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Recent advances in automatic recognition systems based on deep learning technology
have shown the potential to provide environmental-friendly plant disease monitoring.
These systems are able to reliably distinguish plant anomalies under varying
environmental conditions as the basis for plant intervention using methods such as
classification or detection. However, they often show a performance decay when applied
under new field conditions and unseen data. Therefore, in this article, we propose an
approach based on the concept of open-set domain adaptation to the task of plant
disease recognition to allow existing systems to operate in new environments with
unseen conditions and farms. Our system specifically copes diagnosis as an open
set learning problem, and mainly operates in the target domain by exploiting a precise
estimation of unknown data while maintaining the performance of the known classes.
The main framework consists of two modules based on deep learning that perform
bounding box detection and open set self and across domain adaptation. The detector
is built based on our previous filter bank architecture for plant diseases recognition and
enforces domain adaptation from the source to the target domain, by constraining data
to be classified as one of the target classes or labeled as unknown otherwise. We
perform an extensive evaluation on our tomato plant diseases dataset with three different
domain farms, which indicates that our approach can efficiently cope with changes of
new field environments during field-testing and observe consistent gains from explicit
modeling of unseen data.

Keywords: open-set recognition, domain adaptation, plant diseases, unknown data, new environments

INTRODUCTION

Plant disease recognition concerns many farmers and researchers in agriculture. Once a plant
is affected by diseases, the damage can be easily propagated to the entire crop, causing then
several productions and economical losses (Carroll et al., 2017). In conventional farming, crop
inspection has been carried out by specialists in the field, which requires a higher level of expertise
to understand the complexity of plants and their interactions with factors that cause anomalies
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(Gelder et al., 2005). This task has been often related to time-
consuming, laborious, and subjective. In this regard, over the
last few years, several works mainly based on deep learning and
computer vision have presented solutions to address this problem
using methods such as image classification and object detection
(Liu and Wang, 2021). This technology has the potential to
reduce the negative impacts of plant diseases by a prompt
estimation of the damage using non-intrusive sensors such as
RGB cameras (Boulent et al., 2019). Deep learning-based systems
have achieved higher recognition and at the same time have
contributed with environmental-friendly tools to perform plant
state monitoring.

Recent works often rely on classification or detection systems
that distinguish between diseases in real-time for various types
of crops. Classification methods predict the type of disease
using the features of the whole input image, while detection
methods estimate both localization and type of disease. These
systems have achieved higher performance when the trained
models are evaluated in the same or at least similar farm
conditions (Ferentinos, 2018). However, a weak performance
can be obtained when a model has been trained on a particular
dataset (source domain) but evaluated in data from new farms
or under different conditions (target domain). This problem
has been mainly associated with the capacity of deep neural
networks to generalize well in the presence of domain shift,
which frequently happens when a system is exposed to limited
information provided by datasets that are practically inadequate
to cover the large variety of target domains. Domain shift, in this
case, is affected by different visual appearances, encouraged by the
types of diseases and infection stages, illumination, background,
and plant cultivation time.

Existing approaches for plant disease recognition make
a closed-set assumption and perform supervised domain
adaptation. This assumption is, however, unrealistic as for most
real applications, the target domain contains multiple images,
but only a small part of it belongs to the classes of interest.
The universe of plant diseases is limited to those that have
been included in the model during training. Also, this type of
domain adaptation requires labels for the new data. In practice,
much of this information is novel to the system and is often
associated with one of the source categories, which could lead to
wrong predictions during inference. This problem is frequently
also related to the training data, as it is difficult to obtain and
scarce (Barbedo, 2018). Although there are currently annotated
datasets available, the collected images generally differ from the
type of data that a system should process when it is applied
to the real world. Moreover, domain shift can be particularly
distinguishable on data collected across farms, where a subset
of classes representing the positives for the source domain can
be changed, then some existing classes can be disappeared or
some new classes could emerge. Therefore, we need to take the
“open set” concept for the system to recognize these new classes
as an “unknown class” rather than assigning them as one of the
existing classes.

Early works in deep learning have studied the open-set
problem, which is concerned with approaches that are aware
of unseen data (Prabhu et al., 2019; Geng et al., 2020). In

FIGURE 1 | Recognition problem of plant diseases with open set domain
adaptation. Our framework addresses open set domain adaptation at
farm-level and across different farms. Known classes represent existing
classes in the source domain, while unknown classes represent non-existing
ones. Since data may vary across farms and throughout the cultivation time,
many changes could appear while dealing with novel information.

this article, we aim to cope with the gap between the varying
characteristics of data used for training and inference, through
domain adaptation by transferring data features of the visual
classifier from the source domain to the target domain for plant
diseases recognition across different farms. Figure 1 illustrates
the recognition problem in the context of our work. Our problem
space is extended to both domain-level and class-level. Domain-
level can be referred to the conditions of the farm, while class-
level represents the types of diseases. Classes include several
“known” classes and an “unknown” class. Then, the system
operates as follows: Given unknown data, it can tell they are
unknown, and given same classes from different farms, it can
recognize them as the same.

To summarize, the main contributions of this article are as
follows:

- We propose an architecture to address the paradigm of
novel data for plant disease recognition. Our proposed
method leverages the capabilities of our previous
works to address more complex challenges of new
greenhouse scenarios.

- Our approach allows performing open set self and across
domain adaptation between different greenhouse farms
evaluated in our tomato diseases dataset. Particularly, we
study domain adaptation using data collected at three
different farms. All claims are experimentally evaluated.

- We provide a set of guidelines to analyze the logic
behind the recognition of novel data. This approach can
allow us to make the system more adaptable to real-
world environments.

- We provide theoretical insight and empirical evaluation
to demonstrate the capabilities of the proposed system to
enhance the performance of plant disease detectors.

The remainder of the article is introduced as follows. Section
“Related Works” presents an analysis of related works in open set
recognition and plant diseases recognition. Section “Open Set Self
and Across Domain Adaptation for Plant Disease Recognition”
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FIGURE 2 | Traditional Open Set vs. Open Set for Plant Diseases. The first one (A) contains a universe of data that can be part of the known categories or unknown
otherwise. However, in the task of plant diseases (B), we further consider the following conditions: (1) The source where the data has been collected (farm), and (2)
the plant states, such as the presence of diseases that can be different at each site. ? represents the unknown data. The dotted boxes represent the portion of data
used for training (inside the box) and testing (outside the box) respectively.

FIGURE 3 | Open set domain adaptation settings. Unknown data is presented only in the target domain. Data from the source and target domains come from
different farms, therefore data variation is evident. Additionally, a background class is included to provide contextual information of the greenhouse.

describes the core of our open-set domain adaptation approach.
Section “Experimental Results” shows the experimental settings
and results. Finally, Section “Conclusion” concludes the article
and presents some guidelines for future works in the field.

RELATED WORKS

In this section, we briefly review recent works related to the
proposed approach. According to the constraints of the recent
advances in plant disease recognition, these methods fall mainly
into closed set domain adaptation. In this direction, open set
domain adaptation is referred to as a potential solution to
overcome these issues, as a more robust system that can address
challenges in real farm conditions.

Plant Disease Recognition
Plant disease recognition focuses on the estimation of symptoms
that occur in the plants due to disease contamination and cause
risks to the crops. Recent advances have shown prominent

results to address the problems of plant diseases using non-
destructive media such as images (Lee et al., 2020). This
research field has been considerably developed throughout
recent years. Solutions in this area mainly fall into two
categories: classification and detection. Classification methods
take advantage of the feature distribution of images with a
unique label to provide the type of disease in the plant. Early
works in the area used Convolutional Neural Networks (CNN)
to extract features from images and subsequently classify them
into different categories (Mohanty et al., 2016). This idea has
been applied to various types of crops such as tomato (Fuentes
et al., 2017a), cassava (Ramcharan et al., 2017), grapes (Liu
et al., 2020), strawberry (Xiao et al., 2020), among others.
However, limitations in this concept rely, for instance, on
situations when multiple diseases appear in the same sample
or the type of affection has a local or global influence in the
plant. In this case, although classification-based methods are
simpler to develop and lighter in terms of computational cost,
they could fail when applied to real scenarios with varying
environmental conditions.
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FIGURE 4 | Overall architecture of the proposed work. The system is composed of two blocks: bounding box detector and open set domain adaptation. (A) The
bounding box detector generates the required bounding boxes using the refinement filter bank method (Fuentes et al., 2018). (B) Open set domain adaptation
utilizes the set of regions generated by the detector to perform open set recognition by domain adaptation of the source domain (labeled known classes) to the
target domain (unlabeled known classes + unknown class). Please see Figure 5 for a detailed description of the components in (B).

FIGURE 5 | Open set domain adaptation module. “Source farm” represents the data (labeled) of the environments used for training the source domain model. Data
(unlabeled) for the target domain comes from a different “Target farm” to test the model on unseen samples which belong to either one of the known classes or
unknown class.
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TABLE 1 | Tomato plant diseases dataset and data availability by farm for open set domain adaptation.

No. Class Farm data availability Number of annotated
bounding boxes

Number of bounding boxes
after data augmentation

Farm 1 Farm 2 Farm 3

1 Leaf mold × × 7,178 35,890

2 Gray mold × × 523 2,615

3 Canker × × 618 3,090

4 Powdery mildew × × 6,277 31,385

5 Tomato yellow leaf curl virus (TYLCV) × 12,918 64,590

6 Healthy × × × 12,252 61,260

7 Background × × × 2,469 12,345

8 Tomato chlorosis virus (ToCV) × × 4,190 20,950

9 Plague × 598 2,990

10 Miner × × 2,328 11,640

11 Whitefly × × 1,701 8,505

12 Whitefly egg × × 6,314 31,570

13 Magnesium deficiency × 584 2,920

14 Physical damage × × × 1,767 5,835

TOTAL 59,717 295,585

FIGURE 6 | Representation of the greenhouses used to collect images of tomato plant diseases and pests. Each place has different conditions and visual variations.
(A) Farm 1, (B) Farm 2, and (C) Farm 3.

Methods based on detection, on the other hand, synthesize
samples more objectively by providing the type of disease and
location in the image through the class probability and the
bounding box information, respectively. In our previous work
(Fuentes et al., 2017b), we presented a baseline framework based
on deep learning that can detect 10 types of diseases and pests
in tomato plants. In Fuentes et al. (2018), we extended (Fuentes
et al., 2017b) and proposed a technique called “refinement filter
bank” to cope with the problems of class imbalance and false
positives. Recently detection-based recognition has been also
applied to other types of crops and diseases. Liu and Wang
(2020) proposed a method to detect tomato gray leaf spots
using a network based on YOLO-v3. Sharpe et al. (2020) uses
YOLOv3 to perform goosegrass detection in strawberry and
tomato plants. Kim et al. (2020) proposed a two-stage cascade
disease detection model applied to strawberry plants. Afonso
et al. (2020) extended the use of deep learning for tomato fruit
detection and counting in greenhouses. Fuentes et al. (2019)
addressed the problem by combining bounding box information
with a text description.

Although both classification and detection strategies have
achieved higher performance when trained and evaluated in
the same or similar field conditions with defined classes. The
situation turns out to be more complex, such as when a system is
applied to real-field conditions, an unknown world of objectives
could appear in the scene. In this case, a weak performance
could be observed, and the problem can be associated with
either the capacity of the network to generalize well in the
presence of domain shift or the dataset could not cover the large
variety of target domains. A system is then severely affected
by visual variations and other objects in the scene. Therefore,
our proposed research addresses these issues through open set
domain adaptation.

Open Set Domain Adaptation
The interest in studying domain adaptation techniques for
computer vision problems has been recently increased as a
way to address realistic problems that can be faced in various
applications. In real-world recognition tasks, which are limited
by various factors, it is usually difficult to collect training
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TABLE 2 | Calculation of the openness level for domain
adaptation based on Eq. 1.

Number of classes Openness (%)

Training Testing Target

14 14 14 0

4 9 9 0.33

2 14 14 0.62

1 14 14 0.73

samples that cover all types of variations. A more realistic
scenario is, therefore, to treat the problem as an open set
recognition approach. Scheirer et al. (2013) and Geng et al. (2020)
define some basic categories such as “known-known classes
(KKCs),” “known unknown classes (KUCs),” “unknown known
classes (UKCs),” and “unknown-unknown classes (UUCs).”
Depending on the application, these terminologies could be
adapted to classification, anomaly detection, one-shot or few-
shot learning, zero-shot learning, and open set recognition, where
the goal of the last one, is to identify known classes and reject
unknown classes.

Differently from closed-set domain adaptation which focuses
on mitigating the impact of the domain gap between source
and target domains using mainly feature adaptation (Long et al.,
2015; Ganin et al., 2017) and generative models (Hoffman et al.,
2018; Russo et al., 2018), in open set domain adaptation an
incomplete knowledge of the world is presented during training,
and unknown data can be submitted during testing, requiring the
classifier to effectively not only classify the known categories but
also deal with the unseen ones.

Based on the above concept, several strategies have been
recently proposed to deal with the issues associated with open
set domain adaptation aiming to compensate the domain shift
between the source and target datasets (Perera and Patel, 2019;
Busto et al., 2020) studied transfer learning for multiple class
novelty detection using the knowledge of external datasets to
learn negative information of objects that fall outside of the
known training data. More relevant to our work, Busto and Gall
(2017) explores the field of domain adaptation in open set where
only a few categories of interest are shared between the source
and target data. In this approach, unknown data is presented
at both source and target datasets. Saito et al. (2018), on the
other hand, utilized adversarial training to extract features that
separate unknown targets from known target samples. Differently
from Busto et al. (2020), this method has access to only known
source samples and unlabeled target samples for open set domain
adaptation. You et al. (2019) introduced “Universal Domain
Adaptation (UDA)” which requires no prior knowledge on the
label sets. UDA uses a criterion to quantify the transferability
of each sample by integrating both the domain similarity and
the prediction uncertainty to automatically discover a common
label set and also recognizing unknown samples. Also, (Kundu
et al., 2020) designed a self-adaptive model that captures the task-
specific knowledge from a vendor’s source domain and transfers
this knowledge to a client’s target domain, calling this strategy
“inheritable models”.

In open set domain adaptation, the level of openness also
matters. This is measured by the proportion of unknown classes
in the target domain. Scheirer et al. (2013) formalized the
“openness” of a problem by considering the number of target
classes to be identified, the number of classes used in training, and
the number of classes used in testing. Liu et al. (2019) studied the
openness of the target domain and presented an approach based
on domain adversarial learning called “separate to adapt” using
a coarse-to-fine weighting mechanism to separate the samples of
unknown and known classes.

In our work, we apply the treats mentioned above and explore
methods to learn plant disease diagnosis models with open set
domain adaptation. We aim to handle domain-shift among the
samples in the dataset to further build a framework capable of
dealing with complex cases of real greenhouse scenarios. Also, to
the best of our knowledge, there is no available literature on the
application of open set domain adaptation in the area of plant
disease recognition.

OPEN SET SELF AND ACROSS DOMAIN
ADAPTATION FOR PLANT DISEASE
RECOGNITION

In this section, we describe the assignment of the target samples
to categories of the source domain. Also, we introduce the
training strategies to address these challenges. Finally, we show
how the mapping from the source domain to the target domain is
estimated from the previous definitions, and how this influences
to label samples that do not match the desired conditions as
“unknown.”

General Settings
Let y represent the universe of samples in the dataset that
should be diagnosed. Among those samples, data can be either
part of specific categories or unknown, as shown in Figure 2.
Let Cs = [c1, c2, c3, ..., cn] represent a set of n classes in the
dataset. Open set recognition has been traditionally implemented
by dividing the dataset into known and unknown categories.
However, in the task of plant diseases, as a real-world application,
data is collected not only on a single farm but across multiple
farms LF = [F1, F2, F3, ..., Fn]. Therefore, although we study
the same type of crop, the conditions and plant states can
differ from farm to farm. Plants at each farm could be affected
by similar or different types of diseases and, also depending
on the scenario of application, various conditions such as
illumination and background could be observed. Additionally,
once deployed, a model may encounter cases that could belong
to any of the known categories or declare them as unknown
otherwise. In this setting, we want to prevent misdiagnosis of
data and instead recommend an additional procedure for those
particular samples. Figure 2 illustrates the problem of open set
recognition in both, traditional open set and open set for plant
disease recognition.

To address open set domain adaptation, we study the actual
scenario where unknown data is presented only in the target
domain. Figure 3 shows a representation of our open set
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TABLE 3 | Performance of the bounding box detector (mAP).

Class FRCNN-VGG-16
(Fuentes et al.,

2017b)

SSD-ResNet-50
(Fuentes et al.,

2017b)

RFCN-ResNet-50
(Fuentes et al.,

2017b)

Filter
Bank-ResNet-50

(Fuentes et al., 2018)

Filter Bank v2 –
ResNet-50 FPN

(Proposed)

Leaf mold 0.8910 0.8421 0.8591 0.9312 0.9637

Gray mold 0.7935 0.7745 0.7810 0.8823 0.9004

Canker 0.8400 0.8300 0.8562 0.9451 0.9524

Powdery mildew 0.6321 0.8145 0.7748 0.9745 0.9619

Tomato yellow leaf curl virus (TYLCV) 0.8500 0.7680 0.8610 0.9498 0.9641

Healthy 0.8913 0.8540 0.8875 0.9614 0.9600

Background 0.9005 0.8841 0.8921 0.9450 0.9296

Tomato chlorosis virus (ToCV) 0.9111 0.8600 0.9098 0.8745 0.9433

Plague 0.8510 0.8409 0.8641 0.9710 0.9745

Miner 0.7856 0.7963 0.8447 0.8143 0.9310

Whitefly 0.8301 0.8298 0.8492 0.9580 0.9604

Whitefly egg 0.7800 0.7511 0.7720 0.9213 0.9314

Magnesium deficiency 0.7824 0.7892 0.7545 0.9821 0.9796

Physical damage 0.7548 0.6301 0.6847 0.8946 0.9145

mAP 0.82095 0.8046 0.8279 0.9289 0.9476

Values in bold represent the best performance obtained for each class with respect to the applied models.

TABLE 4 | OS* accuracy (%) of the known classes across the combination of farms, averaged over three runs on the tomato diseases dataset.

Openness (%)1 Farms

F1-to-F2 F1-to-F3 F2-to-F1 F2-to-F3 F3-to-F1 F3-to-F2

0 94.30 89.45 91.02 92.78 90.01 93.58

33 92.14 84.14 86.98 88.50 83.57 89.80

62 85.85 80.02 83.12 86.01 79.18 80.45

73 73.05 69.48 72.04 78.36 68.44 71.59

1The % of openness is calculated using Eq. 1 as shown in Table 2.

domain adaptation setting. In plant diseases diagnosis, unknown
data correspond to the set of conditions that are rare to find
on the farm or novel diseases that are not included in the
source dataset utilized for training. In this open set setting,
our goal is to cope with diagnosis without using any prior
information of unknown data in the source domain. We aim
to train a model that is capable of diagnosing data from
source classes Cs while avoiding misdiagnosis of data from
target classes Ct . Additionally, a background class is included
in the source domain to add context information of the
greenhouse environment.

Open Set Domain Adaptation
Assuming a dataset with samples belonging to specific classes,
in open set domain adaptation (Liu et al., 2019), we have a
source domain Ds =

{(
xi, yi

)}ns
i=1 with ns labeled samples and

a target domain Dt =
{(

xj
)}nt

j=1 with nt unlabeled samples. The
source domain consists of a set of classes Cs that are also part
of the target domain. However, the target domain is further
associated with additional classes that represent unknown data.
Then, training domain adaptation can be addressed by assuming
a certain level of openness in the dataset. This openness level
refers to the relationship of classes used for training, testing, and

target. Following (Scheirer et al., 2013), the level of openness in
the dataset is introduced as follows:

openness = 1−

√
2 ×

∣∣training classes
∣∣∣∣testing classes

∣∣+ ∣∣target classes
∣∣ (1)

This relationship yields the percentage of openness of the
problem and fits our application since some classes in the source
domain are also part of the target domain. For a fixed number
of classes in the source domain, increasing the number of classes
in the target domain also increases openness. Different values
of openness should be then evaluated to determine the one that
perfectly matches the application.

In the context of our application, potential solutions should
optimize the recognition of known classes, as well as unknown
samples. Different from a closed set setting, in which a new test
sample is likely associated as one of the known classes, in open
set recognition, a system should be able to label an input as one
of the known classes or assign it as unknown otherwise.

System Overview
Toward open set domain adaptation, first, our system learns to
transfer features from the source to the target domain to then
addressing the problem associated with domain shift between
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FIGURE 7 | Recognition of known classes vs. unknown class on the target dataset. (A) OS* accuracy over the known classes. (B) Accuracy of the unknown (UKN)
class. Bars represent the openness levels from 0% (closed-set) to 33%, 62%, and 73%. (C) Confusion matrix of domain adaptation from Farm 1 to Farm 2
(F1-to-F2) with openness of 0% (closed-set) and 33% for the known classes. (D) Confusion matrices for some known classes and unknown class. The label
abbreviations represent the following classes: back, background; gmold, gray mold; lmold, leaf mold; powder, powdery mildew; tocv, tomato chlorosis virus; wfly,
whitefly; eggfly, whitefly egg; magdef, magnesium deficiency; phydam, physical damage.

the datasets used for training and test operations. The main
difficulties are, therefore, those associated with the problem
of negative transfer and known/unknown separation. Negative
transfer is referred to the problem when a system learns to match

the whole target domain with the source domain causing also
that unknown data also match with the source domain, which
consequently leads to negative transfer of information. The other
challenge is to separate the known/unknown data in the target
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TABLE 5 | OS accuracy (%) for all classes including unknown across the combination of farms, averaged over three runs on the tomato diseases dataset.

Openness (%)1 Farms

F1-to-F2 F1-to-F3 F2-to-F1 F2-to-F3 F3-to-F1 F3-to-F2

0 93.07 88.75 89.00 90.56 89.01 92.60

33 86.48 82.48 84.47 83.04 79.63 87.98

62 79.40 76.01 77.45 79.70 74.08 75.78

73 62.31 60.01 63.04 65.48 61.13 59.13

1The % of openness is calculated using Eq. 1 as shown in Table 2.

TABLE 6 | OS, UNK, and HOS accuracies (%) averaged over three runs on the tomato diseases dataset.

Open
(%)1

Farms

F1-to-F2 F1-to-F3 F2-to-F1 F2-to-F3 F3-to-F1 F3-to-F2

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

0 94.30 83.05 88.32 89.45 76.15 82.27 91.02 83.25 86.96 92.78 84.32 88.35 90.01 85.38 87.63 93.58 82.03 87.43

33 92.14 80.42 85.88 84.14 75.20 79.42 86.98 73.10 79.44 88.50 76.04 81.80 83.57 71.65 77.15 89.80 66.25 76.25

62 85.85 76.01 80.63 80.02 71.43 75.48 83.12 70.26 76.15 86.01 75.15 80.21 79.18 67.05 72.61 80.45 63.46 70.95

73 73.05 61.48 66.77 69.48 58.09 63.28 72.04 61.43 66.31 78.36 67.72 72.65 68.44 57.32 62.39 71.59 60.18 65.39

1The % of openness is calculated using the Eq. 1 as shown in Table 2.

domain. A potential solution, in this case, is to adapt the features
of the source domain which contains information of the known
classes to the target domain.

We follow the facts mentioned above to design our approach
for open set domain adaptation toward the recognition of
plant diseases. Our proposed architecture consists of two
main components: (1) Bounding box detection, (2) Open set
domain adaptation.

Figure 4 presents a general overview of the proposed
framework. For each input image, the function of the bounding
box detector is to obtain the bounding boxes and corresponding
classes of the regions of interest containing plant diseases. Then,
the domain adaptation unit learns to assign a target sample to
either its respective known class or unknown otherwise. The
constraints in this operation include those based on the distance
measure to increase the robustness of the system concerning
various types of data that can be found in real greenhouse
scenarios. Finally, an output image shows the detected regions.
We describe in detail each unit of the system below.

Bounding Box Detection
The bounding box detector is based on our previous work
for plant disease recognition using a refinement filter bank
(Fuentes et al., 2018). This architecture utilizes the capabilities
of a detector to generate the corresponding Regions of Interest
(ROIs) that contain the location and type of diseases. The
promising ROIs are then used as input to the filter bank for
verification. In this part, misclassified samples are filtered out by
training independent CNN classifiers for each class. The main
objective of this framework is to determine whether a sample
corresponds effectively to the detected category (True) or not
(False) otherwise. The output of this block is a set of refined
bounding boxes. Therefore, we found that this architecture is

suitable to achieve the function of the bounding box detector in
the proposed approach. Please refer to Fuentes et al. (2018) for
more detail on the characteristics of the detector.

Open Set Domain Adaptation
This is the core of the proposed research at which we address
the problems associated with domain shift between data used
as source and target for the training and test operations (See
purple block in Figure 4). Our work is particularly focused on
associating a subset of the target samples to the known classes
of the source domain or as an unknown class, and computing a
representation from the source domain to the target domain by
minimizing the distances of the corresponding samples.

The architecture for open set domain adaptation is
summarized in Figure 5. The proposed design is carried
out based on the following two steps:

- Source domain model: This model captures the features of
known classes distributed in the source domain. Given a
set of classes Cs in the source domain Ds =

{(
xi, yi

)}ns
i=1

with ns labeled samples, the feature extractor Fs includes
a backbone CNNs and fully connected layers Es. The
classifier G contains two parts: a source classifier Gs for the
known classes, and a control classifier Gn to add contextual
information bn. The control samples represent regions that
do not correspond to any type of disease, but parts of
the farm background to add contextual information to
the system (See the background class in Figure 3). The
output ŷs is obtained by concatenating the features of Gs
and Gn followed by a softmax function σ that categorizes
samples of the source domain while including also negative
information for class separability. The response of Gs
(source data) is maximized, by also maximizing the
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response of Gn with respect to the background samples.
Training the source domain model involves using a cross-
entropy loss function in two steps: First, Ls = LCE

(
ŷs, ys

)
is

used to train the source data Ds, where ŷs = σ (Gs (Fs (ns))),
then by freezing the features of CNNs, negative instances Dn
are generated from bn and training Es, Gs, Gn using Ln =

LCE
(
ŷn, yn

)
, where ŷn = σ

(
Gn
(
Es
(
bn
)))

. The total loss in
the source domain is obtained as follows,

LDs = Ls + Ln (2)

where Ls and Ln represent the source and negative loss,
respectively. Once the source domain is trained, the system
owns features from both source data and negative data.

- Domain adaptation: By domain adaptation, we aim to
cover the gap of the domain-shift between the source and
target data. Like the source model, domain adaptation
starts with a given set of classes Dt =

{(
xj
)}nt

j=1with nt

unlabeled samples of the target farm. In this case, features
from the source domain model (source farm) are utilized
as an initial point to transfer information from known
labeled classes and background class to the target domain
(target farm), then Fs and G are frozen. An input data nt
goes in two directions: first, it is passed through Fs and
G using finetuning. Then, features are obtained by Ft from
CNNt and Et to further, by classification in Gt generating
the features of the target domain. The output ŷp is then
obtained by concatenating the responses of Gs and Gt
followed by the softmax function σ. At this point, the task
is to maximize the probability in case the sample belongs
to one of the known classes by yp = max

ci ∈ Cs
[σ (G (Fs (nt)))].

Training the domain adaptation model aims to minimize
the following function:

LDt = LCE
(
ŷp, yp

)
(3)

where, ŷp = σ (G (Ft (nt))). Minimizing this function
allows us to efficiently determine if a sample belongs
to either one of the known classes or unknown class in
the target domain.

Finally, the output of the system is an image with the detected
plant diseases if they coincide with any of the corresponding
known classes of the source domain. Otherwise, these regions are
labeled as unknown.

Evaluation Metrics
Bounding Box Detector
In line with (Fuentes et al., 2018), we evaluate the performance of
the bounding box detector using the following metrics:

- Intersection-over-Union metric (IoU): We utilized a
threshold of 0.5 to capture true positive detections
generated by the model, as:

IoU =
∣∣∣∣A ∩ B
A ∪ B

∣∣∣∣ (4)

where A and B represent the ground-truth and predicted
box, respectively.

- Mean Average Precision score (mAP): mAP is the area under
the precision-recall curve calculated for all classes.

AP =
1

11

∑
r∈[0,0.1,...,1]

Pinterp (r) (5)

Pinterp(r) = max
r̃: r̃ ≥ r

p (r̃) (6)

where, Pinterp(r̃) is the maximum precision for any recall
values greater than r, and p(r̃) is the measured precision at
recall r̃.

Domain Adaptation
Following (Saito et al., 2018), the usual metrics adopted to assess
the performance of the open set domain adaptation framework
are the normalized accuracy over the known classes OS∗, and
the accuracy of the unknown class UNK. These two metrics are
usually combined in OS as a measure of the overall performance.
Additionally, following (Bucci et al., 2020), we further evaluate
the performance using the harmonic mean of OS∗ and UNK
(HOS). HOS provides a high score only if the algorithm performs
well both on known and on unknown samples, independently
of the number of classes K. Therefore, using HOS instead of a
simple average penalizes large gaps between OS∗ and UNK. The
evaluation metrics are presented below:

- Normalized accuracy over the known classes (OS∗):

OS∗ =
1
K

K∑
k=1

Acck (7)

- Normalized accuracy over all classes including the unknown
(OS):

OS =
1

K + 1

K+1∑
k=1

Acck (8)

where k represents the number of known classes.

- Harmonic mean of OS∗ (HOS):

HOS = 2
OS∗ × UNK
OS∗ + UNK

(9)

EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed open
set domain adaptation approach for plant disease recognition.
We design the experiments to support our claims, then: (1)
we provide a framework for plant diseases recognition that can
operate in real greenhouse scenarios, (2) we address the problem
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of domain shift between the datasets used for training and testing,
respectively, (3) our model can efficiently transfer the features of
the source domain to the target domain and perform recognition
in unseen data of different farm environments.

Dataset Settings
We carried out experiments and validate the performance of our
approach on our tomato plant diseases dataset (Fuentes et al.,
2017b, 2018). This dataset has been collected and updated over
the last 5 years at different locations and farms in South Korea
using various types of camera devices. It includes several
variations associated with real scenarios of greenhouses such as
illumination, scales, sizes, and plant states with various infection
stages. To validate the performance of the proposed approach,
we selected three specific farms with different conditions and
data variations.

The dataset consists of 12 types of tomato plant diseases,
pests, and physiological disorders, plus two additional classes
that contain healthy leaves and regions of the background,
respectively. Details on the dataset are presented in Table 1. The
number of samples represents the annotated bounding boxes
before and after data augmentation. We used extensive data
augmentation such as geometric and intensity transformations to
increase the size of the dataset as in Fuentes et al. (2017b).

Farm Data Distribution
To make our dataset able to be used for domain adaptation such
as the representation shown in Figure 2B, we considered the case
of data collected at three different locations and farms described
as F1, F2, F3. This is a particular case of domain adaptation of
various scenarios toward building a more robust system by taking
the visual characteristics from one place to another. Here, we
assume that the conditions of each greenhouse farm are different,
for instance, in terms of illumination, materials of the structure,
and surrounding objects. Also, because some diseases or pests
can appear commonly throughout the farms, while others appear
only in some of them. A representation of the farms used for data
collection is presented in Figure 6.

During our study, we used data collected on both modern and
traditional greenhouse structures. Modern greenhouses appear
to have clear backgrounds, hydroponic crop management, and
automatic control of the cultivation processes, while more
traditional greenhouses tend to have darker backgrounds due to
the structure materials, and also plants are cultivated in the soil.
This, consequently, can be reflected in the types of diseases and
pests that can be found on each farm.

Types of Diseases and Pests
For our study, we selected the most common tomato plant
diseases and physiological disorders that occur in Korean farms
such as leaf mold, gray mold, canker, powdery mildew, tomato
yellow leaf curl virus (TYLCV), tomato chlorosis virus (ToCV),
plague, magnesium deficiency, and physical damage. Also, some
pests like miner, whitefly, whitefly egg. Additionally, we included
another class of healthy leaves and a background class that is
particularly used for adding contextual information about the
visual characteristics of the greenhouse and surrounding areas of

the plant. The availability of data by farm and class is presented
in Table 1.

Source and Target Datasets
Considering the data availability for each class, to build up
the source and target datasets for domain adaptation, our
experiments are focused on the following combinations across
three different farms: F1-to-F2, F1-to-F3, F2-to-F1, F2-to-
F3, F3-to-F1, F3-to-F2. Correspondingly, we train the source
domain using data from one farm and transfer its features to
the other domain.

Known and Unknown Classes
To assign, the number of classes that are used for training and
testing the source and target domains, respectively, we used the
formula described previously in Eq. 1 with different levels of
openness. In this way, we evaluate the response of the system to
the percentage of known and unknown classes. We used different
values of openness such as 0, 33, 62, and 73%, respectively. 0%
represents the case of closed-set recognition, which is the case
when we apply the same number of classes for training and
testing. Table 2 shows the calculated openness level based on the
number of training, testing, and target classes.

Implementation
We applied the settings mentioned above for training and testing
the model across three different domain farms. The complete
model is implemented in the following two stages:

Bounding Box Detector
We used the architecture of Fuentes et al. (2018) as the bounding
box detector for ROI recognition introduced in the section
“System Overview.” As the core implementation, the model
consists of a primary diagnosis function implemented based on
Faster R-CNN with VGG-16 network as the feature extractor.
However, differently from the original version, here, we utilized
a ResNet-50 with Feature Pyramid Network (FPN) as the feature
extractor, because of its potential for detecting objects at various
scales. We named this version “Filter Banks v2” in Table 3. The
secondary diagnosis unit and integration units are implemented
using the same configuration as the original version. Table 3
presents a performance comparison of existing methods for
bounding box detection.

Our Filter Bank v2 (proposed) detector provides an accurate
yet efficient alternative to obtain refined regions while avoiding
the false positives in the final prediction. We trained and validated
the detector on the entire tomato plant diseases dataset to
obtain the set of bounding boxes and their corresponding classes.
We used an Intersection over Union (IoU) threshold of 0.5.
A representation of the bounding boxes generated by the detector
can be seen in Figure 3.

Open Set Domain Adaptation
Once the regions of interest corresponding plant diseases have
been obtained from the output of the detector, we defined the
known and unknown categories to be used as part of the source
and target domains, also taking into account the information of
the farm. We used an ImageNet pre-trained ResNet-50 model
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FIGURE 8 | Training losses. (A) Source training loss. (B) Adaptation loss. (C) Target training loss.

as the base CNN feature extractor (Figure 5), where the last
fully connected layer was replaced with the task-specific FC
layers to parameterize the classifier. We finetuned the pre-trained
layers and trained the newly added layers where the learning
rate is adjusted along the training process. Domain adaptation
has been evaluated across multiple combinations of the three
farms utilized in this study. Evaluation results are presented in
terms of OS∗, OS, and HS introduced earlier in Eqs. 7, 8, and 9,
respectively. Details on training and testing the source and target
domains are presented below:

- Source domain: We trained the model on the source
dataset with known classes. We used a batch size of 64
for 30,000 iterations. Validation is performed every 30
iterations and the learning rate has been adjusted to 0.001.

- Target domain: Like training the source domain, we
used a batch size of 64 to train the target domain with
the known and unknown classes for 30,000 iterations.
However, validation is performed every 500 iterations and
the learning rate has been adjusted to 0.0001.

Quantitative Results
We evaluated the performance of the bounding box detector and
the open set domain adaptation module across the combinations
of three farms, with the openness levels presented in Table 2. The
results of the experiments are presented as follows.

Performance of the Bounding Box Detector
In this experiment, we evaluate the performance of the bounding
box detector compared to other existing methods, and report the
mAP calculated with Eq. 5. As mentioned earlier, the core of
the bounding box detector is based on our previous work using
filter banks for plant disease recognition (Fuentes et al., 2018).
The only difference with the current detector is the application
of the feature extractor ResNet-50 with a feature pyramid
architecture (FPN) to make the system able to distinguish
object at various scales, especially the small-scale objects such
as miner, whitefly, and whitefly eggs. We trained the detector
to recognize bounding boxes and types of diseases and obtained
an outstanding performance of mAP 94.76% compared to other
existing methods used for the similar task, which represents an
improvement of 1.8% compared to Fuentes et al. (2018) using the
current dataset. Table 3 presents the results of this experiment.

Accuracy in the Target Domain
Accuracy Over the Known Classes (OS∗)
In this experiment, we evaluate the performance of domain
adaptation from the source to the target dataset over the known
classes. To calculate this value, we used the metric introduced
in Eq. 7. Table 4 shows the accuracy across the combination of
farms using different levels of openness such as 0% which is the
case of closed-set, 33, 62, and 73%, respectively. We present the
OS∗ accuracy averaged over three runs on the regions of interest
(ROIs) containing plant diseases obtained from the detector.

The system efficiently recognized samples from the known
categories. However, as the level of openness increases, the
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FIGURE 9 | Examples results of known and unknown classes on the tomato plant diseases and pests dataset. To obtain these results, we used an openness level of
33%. The label abbreviations represent the following classes: lmold, leaf mold; powder, powdery mildew; yculr, tomato yellow leaf curl virus (TYLCV); tocv, tomato
chlorosis virus; wfly, whitefly; eggfly, whitefly eggs; magdef, magnesium deficiency.

performance showed some decay in all cases. Among the
combinations of farms, we found that F1-to-F3, and F3-to-F1,
were the most challenging cases. On one side, Farm 1 (F1), as
shown earlier in Figure 6A, represents the case of a modern type
of greenhouse with clear background and appropriate control
system, while Farm 3 (Figure 6C) shows the case of a more
traditional type of greenhouse which is more common to find.
Transferring features from one domain to the other domain
represents, therefore, an issue as the visual characteristics of both
farms are different since we get access to more data variations.
Differently, transferring features from F1-to-F2 and F2-to-F3
showed the best results, respectively. Compared to closed-set
recognition (0%), where we obtained an accuracy of 94.30% for
the best case on F1-to-F2, and similarly, for the other cases, open-
set still shows weakness. Conceptually at closed-set recognition,

we used the same number of classes for training and testing, that
is 0% openness. Figure 7A shows a visualization of the accuracy
of known classes. There, we can evidence the performance
difference of closed-set recognition against open-set recognition
with different openness values.

Accuracy Over All Classes Including Unknown (OS)
In this experiment, we evaluate the capability of the model to
address the recognition of data from both known classes and
unknown in the target dataset. To calculate this value, we used
the metric presented in Eq. 8. Table 5 shows the OS accuracy
averaged over three runs on the ROIs (target dataset) obtained
from the detector. For evaluation, given unknown data, the
system should tell they are unknown. Similarly, given know data
they should be recognized as the same. This is a representation
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of the particular case where the system has to deal with new
types of diseases or disorders once applied to a new greenhouse
environment different from the ones used for training.

In this case, recognizing unknown data over the wide
spectrum of variations presented in the target dataset is more
challenging. Unknown data could include samples that do not
match any of the known classes and are presented only in the
target domain. The results demonstrate a further performance
decay at a larger level of openness, but the system is still able to
recognize unknown data.

As in the previous experiment, a closed set configuration
generates better performance than the open set. However, what
we intend to demonstrate exactly with our work is a more realistic
scenario to improve the ability of a model to be able to recognize
new unknown classes. This could be the case when the system
finds unknown or new diseases on new farms. Therefore, the level
of openness gives the idea of this scenario.

Harmonic Mean of OS∗
As presented earlier in the section “Quantitative Results” and
Eq. 9, HOS represents a more realistic estimation of the
recognition problem, as it provides a high score only if the
algorithm performs well both on known and on unknown
samples, independently of the number of classes. Therefore, using
HOS penalizes large gaps between OS∗ and UNK. Following
(Bucci et al., 2020), we compare the performance of the model
using three metrics.

Table 6 presents the comparison of the calculated accuracies.
By analyzing these three metrics, we can notice the performances
difference between the recognition of known classes against
the unknown class in all cases. Recognizing the unknown class
is more challenging, and therefore, in this type of open-set
domain adaptation systems, it is important to independently
measure the recognition of the unknown class to understand the
capabilities of the model in this recognition task. Additionally,
HOS reflects better the open set scenario for both known classes
and unknown class.

This experiment also validates the domain adaptation across
the three farms. We evidence that transferring features from
F1-to-F2 and F2-to-F3 farms, results in higher accuracy than the
other cases. However, the performance decays as the openness
value is increased. Figure 7 shows a representation of the
accuracy differences between OS∗ accuracy for the known
classes (Figure 7A) against the accuracy of the unknown
class (Figure 7B) at different openness values. Similarly, we
can observe the performance of closed-set (0% openness)
against open-set recognition (33, 62, and 73% openness). The
performance of known classes is higher than the unknown.
Also, in both cases, the performance decays as the level of
openness is increased. This result further demonstrates the
complexity of transferring features across domains with different
conditions and data.

To further validate the performance of the proposed approach,
we present the confusion matrices of domain adaptation from
one farm to another. We selected Farm 1 to Farm 2 (F1-to-F2)
to visualize the changes for two values of openness from 0%

representing the closed-set case, and 33% representing the open-
set case, respectively. First, Figure 7C presents the performance
in the known classes. Here, we can observe the types of diseases
and their influence in the final prediction as the level of openness
increases. Generally, healthy and leaf mold classes obtained
higher recognition priority as compared to the rest of the classes.
Less influential, but still recognized, are the rest of the classes.
Additionally, we can visualize that as the level of openness
increases, some of the classes show slight levels of confusion with
the other classes.

Figure 7D presents the confusion matrices for the cases of
the unknown class along with the known classes. Here, we
can observe the tendency of classes that tend to contribute to
the recognition of the unknown class. Similarly, as the level
of openness increases, samples that do not match with the
features of any of the known classes are recognized as unknown.
Therefore, we can observe a higher tendency of data to be
recognized as unknown.

Training and Loss Curves Across Domains and Farms
Figure 8 presents the resulting training losses and accuracy
curves for the implementation of domain adaptation across the
three domain farms utilized for our study. The system learned to
adapt appropriately from one domain to the other, and data from
known classes as well as novel information added in the target
domain is effectively recognized.

Qualitative Results
Figure 9 shows some example qualitative results generated
by the system on the testing dataset. For this experiment,
we used an openness level of 33%. The system satisfactorily
detected various types of diseases and physiological disorders
that affect tomato plants. Also, in case a region does not
match the features of the known classes, it is labeled
as unknown. Despite the complexity of the greenhouse
environments used for domain adaptation, our approach
showed further robustness to address the detection of objects
with various scales and damage stages. We believe part
of the reason lies in the feature transformation procedure
from various domains to feed more features and context
information to the system. Specifically, when transferring
features from the source domain to the target domain,
our feature adaptation implicitly aggregates information from
other greenhouse environments, and thus produces stable
detection results.

CONCLUSION

In this article, we presented an approach for open-set domain
adaptation for plant disease recognition to allow existing systems
to operate in new environments with unseen conditions and
farms. Our system specifically addressed diagnosis as an open
set problem by mapping the features of the source and target
domains to potentially improve the performance of the known
classes while treating changes that happen in real farm conditions
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as unknown information. The main framework consists of two
modules that perform bounding box detection and open set
domain adaptation. We performed an extensive evaluation on
our tomato plant diseases dataset across three different domain
farms. An interesting future direction is, to explore the adaptation
of the model to more farms with the possibility of extending the
study to more diseases and variations, as well as to other types of
crops. Also, improve the potential of the model to compensate for
the deterioration in performance due to the level of openness.
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