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In forest tree breeding, assisted migration has been proposed to accelerate the adaptive

response to climate change. Response functions are currently fitted across multiple

populations and environments, enabling selections of the most appropriate seed sources

for a specific reforestation site. So far, the approach has been limited to capturing

adaptive variation among populations, neglecting tree-to-tree variation residing within

a population. Here, we combined the response function methodology with the in-situ

breeding approach, utilizing progeny trials of European larch (Larix decidua) across 21

test sites in Austria ranging from Alpine to lowland regions. We quantified intra-population

genetic variance and predicted individual genetic performance along a climatic gradient.

This approach can be adopted in most breeding and conservation programs, boosting

the speed of adaptation under climate change.

Keywords: assisted migration, genetic diversity, intraspecific variation, provenance trials, European larch

1. INTRODUCTION

Global temperature is likely to increase up to 1.5–2◦C by the end of the century (Lindner et al.,
2014; Pachauri et al., 2014) along with an increased frequency and intensity of extreme events
(Dai, 2011; Trenberth et al., 2014; Seidl et al., 2017; Senf and Seidl, 2021). Due to global warming
and the increased atmospheric CO2, there is a positive trend in overall forest productivity,
mainly when water restriction is not a limiting factor (Boisvenue and Running, 2006). While
the above boost in productivity is anticipated in Northern and Western European regions, the
Southern counterparts seem more threatened by intensified drought events that may decrease
survival and productivity (Lindner et al., 2010). Climate is one of the primary factors influencing
local adaptation (Howe et al., 2003; Savolainen et al., 2007). Faced with unfavorable changes in
environmental conditions, tree populations can either persist, migrate or go extinct (Aitken et al.,
2008). Both persistence and natural migration rates may not sufficiently cope with the predicted
rate of climate change (CC) (Davis and Shaw, 2001; Malcolm et al., 2002; McLachlan and Clark,
2004; Richter et al., 2012; Dyderski et al., 2018). Therefore, to reduce the impact of CC on forests,
there is an urgent need to understand and secure genetic variation to support future adaptation.

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.758221
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.758221&domain=pdf&date_stamp=2021-11-23
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lstiburek@fld.czu.cz
https://doi.org/10.3389/fpls.2021.758221
https://www.frontiersin.org/articles/10.3389/fpls.2021.758221/full


Poupon et al. Individual Tree Response Functions

Tree species are known for high levels of genetic variation
across vast geographical ranges; genetic differences are observed
at different hierarchical levels (among species, populations, to
individual trees). Additive genetic variance (σ 2

a ) is a product
of respective allelic frequencies and their direct biochemical
effects on individual phenotypes (Falconer and Mackay, 1996).
The genetic rate of adaptive response to natural selection (i.e.,
the directional change in fitness) is directly attributable to the
current σ 2

a (Fisher, 1930). Genetic variation in forest trees
has been substantially investigated in line with evolutionary
forces, human intervention and environmental change, and
explored in tree breeding programs for over a half-century,
even though selection in these programs has primarily focused
on economically important traits (e.g., height, straightness, or
disease resistance) (White et al., 2007). CC may imposes a severe
constraint to the directional natural (and artificial) selection.
Assisted migration could speed up the selection response in
adaptive traits (Gougherty et al., 2021; Sáenz-Romero et al., 2021;
St-Laurent et al., 2021).

Since the 90s, apart from conventional tree breeding, the
correlation of quantitative traits with climatic variables has
been studied in several economically important tree species
using pre-existing provenance trials (Mátyás, 1994; Schmidtling,
1994; Rehfeldt et al., 1999). Typical provenance trials are
composed of specific test sites where several populations
(provenances) originating throughout the species range are
planted. Response functions have been applied on provenance
trial data to investigate the intraspecific genetic adaptation to
climatic conditions. Two types of functions have been used:
(i) the Transfer Function (Mátyás, 1994; Thomson and Parker,
2008; O’Neill et al., 2014), and (ii) the Response Function
(Rehfeldt et al., 1999; Wang et al., 2006; Kapeller et al., 2012).
The former is used to analyze the performance of several
provenances in a specific environment. The latter tests the
performance of a particular provenance across a range of planting
conditions across different sites. Thus, transfer functions are
based on the genetic drivers, and response functions are based
on the environmental drivers of variation in fitness-related traits.
Combined with future climatic scenarios, these functions can
provide estimates of the impact of CC on forests. They can be
used as a decision support tool for seed delineation zones and
assisted migration (Leites et al., 2012).

As outlined above, response functions have been proposed
to capture adaptive variation at the population (provenance)
level, unlike the conventional breeding focusing mainly on intra-
population σ 2

a . We combine genetic evaluation and the response
function methodology to capture intrapopulation adaptive
response across environmental gradients. We demonstrate
the methodology using progeny trials of European larch
(Larix decidua) from 21 test sites in Austria ranging from
Alpine to lowland regions. We utilized height and wood
density measured directly in forest stands on individual
mature trees with reconstructed pedigree. Using the response
function methodology combined with mixed-model genetic
evaluation, we quantified the intra-population σ 2

a matching
specific genetically adapted trees to specific climatic variables.
This approach can be adopted in most forest tree species,

boosting the speed of adaptation under CC while overcoming
the practical limitations of traditional breeding and conservation
programs.

2. MATERIALS AND METHODS

2.1. Plant Material
The European larch data used in this study were previously
sampled and genetically analyzed by Lstib ◦urek et al. (2020).
We will briefly outline their methodology related to the
current investigation. Originating from a local European Larch
provenance, a clonal seed orchard was established in 1954
in the Northern Alpine region by grafting 53 phenotypically
superior parental trees. The orchard has served as a major seed
source for afforestation activities in the region. Newly established
forest stands comprise individual half-siblings, i.e., offspring
from random mating (open-pollination) among parental trees
in the orchard. One-half of the respective parentage (i.e.,
paternal gametic contributions) has originated from unknown
trees within the orchard. In 2018, 21 of these forest stands
(Figure 1, OpenStreetMap contributors, 2021) were selected
for phenotyping and genotyping, yielding potential breeding
candidates (25 to 37 years old). All sites were situated at
altitudes ranging from 280 to 760 m. Over 4,000 individuals
were measured for height and wood density, and 1,253 of
them, plus the 53 parental trees, had their DNA extracted
for microsatellite analysis. A pedigree was then reconstructed
using the likelihood-based method implemented in the Cervus
software (Marshall et al., 1998). The investigation revealed a
marginal 8.4% of parental contributions outside the orchard
(i.e., pollen contamination). In total, 491 full-sib families were
assembled, representing 35% of the possible 53-parent half-diallel
mating scheme. This assembled pedigree (Lstib ◦urek et al., 2020)
constitutes the basis for our subsequent analyses.

2.2. Climatic Data
We extracted climatic variables for the test sites from the
WORDCLIM dataset (Hijmans et al., 2005). The dataset covers
a period from 1950 to 2000 with a 1km spatial resolution of 1
km. It includes monthly temperature means, minima, maxima,
monthly precipitation sums, seasonal and annual temperatures,
and precipitation variables. Secondly, we used the random
forest model (Breiman, 2001) to identify the most important
variables. The random forest provides two types of importance
measures, the mean decrease in accuracy and the mean decrease
in node impurity (Liaw and Wiener, 2002). We selected the most
recurring variables over several runs of the model. Afterward,
we checked these variables for collinearity, and we plotted
preliminary response functions (as explained in section 2.4) to
single out the most important variable.

2.3. Genetic Evaluation
We conducted all statistical analyses in R (R Core Team, 2020)
and Rstudio (RStudio Team, 2020). We utilized the mixed-model
genetic evaluation protocol implemented within the ASReml-R
(Butler et al., 2017). Individual tree height was divided by the
respective stand age to obtain mean annual increment (MAI)
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FIGURE 1 | Map of the 21 testing sites (blue dots) spread accross North-Eastern Austria. A darker blue color means that sites are overlaping at this scale.

values comparable across all sites. MAI phenotypic values were
jointly analyzed with wood density in the bivariate animal genetic
model following the original protocol by Henderson (1984).

y = Xb+ Za+ e (1)

where y is the vector of bivariate phenotypic observations; X is
the incidence matrix for the fixed effect b (trait and site means);
Z is the genetic relationship matrix; a is the vector of additive
genetic (breeding) values, a ∼ N(0, σ 2

a ), and the random residual
effects are distributed as e ∼ N(0, σ 2

e ). The covariance matrix
for the random additive genetic effects was modeled using the
heterogeneous covariance structure as

σ 2
a =

[

σ 2
a1

σa1a2
σa1a2 σ 2

a2

]

⊗ A (2)

whereA is the average numerator relationship matrix, σa1a2 is the
additive genetic covariance between traits 1 and 2, and ⊗ is the
Kronecker product operator. The random residual error effect
was modeled using an unstructured covariance matrix structure
as

σ 2
e =

[

σ 2
e1

σe1e2
σe1e2 σ 2

e2

]

⊗ I (3)

where σe1e2 is the residual covariance between the two traits.
Random effects were assumed to be independent.

We utilized the above predictions of the fixed site effects
and calculated the respective all-pairwise differences. Next, we
trimmed the dataset so that each half-sib family was represented
in at least six sites to achieve even representation of families
while maximizing their distribution across multiples sites

(see Kapeller et al., 2012; Foff et al., 2014; Suvanto et al., 2016 for
a similar number of test sites). For each individual, we calculated
the predicted phenotypic performance for the MAI (further
denoted as PMAI) as a sum of the overall mean, respective site
effect, and the individual additive genetic (breeding) value (BV)
from the bivariate additive genetic model.

2.4. Response Function
We developed individual- and population-level univariate
response functions (RF) to describe the within-population
genetic variation following major climatic gradients. We tested
the linear, quadratic, and Gaussian models as they have been
predominantly used in previous studies (Wang et al., 2006;
O’Neill et al., 2007, 2014; Leites et al., 2012; Sáenz-Romero
et al., 2017). The linear model did not yield a significant
fit. Contrastingly, both the quadratic and Gaussian models
showed significant fit. The shape of the response function was
almost identical, and so was Akaike Information Criterion (AIC).
Below, we present the quadratic model that we selected.

vjk = β0 + β1cj + β2c
2
j (4)

where v is the estimated mean height at the site j for parent k; β0,
β1, and β2 are regression coefficients; c is the climatic variable at
planting site j.

3. RESULTS

Using the bivariate animal genetic model, we obtained significant
narrow-sense heritability for height (h2 = 0.27, SE = 0.07) and
wood density (h2 = 0.30, SE = 0.07), respectively. We observed
negligible additive genetic correlation between the respective
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FIGURE 2 | Parental trees are sorted by additive genetic values. The BVs

(dots) are expressed in the units of measurement (cm/year). 95% approximate

confidence intervals (dashed line) were calculated as two times the standard

errors.

traits (ra = 0.09, SE = 0.20). Our data did not show a significant
genotype by environment interaction (GxE), as shown earlier by
Lstib ◦urek et al. (2020). Summary of the model fit statistics (full
and reduced model) are provided in Supplementary Table S2.

Experimental site effects (considered fixed) were found
statistically significant (p < 0.01). 87% of all pairwise differences
between sites were statistically significant (p < 0.05). Details are
provided in Supplementary Table S1. In Figure 2, BVs for MAI
are plotted with their respective confidence intervals showing the
extent of additive genetic variation present within a random set
of 31 parents. The BVs are ranging from –5 to 6.4 cm (average BV
is zero).

For the response function modeling, the seven variables with
the highest importance were selected (Supplementary Table S3):
altitude, minimum temperature of January and December, mean
temperature of the coldest month (MTMC),mean temperature of
December, andmaximum temperature of January andDecember.
All of them were highly collinear, with pairwise correlations
> 0.85. The preliminary response functions showed similar
results for each variable. Finally, we decided to retain only the
MTCM, as it explains over 69% of the variability in our data
according to the Random Forest model. Following the regression
analysis, the adjusted coefficient of determination R2

adj
in the

quadratic model for the RF at the population level was 0.32%with
p < 0.001 (Figure 3). The PMAI culminates at 65 cm/year for a
MTCMof -2.2◦C. The 21 boxplots represent the range of families’
PMAIs at each testing site. For example, we can see the boxplot
of site B16 with both the lowest MTCM and PMAIs values in the
lower-left corner.

In Table 1, the number of individuals per half-sib family (Nb)
varies from 35 to 120. This uneven number is explained because it
is a product of natural crosses among parents; hence the families’
sizes were only revealed at the pedigree reconstruction stage.

FIGURE 3 | Population RF with R2
adj of 0.32. PMAIs are plotted against the

sites’ MTCM. Boxplot were plotted for each site. The black dots represent the

outliers. The gray band represents the curve’s 95% confidence interval. Sites

are from the left to right: B16, B18, B11, B12/B20, B6/B7/B5/B13, W3,

B4/B3, A/B9/N, W4, B2/B1/H2, T1/T2 (sites separated by a “/” have the same

MTCM but are plotted next to each other for a clearer plot).

In Supplementary Figure S1, we report no statistical association
between Nb and the mean model’s R2

adj
; however, the model’s

R2
adj

variability is higher for families with a smaller number of

offspring. At the half-sib family level, the R2
adj

ranged from 0.06 to

0.64 with a median value of 0.27 (Table 1, Figure 4). All p-values
of the RFs curve fitting were significant (p < 0.05), except one
(genotype L2).

In Figure 4, we plotted the response curves of all families
to provide an overview of the variation in PMAIs found in the
data. Some families showed substantial variation in PMAIs. For
example, the genotype S23 rises above all the others in PMAI,
but only for a narrow range of MTCM. With lower or higher
MTCM, this genotype performs poorly compared to the other
families. Some families showed less steeped curves. For example,
genotype S7 does not rise as high as genotype S23 but surpasses
most genotypes along the whole studied MTCM gradient with
a more rounded curve. Half-sib families culminate at different
PMAIs, ranging from 62 to 70 cm/year, with genotypes L2/S11
and S23, respectively. Similarly, there was a difference among the
MTCM optimums of the families with a range of−2.4 to−1.6◦C
for the genotypes S23 and S12, respectively (Figure 4).

4. DISCUSSION

Phenotypic data were regressed onto random genetic and fixed
site factors using the mixed linear animal genetic model. The
genetic variation observed in this study resembles typical values
for height and wood density in conifers (White et al., 2007), thus
app. one-third of phenotypic variation is attributable to direct
allelic effects. This, along with the presence of climatic gradients,
is a prerequisite to efficient response function fitting, as shown
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TABLE 1 | Summary of the quadratic models for each half-sib family.

Family Nb R2
adj

p-value

L1 107 0.26 ***

L2 47 0.06 0.091

L3 45 0.56 ***

L5 70 0.33 ***

L6 58 0.11 0.014

L7 46 0.23 ***

L8 75 0.47 ***

L10 71 0.31 ***

L11 54 0.51 ***

L13 53 0.21 ***

L15 66 0.11 0.008

L16 42 0.22 0.003

L17 119 0.13 ***

L17a 43 0.10 0.041

S1 54 0.24 ***

S2 59 0.29 ***

S5 45 0.32 ***

S6 100 0.22 ***

S7 44 0.10 0.045

S9 68 0.15 ***

S10 35 0.33 ***

S11 64 0.28 ***

S12 39 0.20 0.007

S15 104 0.34 ***

S16 70 0.09 0.016

S18 58 0.32 ***

S19 39 0.64 ***

S21 120 0.31 ***

S23 37 0.42 ***

S24 80 0.48 ***

S25 54 0.45 ***

Nb is designating the number of individuals per family, R2
adj is the adjusted coefficient of

determination, *** p < 0.001.

in Figure 3. The choice of MTCM as our climatic gradient is
supported by Foff et al. (2014), who found that cold temperature
is an important limiting factor of growth in European Larch. As
the GxE interactions were not significant in the present study,
there is a general tendency of the genotypes to keep the same
ranking across all environments (see Figure 4). However, our
results showed some response functions with a clear change in
rank and/or variance across the MTCM. Therefore, one may
select a set of genotypes that are performing well across all sites
and combine them with those, that are performing best only in
specific environments. In the case of significant GxE, one may
start with calculating first-order partial derivatives with respect
to climate variables of planting location and provenance origin
(Wang et al., 2010; Chakraborty et al., 2015).

Compared to traditional breeding trials, the proposed
methodology minimizes resources for establishing the actual
experiments because all activities (phenotyping, genotyping)

FIGURE 4 | RF at the family level (solid and dashed lines). PMAIs are plotted

against the MTCM of the testing sites.

take place in operational afforestation sites with a designated
seed source. Further, uneven gametic contributions within and
among the respective sites are optimally accounted for within
the combined genetic evaluation protocol, i.e., multi-site animal
genetic model. Unlike the traditional breeding programs relying
on transfer within and among fixed-seed zones, the current
approach is flexible. Seed transfer delineation is dynamic in line
with particular CC development.

There are possible pitfalls of this proposed strategy that
should be addressed here. Although used in many studies, the
quadratic model fitting is a simplistic representation of the
trait response to the environment. It assumes a physiological
response that increases to a maximum value, then drops
immediately (Leites et al., 2012). In reality, the curvature
results from a multidimensional space of adaptive topography
reflecting a specific genetic architecture of quantitative traits.
The actual underlying function is likely non-linear and
non-parametric. An additional limitation is related to the
future adaption of the new plantations established from the
offspring of the selected parents. While these would be
better adapted to new climatic conditions in the short term,
evaluating the long-term selection response across multiple
generations is more complicated. Repeated cycles of selection
would affect the environmental sensitivity depending on the
functional characteristics of the reaction norms (Kolmodin
et al., 2003). Optimizing the long-term methodology across
multiple selection cycles should be the subject of future
research.

The particular finding of our investigation can be seen as
a case study demonstrating that combining in-situ large-scale
genetic evaluation with response function methodology works.
Compared to the current methodology of response functions,
we are adding the opportunity to utilize the intra-population
genetic variation that can further boost the adaptive response
to CC. Ultimately, one would be interested in combining
the provenance-based response function methodology with the
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presented intra-population approach. We are suggesting to
optimize gene contributions from the two genetic hierarchical
levels utilizingmethods that were initially developed in forest tree
breeding to optimize artificial selection (Lindgren et al., 1993).
Assisted migration would then follow optimum contributions,
thus maximizing overall adaptive response across a range of
environmental conditions while maintaining sufficient levels of
genetic diversity (Sáenz-Romero et al., 2021).

The suggested methodology could be practically implemented
as follows. (1) identification of a common seed source
representing a specific population, i.e., a provenance, (2)
phenotypic evaluation followed by pedigree reconstruction
(Lstib ◦urek et al., 2015), (3) phenotypic measurements across
multiple sites combined with the pedigree in multivariate
statistical analysis to predict the genetic merit of individual
trees, (4) selection of principal environmental gradients
influencing the studied traits, and (5) development of
the individual- and population-level RFs to describe the
genetic variation along prevalent environmental gradients,
(6) selection of the best-adapted reforestation material
accounting for genetic diversity (Funda et al., 2009), and
(7) transfer of the adapted forest reproductive material to the
target location.
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