 40.0 53.0

Wood Anatomist 06 45.0 63.0 26.7

Group IIe

Wood Anatomist 01 41.7 43.3 40.0

Wood Anatomist 03 50.0 40.0 60.0

Wood Anatomist 07 40.0 36.7 43.3

Wood Anatomist 08 48.3 43.3 53.3

aOverall mean [95% CI (confidence interval)] accuracy 46.1 (42.9–49.1).
bOverall mean (95% CI) sensitivity 43.7 (36.9–50.5).
cOverall mean (95% CI) specificity 48.3 (39.1–57.4).
dGroup I: Wood anatomists with 1–5 years of experience. Mean (95% CI) accuracy
47.1 (43.8–50.4), sensitivity 46.7 (28.8–64.5), and specificity 47.5 (25.3–69.7).
eGroup II: Wood anatomists with >5 years of experience. Mean (95% CI) accuracy
45.0 (37.2–52.8), sensitivity 40.8 (35.8–45.9), and specificity 49.15 (25.3–69.7).
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CONCLUSION

This study shows that StyleGAN can successfully synthesize
highly realistic and anatomically meaningful 5122 microscopic
cross-section images of hardwood species that are virtually
indistinguishable from real cross-section images. We confirmed
the realism and diversity for generated images by calculating
the FID score, an SSIM distribution, and a VTT using
two groups of professional wood anatomists with different
levels of expertise.

We discussed several novel research directions involving
wood anatomy and wood identification, StyleGAN, namely,
data augmentation for current computer vision-based
wood identification, dataset generation for wood species
that are listed as threatened, endangered, or critical by
CITES, and simulation of breeding between two parental
woody species. Along with these applications, the StyleGAN
can be used as an educational tool for improving
training of a new workforce in wood anatomy and wood
identification. It is our ultimate goal to provide AI/ML
solutions that are reliable, economically relevant, safe, and
robust to better equip the forestry and forest and wood
products industries, students, researchers, staff, faculty, and
enthusiasts in the field.

Future research will focus of exploring latent space when
generating images. It would allow us to explore single
attributes of a given species, for example porosity, ray
thickness, growth ring, etc. to potentially increase model’s
generalization. Specifically, this research would increase
the meaning and realism of images and enable targeted
effects on the generated images. Additionally, GANs can
perform multimodal learning that enables image synthesis by
feature description.
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