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Availability of and access to wood identification expertise or technology is a critical
component for the design and implementation of practical, enforceable strategies
for effective promotion, monitoring and incentivisation of sustainable practices and
conservation efforts in the forest products value chain. To address this need in
the context of the multi-billion-dollar North American wood products industry 22-
class, image-based, deep learning models for the macroscopic identification of North
American diffuse porous hardwoods were trained for deployment on the open-source,
field-deployable XyloTron platform using transverse surface images of specimens
from three different xylaria and evaluated on specimens from a fourth xylarium that
did not contribute training data. Analysis of the model performance, in the context
of the anatomy of the woods considered, demonstrates immediate readiness of
the technology developed herein for field testing in a human-in-the-loop monitoring
scenario. Also proposed are strategies for training, evaluating, and advancing the
state-of-the-art for developing an expansive, continental scale model for all the North
American hardwoods.

Keywords: wood identification, illegal logging and timber trade, XyloTron, computer vision, machine learning,
deep learning, diffuse porous hardwoods, sustainable wood products

INTRODUCTION

North American hardwoods are utilised in a multitude of applications including furniture
(household, office, and institutional), construction and remodeling (e.g., flooring, millwork, and
kitchen cabinets), and industrial products (e.g., pallets, access mats, and crossties). In 2016, the
total US output1 of hardwood products was US$135.6 billion including US$39.8 billion in exports
(Hardwood Federation, 2016). Proper identification of hardwoods along this value chain is essential
for ensuring that contractual obligations have been met, detecting and preventing commercial fraud
(Wiedenhoeft et al., 2019), determining appropriate drying schedules (Simpson, 1991), deciding on
suitable methods of chemical treatment (Kirker and Lebow, 2021), and assessing the condition of

1Defined as “the summation of the business revenues and industry sales”
(Hardwood Federation, 2016).
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in-service structures (Ross and White, 2014). Whether in
the context of in-service wood or new wood-based products,
identification of the material is germane both in an engineering
context, and in terms of interrogating or verifying claims of
legality and/or sustainability of the wood in a final product.
Material identification is a necessary requirement for the
design of practical strategies for designing, monitoring, and
incentivizing sustainable wood product value chains.

Legality and sustainability of wood and wood-based products
are two disparate concepts, the former being a matter of
jurisdiction and legislation and thus essentially referring to de
facto claims or criteria, whereas the latter is a topic of scholarly,
practical, economic, and environmental debate (Giovannoni and
Fabietti, 2013; Magnus Boström et al., 2015). For wood and wood-
based products, legality can be governed by international treaties
(e.g., the Convention on the International Trade in Endangered
Species of Flora and Fauna [CITES, 27 U.S.T. §1087]) and by
national laws and policies (e.g., the United States’ Lacey Act [18
U.S.C. §42-43; 16 U.S.C. §3371-3378]) and wood identification
can play a critical role in enforcement. Sustainability is a
more elusive concept and legitimate disagreements as to what
constitutes sustainability can occur between otherwise similarly
minded parties (Miller and Bush, 2015; Ruggerio, 2021). In
addition to the conceptual or theoretical differences that may
exist between the principles and details subtending sustainability
criteria, there is also the question of real-world implementation
and enforcement of sustainability measures along supply chains
(Bush et al., 2015; Chappin et al., 2015; Dieterich and Auld,
2015) to ensure that a product labelled as sustainable is in
fact sustainably sourced. Confirming the sustainability of a
consumer product may not be possible by testing the final
product, but rather may depend more upon the supply chain
and sustainability regime employed to produce and guarantee
that product claim. Disproving sustainability, however, can
sometimes happen readily by testing consumer products, for
example by determining that the wood used in a product is from
a threatened or protected species (Wiedenhoeft et al., 2019), or
from a region with a high overall prevalence of unmanaged forest
harvest. For establishing claims of legality and sustainability for
wood-products there is a critical need for developing and scaling
wood identification capacity.

Presently, wood identification is primarily performed by wood
anatomy experts who have spent months or years training to
acquire this skill; who typically carry out this function in a
laboratory setting; and whose accuracy depends on the ability
to recognize and distinguish a wood specimen’s anatomical
features and interpret them in the context of established methods
(e.g., dichotomous keys, multiple entry keys, comparison to
reference specimens) for wood identification (Wheeler and Baas,
1998). Despite the efficacy of such human-based anatomical
identification, trained experts are rare, competence varies, and
overall capacity for this task in the United States (Wiedenhoeft
et al., 2019)–and presumably globally–is critically limited. For
example, respondents to the proficiency test in Wiedenhoeft
et al. (2019), when confronted with US domestic woods,
demonstrated in-laboratory accuracies (with access to the full
gamut of traditional wood identification resources such as light

microscopy, reference specimens, keys, online resources, etc.)
ranging from as low as 7% of the 28 specimens to as high as
86%-when considering only the specimens attempted, accuracies
ranged from 25 to 92% (Table 3, Wiedenhoeft et al., 2019).
There is the expectation that macroscopic field identification
would achieve substantially lower accuracies (Wiedenhoeft, 2011;
Ruffinatto et al., 2015).

To overcome the dearth of human expertise in wood
identification, various teams have developed computer vision-
based systems which can be implemented in the laboratory or in
the field (Khalid et al., 2008; Martins et al., 2013; Filho et al., 2014;
Figueroa-Mata et al., 2018; Ravindran et al., 2018, 2019, 2021;
Damayanti et al., 2019; de Andrade et al., 2020; Ravindran and
Wiedenhoeft, 2020; Souza et al., 2020). Even with microscopic
inspection and complete access to reference collections, human-
based wood identification is typically accurate only to the genus
level with reliable species-level identification being rare (Gasson,
2011). Machine learning, on the other hand, either alone (Martins
et al., 2013; Filho et al., 2014; Barmpoutis et al., 2017; Kwon et al.,
2017, 2019; Rosa da Silva et al., 2017; Figueroa-Mata et al., 2018;
Ravindran et al., 2018, 2019, 2020, 2021; de Geus et al., 2020;
Hwang et al., 2020; Ravindran and Wiedenhoeft, 2020; Souza
et al., 2020; Fabijańska et al., 2021) or in combination with human
expertise (Esteban et al., 2009, 2017; He et al., 2020), has shown
promise that species-level identification might be possible, when
the woods in question allow resolution at this granularity. Recent
work involving the open-source XyloTron platform (Ravindran
et al., 2020) has shown promise for real-time, field-deployable,
screening-level wood identification (Ravindran et al., 2019, 2021;
Ravindran and Wiedenhoeft, 2020; Arévalo et al., 2021) with
the hardware to transition to smartphone-based systems now
available (Tang et al., 2018; Wiedenhoeft, 2020). Affordability
and democratization make computer vision wood identification
(CVWID) an attractive technology for robust, multi-point
monitoring of the full sustainable wood products value chain
from producers to consumers. While multiple platforms for
imaging biological specimens in natural history collections are
available (e.g., Hedrick et al., 2020; Pearson et al., 2020; von
Baeyer and Marston, 2021), it should be noted that the XyloTron,
XyloPhone, and similar systems for CVWID have been designed
for affordability, field screening, human-in-the-loop deployment,
and also have the potential (especially given the comparative
affordability of the XyloPhone system) for crowd-sourcing data
collection, citizen-science efforts (Goëau et al., 2013), and use in
secondary education, all of which have the potential to enrich
image datasets if images can be vetted and curated.

Putting forth a field-deployable computer vision model for
the identification of commercially important North American
hardwoods requires on the order of 50 classes, which far exceeds
anything published to date for this region, either at the naked
eye level (Wu et al., 2021) or using macroscopic images (Lopes
et al., 2020). Increasing the number of classes in a model has the
potential to influence model accuracy (Bilal et al., 2018; Shigei
et al., 2019), and unpublished work on the expansion of a 15-
class Ghanaian timber model (Ravindran et al., 2019), using the
same model training methodology, to 39 and 43 classes showed
a reduction in model accuracy. While these data might suggest
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a negative relationship between number of classes and accuracy,
the literature does not provide consensus on how increasing
the number of classes impacts the performance of classification
models. Abramovich and Pensky (2019) suggest that increasing
the number of classes could positively influence model accuracy
while other sources suggest, in general, an inverse relationship
(e.g., Bilal et al., 2018; Shigei et al., 2019). Whether additional
classes improve or reduce model accuracy undoubtedly depends
on multiple factors including the degree to which the additional
classes are similar to each other and to those already in the
model. Greatly increasing the number of classes is presumed to
have a non-trivial effect on model accuracy; thus, larger multi-
class models should be handled with care, paying close attention
to factors that might negatively impact model performance. An
option for building practical, high performing models with a
large number of classes is to leverage domain-based factors for
informed model selection, label space design, and filtering of the
model predictions, thus taking advantage of human expertise in
determining the breadth and scope of the model implementation,
evaluation, and deployment.

In the case of North American hardwoods, one such factor,
commonly used for human-based macroscopic identification,
that could affect accuracy might be wood anatomical spatial
heterogeneity as it relates to porosity (IAWA, 1989; Ruffinatto
et al., 2015). Classically ring-porous woods exhibit large and
abrupt differences in vessel diameter and often in parenchyma
patterns between earlywood and latewood. In addition, the
macroscopic appearance of vessel and parenchyma patterns
in the latewood can vary greatly among specimens exhibiting
slow growth, medium growth, and fast growth. In cases
of fast-grown ring-porous specimens, the growth rings can
be so wide that images captured at the macroscopic level
might include nothing but latewood, completely excluding
earlywood features important for identification. This greater
spatial heterogeneity of ring-porous woods contrasts with the
lesser spatial heterogeneity of classically diffuse-porous woods,
which exhibit little macroscopic anatomical variation both
between and within growth rings regardless of variations in
radial growth rate. As shown in Figure 1, the radial growth rate
of a ring-porous wood imparts greater spatial heterogeneity at
the macroscopic scale (Figures 1B,D,F) compared to the lower
spatial heterogeneity of a diffuse-porous wood growing at similar
radial growth rates (Figures 1A,C,E).

This study presents the design and implementation of
22-class deep learning models for image-based, macroscopic
identification of North American diffuse porous hardwoods. The
main highlights of this study include:

• Providing the first continental scale model for the
identification of an important set of North American
hardwoods, which is the largest wood identification
model reported across all available wood identification
technologies (Schmitz et al., 2020);
• Reporting on the first multi-site, multi-operator, multi-

instantiation study of computer vision identification for
North American woods that has been evaluated using a
practical field testing surrogate (Ravindran et al., 2020);

FIGURE 1 | Images of transverse surfaces of Betula alleghaniensis (A,C,E)
and Robinia pseudoacacia (B,D,F) showing similar slow-growth conditions
(A,B) medium-growth conditions (C,D), and faster-growth conditions (E,F).
Note that Betula alleghaniensis shows comparatively lesser wood anatomical
spatial heterogeneity than Robinia pseudoacacia. The nearly three complete
growth rings in panels (C,D) present wood anatomical detail sufficient to
facilitate an identification. The slow growth in panels (A,B) and partial growth
rings in panels (E,F) demonstrate the comparatively lesser spatial
heterogeneity of the diffuse porous Betula alleghaniensis. In Robinia
pseudoacaia there is a lack of latewood characters in the slow-grown image
(B), and only latewood anatomy in panel (F). By contrast, Betula
alleghaniensis shows substantially similar anatomy across the three images
(A,C,E).

• Using wood anatomy-driven label space design (the
grouping and partition of species into classes) and model
performance evaluation;
• Establishing a strong baseline using a simple machine

learning methodology for the quantitative comparison of
advances in wood identification across all modalities; and,
• Discussing practical strategies for field-testing and

model deployment for empowering sustainability and
conservation efforts in wood product value chains.

MATERIALS AND METHODS

Dataset Details
Taxa and Sample Selection
105 unique species from 24 prominent genera of North American
diffuse porous woods were selected based on the commercial
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importance and specimen availability among four scientific wood
collections. The four wood collections and details of their
specimen contributions are summarised in Table 1.

Sample Preparation and Imaging
The transverse surfaces of 788 wood specimens from the selected
taxa were progressively sanded from coarse to fine grit (240,
400, 600, 800, 1000, 1500) with dust removal from cell lumina
using compressed air and adhesive tape when possible. The
prepared surfaces were imaged using multiple instantiations of
the XyloTron system (Ravindran et al., 2020) to produce a data
set with 6393 non-overlapping images. The 2048 × 2048-pixel
images obtained with the XyloTron had a linear resolution of
3.1 microns/pixel and each image shows 6.35 mm × 6.35 mm of
tissue. The sample preparation and image collection were done by
multiple operators with varying levels of wood anatomy expertise
and specimen preparation experience (undergraduate students,
graduate students, postdoctoral researchers, and technical
specialists). A summary of the collected dataset is provided in
Table 2.

Label Assignment
Wood identification is typically accurate only to the genus level
when the full gamut of light microscopic characters is employed
(Gasson, 2011). For the taxa in this study, a combination
of suprageneric, generic, and sub-generic granularity for
classification is appropriate for macroscopic wood identification.
To facilitate machine learning, the taxa were grouped into 22

TABLE 1 | The four xylaria providing wood specimen images for the data sets
used to train and test the wood identification models.

Institution (Xylarium acronym) Specimen
counts

Role

USDA Forest Products Laboratory,
Madison collection (MADw)

410 Model Training

USDA Forest Products Laboratory,
Samuel J. Record collection (SJRw)

77 Model Training

Royal Museum of Central Africa (Tw) 17 Model Training

Mississippi State University (PACw) 284 Model Testing

The MADw, SJRw, and Tw specimens contributed images exclusively to the training
data set, while the test data set was obtained from only the PACw specimens.

TABLE 2 | Image data set summary.

Training
(counts)

Testing
(counts)

Total
(counts)

Number of xylaria 3 1 4

Number of taxa 98 69 105*

Number of specimens 504 284 788

Number of images 5184 1209 6393

788 specimens from 105 unique taxa (belonging to 24 genera) were prepared and
imaged to produce 6393 images for training and testing the classification models.
*The total number of taxa does not equal the sum of the training and testing counts
as not all species comprising each class were present in both the training and
testing data sets. Complete details about the class membership and training/testing
set membership of the taxa are provided in Supplementary Material 1.

classes based on their macroscopic anatomical similarity in the
following manner:

1. The genera Aesculus, Alnus, Arbutus, Betula, Carpinus,
Fagus, Frangula, Liquidambar, Liriodendron, Magnolia,
Nyssa, Ostrya, Oxydendrum, Platanus, Populus, Rhamnus,
Salix, and Tilia were assigned to 18 genus-level classes (with
genus names as labels).

2. The genus Acer was split into two classes, “hard” and
“soft,” with labels “AcerH” and “AcerS,” respectively, as
within North American Acer, hard maple (A. saccharum)
is separable from the soft maples (e.g., A. macrophyllum,
A. saccharinum, A. rubrum) based on ray widths observed
macroscopically and microscopically (Panshin and de
Zeeuw, 1980; Hoadley, 1990).

3. Species from the genera Crataegus, Malus, Prunus, Pyrus,
and Sorbus were grouped into one class, with the label
"Fruitwood," with the exception of Prunus serotina which
was its own class with the label “Prunus” as P. serotina is
wood anatomically distinct from the other fruitwoods.

A listing of the 105 taxa, their class labels and
their training/testing set membership can be found in
Supplementary Material 1.

Machine Learning Details
Model Architecture and Training
While multiple deep learning architectures for image
classification exist (e.g., Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014; Szegedy et al., 2015; Huang et al., 2017),
we employed a convolutional neural network (CNN; LeCun
et al., 1989) with a ResNet34 (He et al., 2016) backbone and a
custom 22-class classifier head (see Figure 2), based on prior
success using this architecture for wood identification (e.g.,
Ravindran et al., 2019, 2021). The CNN backbone was initialised
with ImageNet (Russakovsky et al., 2015) trained weights and
He weight initialization (He et al., 2015) was employed for
the custom classifier head. In the first stage of training, the
backbone weights were frozen, and the weights of the custom
head were optimised. The weights of the entire network were
fine-tuned during the second training stage. For both the stages,
the Adam optimizer (Kingma and Ba, 2015) with a two-phase
simultaneous cosine annealing (Smith, 2018) of the learning
rate and momentum was employed. Each mini-batch (of size
16) was composed of 2048 × 768 pixel random image patches
extracted from each of 16 images, down-sampled to 512 × 192
pixels, randomly augmented using horizontal/vertical flips, small
rotations, and cutout (Devries and Taylor, 2017), and input to
the network. Complete details about the architecture and the
adopted two-stage (Howard and Gugger, 2020) transfer learning
(Pan and Yang, 2010) training methodology can be found in
Ravindran et al. (2019) and Arévalo et al. (2021). Models with
a ResNet50 backbone were also trained and evaluated, with the
results presented in Supplementary Material 2. Scientific Python
tools (Pedregosa et al., 2011) and the PyTorch deep learning
framework (Paszke et al., 2019) were used for model definition,
training, and evaluation.
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FIGURE 2 | Model schematic. (A) The CNN architecture for our 22-class
wood identification models consisted of a ResNet34 backbone with a custom
classifier head. The custom head shown in panel (B) is comprised of global
average (A) and max (M) pooling (Goodfellow et al., 2016) layers that are
concatenated (C) to form a 1024-vector. This is followed by two fully
connected blocks (B1, B2) each with batchnorm (Ioffe and Szegedy, 2015)
and dropout (Srivastava et al., 2014) layers. The dropout layers had
parameters p = 0.5 and p = 0.25 in the B1 and B2 blocks, respectively. ReLU
activation was used in B1, while B2 had a softmax activation. The status of the
weights of the backbone and custom head, whether they are modified or not
during the two stages of training, are represented by the lock and unlock
symbols, respectively.

Model Evaluation
The predictive performance of the trained models was evaluated
using specimen level top-k accuracies with k = 1 and k = 2. The
top-1 prediction for a specimen was the majority of the class
predictions for the images contributed by the specimen. The top-
2 prediction for a specimen was obtained by equally weighted
voting of the top-2 image level predictions for the images
contributed by the specimen and the specimen was considered
correctly identified if its true class was one of the top-2 predicted
classes. The specimen level top-1 and top-2 performance of the
trained models were evaluated using fivefold cross-validation
(5184 images from 504 specimens; MADw, SJRw, and Tw
collections) and an independent test set (1209 images from
284 specimens; PACw collection). The PACw images: (i) were
obtained by a different operator using a different instantiation
of the XyloTron, (ii) were not used to train the field or cross-
validation models, and (iii) serve as a valid, practical proxy for
real field testing (Ravindran et al., 2021). Each PACw specimen
contributed up to five images for evaluation and this maximum
number of images per specimen was fixed before any model
evaluation was performed i.e., the number of images per PACw
test specimen was not tuned. Specifically, the following analyses
were performed:

(1) Five fold cross-validation analysis was performed with label
stratified folds and specimen level separation between the
folds i.e., each specimen contributed images to exactly one
fold. Specimen level mutual exclusivity between the folds is
necessary for the valid evaluation of any machine learning
based classifier for wood identification (e.g., Ravindran
et al., 2019, 2020, 2021 and as discussed in Hwang and
Sugiyama, 2021). Model predictions over the five folds were
aggregated to compute the (top-1) prediction accuracy and
a confusion matrix.

(2) The (mean) top-1 and top-2 predictive performance of the
five trained models from the cross-validation analysis on
the PACw data was computed. It should be noted that
each of the five models was trained on four folds (80%) of
the training data.

(3) All the images from the cross-validation analysis (i.e., 100%
of the training data) were used to train a separate model
(field model) which was then evaluated on the independent
PACw data. The top-1 and top-2 prediction accuracy
and the confusion matrix were computed to evaluate the
efficacy of the field model.

Misclassified Specimens
All images of the misclassified specimens in the fivefold cross-
validation model and field model were evaluated and reported as
in Ravindran et al. (2021), assigning each to one of three types of
misclassification: (1) taxa were anatomically consistent and the
test specimen was typical; (2) the individual test specimen was
atypical for the taxon (i.e., it is not an archetypal specimen for
the taxon); or, (3) the taxa and test specimen were anatomically
typical, but the classes are not anatomically consistent with each
other, and errors of this type would not be expected to be made by
a human identifier. It is important to note that these attributions
are made on a specimen basis, so while Types 1 and 3 are mutually
exclusive, the remaining combinations are possible (e.g., class A
misclassified as class B with 5 such misclassifications could show
all Type 1, all Type 2, all Type 3, combinations of Types 1 and 2
or Types 2 and 3, but never a combination of Type 1 and Type 3).

RESULTS

The specimen level prediction accuracies for the cross-validation
and field models are presented in Table 3. While the cross-
validation accuracy was 95.2%, the (mean) top-1 and top-2
accuracies were 73.5 and 85.1%, respectively, when the models
were tested on the PACw test specimens. The top-1 accuracy
of the field model was 80.6%, and the top-2 accuracy was
90.5%. Figures 3, 4 display the confusion matrices for the
cross-validation (accumulated over the five folds) and field
models, respectively.

Figure 5 presents example images of Type 1, Type 2, and Type
3 misclassifications, and summary of misclassification data for

TABLE 3 | Specimen level model prediction accuracies.

Training and evaluation details Top-k Accuracy (%)

Five fold cross-validation k = 1 95.2

Trained using four folds, tested on PACw* k = 1 73.5

k = 2 85.1

Field model trained using all five folds, tested on PACw k = 1 80.6

k = 2 90.5

*The mean top-1 and top-2 prediction accuracies over the five models are reported
with the standard deviations 4.5 and 4.1%, respectively. Accuracies in bold are
those for which a confusion matrix is provided.
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FIGURE 3 | Confusion matrix for the cross-validation model predictions on 504 specimens. The specimen-level top-1 prediction accuracy accumulated over the
fivefolds was 95.2%.

both the fivefold cross-validation model and the field model are
presented in Table 4.

When considering top-1 accuracy of the field model, 9
classes showed no misclassifications when input into the trained
model for field testing with PACw specimens: Acer (hard), Acer
(soft), Carpinus, Fagus, Frangula, Fruitwood, Ostrya, Rhamnus,
and Tilia, with the other 13 classes showing at least one
specimen misclassification (Figure 4). Of the 55 misclassified
specimens, 80% were Type 1 or Type 2 misclassifications,
with only 20% being anatomically inconsistent (Type 3)
misclassifications (Table 4). While specimens from 13 classes
were misclassified, they were attributed only to 7 classes:
Alnus, Frangula, Fruitwood, Liquidambar, Nyssa, Populus, and
Salix (Figure 4). Seven classes neither contributed nor drew

misclassifications: Acer (hard), Acer (soft), Carpinus, Fagus,
Ostrya, Rhamnus, and Tilia.

DISCUSSION

For a field-deployable image-based CVWID model for North
American diffuse porous hardwoods to make the greatest real-
world impact in law enforcement, industrial compliance, and
supply chain verification, it is critical to establish the ways
in which the model succeeded in identifying the woods and
to dissect the ways in which it failed. Prior work in the
field of CVWID has largely limited its analysis of results to
reports of overall model accuracy (e.g., Martins et al., 2013;
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FIGURE 4 | Confusion matrix for the field model predictions on 284 PACw specimens. The top-1 and top-2 specimen-level accuracies were 80.6 and 90.5%,
respectively.

Filho et al., 2014; Rosa da Silva et al., 2017; Figueroa-Mata et al.,
2018; Ravindran et al., 2019; de Geus et al., 2020; Souza
et al., 2020) with comparatively little prior work addressing
wood anatomical details of the misclassifications (Lens et al.,
2020; Ravindran et al., 2021). More detailed analyses of the
types of misclassifications can yield insights that improve
the state-of-the-art in the performance and interpretability of
CVWID technologies.

Accuracy of Cross-Validation and Field
Models
Top-1 cross-validation accuracy (Table 3, row 1) was ∼22 points
higher than when the same fivefold models were tested with
the PACw specimens (Table 3, row 2). The increase in top-
1 performance of the field model (trained on 100% of the

training data) when compared to the fivefold models trained
on 80% of the data suggests that the wood anatomy variability
captured within the full training dataset contributes to a field
model with better predictive power. Moreover, this suggests
that the wood anatomical data space may not have been fully
represented by 80% of the data, and in fact even the field model
(trained with 100% of the data) may not fully represent the wood
anatomical data space. One contributor to a richer data space is
provision of a representative and robust selection of specimens
from which images can be captured. The question of how top-
k specimen level accuracy varies with the number of image-
level predictions used to compute the specimen level prediction
is an open problem [but see Supplementary Material 2 for
the impact of the number of images per specimen (1–5) on
model prediction accuracy], but certainly should be informed
by deployment context and the wood anatomy of classes in the
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FIGURE 5 | Images of the transverse surface of test specimens (B–D) and an
exemplar (A) of the class (Populus) to which each was assigned in the field
model. All images are 6.35 mm on a side. An anatomically representative
specimen of Salix scouleriana (B) was misclassified as the wood anatomically
similar class Populus (A), a Type 1 misclassification. An anatomically atypical
specimen of Betula nigra (C) was classified as (A), a Type 2 misclassification.
An anatomically typical specimen of Platanus occidentalis (D) was
misclassified as the anatomically disparate class (A), a Type 3
misclassification. Note the anatomical similarities between panels (A,B), and
to a lesser extent panels (A,C), and the anatomical dissimilarity between
panels (A,D), especially with regard to the wide rays in panel (D).

TABLE 4 | Number and proportion of misclassified specimens from Figure 4 by
type of misclassification.

Characteristics and type of
misclassification

Number of misclassified
specimens (of 284 total

specimens)

Proportion of 55
misclassified (of 284

total) specimens

Taxa are anatomically
consistent, test specimen
typical (Type 1)

34 0.618 (0.12)

Test specimen atypical, but
with a reasonable range, for its
taxon (Type 2)

10 0.182 (0.035)

Taxa and test specimen are not
anatomically consistent (Type 3)

11 0.20 (0.039)

Total 55 1 (0.194)

Types 1 and 2 are consistent with wood anatomy and are expected errors made
by human field inspectors.
Type 3 errors are inconsistent with macroscopic wood anatomy and would not be
expected to be made by a human inspector.

model. Top-k accuracy can also be informative in a field-deployed
CVWID system when done in a human-in-the-loop context
where a human user can make a visual comparison of the
unknown to reference images of the top-k predictions. Here the
number of image-level predictions used to derive a specimen
level prediction was fixed a priori, but for a practical system this
should be informed by model calibration (Niculescu-Mizil and
Carauna, 2005; Guo et al., 2017), inter- and intra-class anatomical

variability of the woods in the model (Ravindran et al., 2018), and
probably adaptively based on predictions being performed.

Analysis of Misclassifications
When considering a confusion matrix (e.g., Figure 4), the
off-diagonal results are misclassifications, and can further
be evaluated as the propensity for an input class to be
misclassified, and/or the propensity for a predicted class to
pull or draw misclassifications, each of which can display any
of the three misclassification types (1, 2, 3), or combinations
thereof, excluding Type 1 + Type 3, as they are mutually
exclusive. To codify this concept, the terms “source” and
“sink” misclassifications are introduced, where the input
misclassified specimens are sources (i.e., the sum of the off-
diagonal predictions for each row), and the classes that draw
misclassifications are sinks (i.e., the sum of the off-diagonal
predictions for each column). For example, in a confusion matrix
with four classes A, B, C, and D (Figure 6), the on-diagonal cells
(e, j, o, t) are correct predictions. For class B, i + k + l would
be the source misclassifications, and f + n + r would be its sink
misclassifications. If classes A and B were anatomically similar,
source misclassification f and sink misclassification i would both
be Type 1 misclassifications. If A and C were anatomically
disparate, source misclassification g and sink misclassification
m would both be Type 3 misclassifications. The anatomical
characteristics of the classes and test images therefore determine
which type of misclassification is found in each cell, and this finer
grained analysis of the misclassifications may assist in designing
cost-aware loss functions for improved training (Elkan, 2001;
Chung et al., 2016) in the future, making more robust inferences
about model performance, and possibly using these insights to
inform protocols for real-world model deployment.

Table 5 presents a summary of the analysis of source/sink
misclassifications by the field model for the confusion matrix
in Figure 4. With regard to source misclassifications,
it is noteworthy that in three of thirteen classes with
misclassifications–Aesculus, Liriodendron, and Magnolia (yellow
cells)–half or more of the source specimens are misclassified.
Of particular note in source misclassifications is the class
Liriodendron (green cell), which accounts for over 63% (7 of
11) of all Type 3 source misclassifications, though it contributes

A B C D

A e f g h

B i j k l

C m n o p

D q r s t

ssalc
eurT

Predicted class

FIGURE 6 | Example 4-class confusion matrix, with classes A–D. Correct
predictions are on the main diagonal (e, j, o, t, shown shaded) and
off-diagonal cells are the misclassifications. Sums of off-diagonal elements
along a row (column) are the source (sink) misclassifications for the class.
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only 14 of 284 (∼5%) specimens to the entire test data set.
Of the seven classes showing sink misclassifications, three are
responsible for more than 85% - Fruitwood, Nyssa, and Populus
(blue cells). Fruitwood is a composite multi-generic class (see
Supplementary Material 1) but interestingly contributes no
source misclassifications while drawing nearly a quarter of sink
misclassifications.

The inter-class variability is largely limited to variations in the
vessels and the rays, as the diffuse-porous North American woods
we included have comparatively limited macroscopically visible
variation in axial parenchyma patterns. In Figure 5, the Type 3
misclassification between Populus (A) and Platanus (D) suggests
that the model’s feature detection is perhaps less sensitive to ray
width and abundance than a human identifier would be, as the
rays in Platanus are much wider and less numerous than the
abundant, uniseriate rays in Populus. A human identifier would
be expected to note this distinct difference with little trouble.
Similarly, in Figure 4, seven Liriodendron are misidentified as
class Populus, which would appear to be another instance of the
feature detection either failing to detect or the classifier failing to
weight the wider rays of Liriodendron sufficient to make a correct
classification, an error that would not be expected of human

identifier. Tools adapted from research on feature visualization
(e.g., Zeiler and Fergus, 2014; Olah et al., 2017; Qin et al.,
2018) and model interpretability (e.g., Chen et al., 2020) may
enable further understanding of the misclassifications and spur
richer methodologies that guide the CNN to emphasize human
recognised features.

On Datasets and Architectures for
Computer Vision Wood Identification
In this work strict adherence to specimen level splits was
maintained to encourage learning of generalisable features (vs.
memorizing the dataset) and for model evaluation based on
specimen identification which is the desired real world capability.
This practically relevant constraint means that despite combining
data from three xylaria at multiple institutions, our dataset is
still modest in size–even though we have hundreds of images
per class, there are only tens of unique representatives (the
specimens) per class. Unlike other datasets (e.g., Horn et al.,
2018), images used in CVWID are fully composed of the
wood tissue being imaged and do not have a foreground and
background. Additionally, for the classes considered in this study

TABLE 5 | A class-wise assessment of misclassifications for the top-1 misclassified specimens in the field model.

Class-wise proportion of all specimens (source) or all

misclassified specimens (sink)

Source Sink

Class (n specimens) Type 1 Type 2 Type 3 Total Type 1 Type 2 Type 3 Total

AcerH (9)

AcerS (9)

Aesculus (6) 0.500 - - 0.500

Alnus (8) - 0.125 - 0.125 0.018 - - 0.018

Arbutus (9) 0.111 - - 0.111

Betula (33) 0.091 0.091 0.061 0.243

Carpinus (9)

Fagus (13)

Frangula (1) - 0.018 0.018 0.036

Fruitwood (32) 0.182 0.036 0.018 0.236

Liquidambar (10) 0.100 - - 0.100 0.036 - - 0.036

Liriodendron (14) - 0.143 0.500 0.643

Magnolia (25) 0.440 0.120 0.120 0.680

Nyssa (23) 0.043 - - 0.043 0.145 0.018 0.055 0.218

Ostrya (2)

Oxydendrum (9) 0.111 - - 0.111

Platanus (3) - - 0.333 0.333

Populus (26) 0.038 - - 0.038 0.182 0.091 0.127 0.400

Prunus (16) 0.063 - - 0.063

Rhamnus (2)

Salix (13) 0.077 - - 0.077 0.018 0.018 0.018 0.055

Tilia (3)

Source misclassification proportions are the based on the total number of input specimens (n = 284).
Sink misclassification proportions are based on the total number of misclassified specimens (n = 55).
Dark grey indicates a class for which there were neither source nor sink misclassifications; light grey indicates the absence of misclassifications in either source or sink;
colored cells are proportions of note and are discussed in the text.
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the wood anatomical spatial heterogeneity is low. Given these
characteristics of CVWID data, though our ResNet34 based
model trained on the modest sized dataset (by sampling random
patches with a fixed size) yields a practically useful model,
the interplay between inter- and intra-class wood anatomical
feature variability, dataset size, architecture depth (or capacity),
and hyperparameter optimization is yet largely unexplored (an
area that we are actively exploring–Supplementary Material 2
provides results for a ResNet50 based model trained with the
same epoch budget that suggests that our dataset size may be
insufficient to leverage the higher capacity afforded by the deeper
ResNet50 architecture).

Unique scientifically collected and properly identified
specimens are a limited resource, typically found only in xylaria,
many of which are underfunded, effectively closed, or gone
altogether, though the World Forest ID project (Gasson et al.,
2021) is a noteworthy effort in opposition to this trend. The
intent of the open-source XyloTron (Ravindran et al., 2020) and
XyloPhone (Wiedenhoeft, 2020) projects is the democratization
of CVWID technology to enable research groups across the
world to contribute to a frequently updated and globally relevant
standardised wood dataset, but finding the resources to establish,
curate, and maintain such a repository remains a challenge.
Crowdsourcing technology may aid in the construction of such
curated datasets but paucity of expertise in vetting non-scientific
specimens (Wiedenhoeft et al., 2019) must be adequately
addressed to optimally leverage citizen science resources such as
Pl@ntNet (Goëau et al., 2013).

Towards Real Field Evaluation
Model evaluation with a surrogate for field testing, i.e., specimens
from a xylarium not used for model training, was a first
step towards real field testing which is the gold standard for
evaluating any wood identification technology. The polished
specimens used to train the models reflect a different surface
preparation to what occurs in the field, but prior work with
the XyloTron on Ghanaian woods (Ravindran et al., 2019)
demonstrated a similar deployment gap (drop in accuracy from
the cross validation to field testing results) even though field
specimens were prepared by knife-cut of the transverse surface
(as described in Wiedenhoeft, 2011). Based on these results
with Ghanaian woods, it is expected that the trained models
described herein can be deployed effectively in a human-in-
the-loop setting for field testing where the top predictions of
the model along with exemplar images for the predicted classes
are presented to the user for verification of the predictions
(e.g., as in the xyloinf interface for the XyloTron platform of
Ravindran et al., 2020). To derive maximum insights enabling
real deployment, any performance metric must be evaluated in
the contexts of taxonomic ambiguity, discriminative anatomical
features among the woods, and commercially or practically
relevant granularity to facilitate the formulation of practical,
useful models. To make best use of such models, strategies for
deploying them along wood product value chains to promote
sustainability should consider context-specific requirements for
each use-case. The performance of our trained models (in cross-
validation, surrogate, and future field testing scenarios) can also

serve as a strong baseline for developing and comparing future
state-of-the-art models or systems.

CONCLUSION

Employing practical, wood anatomy-driven strategies for the
development and evaluation of CVWID technologies, we
presented the first continental-scale, image-based identification
model for North American diffuse porous hard woods. Ongoing
work tackles the development of a complementary model for the
ring porous North American hardwoods and a unified North
American hardwood identification model. Operationalization of
CVWID technologies with market-relevant scale will require
the rigorous exploration of machine learning architecture
and hyperparameters, model training paradigms, performance
evaluation protocols, and evidence-based deployment strategies.
This work is a first step towards the realization of such a
practical, field-deployable, wood identification technology with
the potential to inform and impact strategies for the promotion,
monitoring, and monetization of sustainable North American
and global wood product value chains, and for enabling
biodiversity and conservation efforts.
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