
fpls-12-757869 October 15, 2021 Time: 16:19 # 1

ORIGINAL RESEARCH
published: 21 October 2021

doi: 10.3389/fpls.2021.757869

Edited by:
Marcos Egea-Cortines,

Universidad Politécnica de Cartagena,
Spain

Reviewed by:
Cristian Silvestri,

University of Tuscia, Italy
Pedro Pablo Gallego,

University of Vigo, Spain

*Correspondence:
Andrew Maxwell Phineas Jones

amjones@uoguelph.ca

Specialty section:
This article was submitted to

Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 12 August 2021
Accepted: 30 September 2021

Published: 21 October 2021

Citation:
Pepe M, Hesami M, Small F and
Jones AMP (2021) Comparative

Analysis of Machine Learning
and Evolutionary Optimization

Algorithms for Precision
Micropropagation of Cannabis sativa:

Prediction and Validation of in vitro
Shoot Growth and Development

Based on the Optimization of Light
and Carbohydrate Sources.
Front. Plant Sci. 12:757869.

doi: 10.3389/fpls.2021.757869

Comparative Analysis of Machine
Learning and Evolutionary
Optimization Algorithms for
Precision Micropropagation of
Cannabis sativa: Prediction and
Validation of in vitro Shoot Growth
and Development Based on the
Optimization of Light and
Carbohydrate Sources
Marco Pepe1, Mohsen Hesami1, Finlay Small2 and Andrew Maxwell Phineas Jones1*

1 Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON,
Canada, 2 Department of Research and Development, Entourage Health Corp., Guelph, ON, Canada

Micropropagation techniques offer opportunity to proliferate, maintain, and study
dynamic plant responses in highly controlled environments without confounding external
influences, forming the basis for many biotechnological applications. With medicinal
and recreational interests for Cannabis sativa L. growing, research related to the
optimization of in vitro practices is needed to improve current methods while boosting
our understanding of the underlying physiological processes. Unfortunately, due to
the exorbitantly large array of factors influencing tissue culture, existing approaches
to optimize in vitro methods are tedious and time-consuming. Therefore, there
is great potential to use new computational methodologies for analyzing data to
develop improved protocols more efficiently. Here, we first tested the effects of light
qualities using assorted combinations of Red, Blue, Far Red, and White spanning 0–
100 µmol/m2/s in combination with sucrose concentrations ranging from 1 to 6%
(w/v), totaling 66 treatments, on in vitro shoot growth, root development, number of
nodes, shoot emergence, and canopy surface area. Collected data were then assessed
using multilayer perceptron (MLP), generalized regression neural network (GRNN), and
adaptive neuro-fuzzy inference system (ANFIS) to model and predict in vitro Cannabis
growth and development. Based on the results, GRNN had better performance
than MLP or ANFIS and was consequently selected to link different optimization
algorithms [genetic algorithm (GA), biogeography-based optimization (BBO), interior
search algorithm (ISA), and symbiotic organisms search (SOS)] for prediction of
optimal light levels (quality/intensity) and sucrose concentration for various applications.
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Predictions of in vitro conditions to refine growth responses were subsequently tested in
a validation experiment and data showed no significant differences between predicted
optimized values and observed data. Thus, this study demonstrates the potential
of machine learning and optimization algorithms to predict the most favorable light
combinations and sucrose levels to elicit specific developmental responses. Based
on these, recommendations of light and carbohydrate levels to promote specific
developmental outcomes for in vitro Cannabis are suggested. Ultimately, this work
showcases the importance of light quality and carbohydrate supply in directing plant
development as well as the power of machine learning approaches to investigate
complex interactions in plant tissue culture.

Keywords: artificial neural networks, biogeography-based optimization, genetic algorithm, interior search
algorithm, in vitro culture, neuro-fuzzy logic, symbiotic search organism algorithm

INTRODUCTION

The multifaceted value of Cannabis sativa L. (cannabis) as
a quality fiber, seed oil, and therapeutic crop have been
recognized for millennia (Sandler et al., 2019; Hesami et al.,
2020). Over the past two decades, interest relating to its
medicinal applications have largely been emphasized due to the
discovery of over 500 unique secondary metabolites (ElSohly
and Gul, 2014). Of these compounds, there are more than
100 cannabinoids that contribute to cannabis’ pharmacological
properties (Fathordoobady et al., 2019). Medicinal use can
relieve symptoms associated with glaucoma, nausea, irritability,
epilepsy, chronic pain, etc. (Barrus et al., 2017), showing potential
to revolutionize the pharmaceutical industry, and technologies
related to extraction and administration of bioactive compounds
(Fathordoobady et al., 2019; De Vita et al., 2020). Due to
the important industrial implications of drug-type cannabis,
it is imperative to establish methods for the production of
high quality biomass with consistent secondary metabolite
profiles, which is achievable in part through micropropagation
(Chandra et al., 2020).

Since many nations have adopted the more liberal view
of cannabis, it’s since gained higher economic status as an
industrial crop, and additional secondary products such as extract
derivatives are expected to further amplify economic expansion
(Moher et al., 2020). The need to maintain product consistency,
while supporting innovation and development (Burgel et al.,
2020) requires a better understanding of the physiological
responses of cannabis to external stimuli. Research initiatives
are needed to optimize current production strategies, enhancing
our recognition of, and the precision at which we can invoke
specific physiological responses to fit an assortment of industrial
applications. Micropropagation offers unique opportunities to
produce and maintain extensive populations of genetically
uniform plantlets in time and cost-effective systems (Nathiya
et al., 2013). Tissue culture techniques can be applied to examine
essential plant responses to external stimuli in highly controlled
environments under axenic conditions for biotechnological
(Shukla et al., 2017), conservation (Ayuso et al., 2019), and
various –omics related technologies (Andre et al., 2016). These

approaches can be re-applied to suit the needs of the emerging
cannabis industry.

Until recently, cannabis micropropagation has largely been
an underground effort with few peer reviewed studies. This lack
of insight concerning in vitro cannabis techniques has limited
biotechnological utility of this crop (Smýkalová et al., 2019).
While the current cannabis boom has led to the emergence
of numerous in vitro protocols (Lata et al., 2016; Galán-Ávila
et al., 2020; Wróbel et al., 2020), a robust and efficient protocol
has yet to be fully developed. Several intrinsic (e.g., genotype,
type, and age of explant) and extrinsic (e.g., basal salt medium,
vitamins, plant growth regulators (PGRs), gelling agents,
carbohydrate source, additional additives, temperature, and
light) factors (Figure 1) influence in vitro shoot growth and
development and contribute to challenges in reproducibility
(Hesami and Jones, 2020). Most previous studies in cannabis
have investigated the effect of basal media, along with different
types and concentrations of PGRs for shoot growth and
regeneration (Movahedi and Torabi, 2015; Chaohua et al., 2016;
Lata et al., 2016). Clonal line proliferation using apical and nodal
explants on medium with reduced PGRs has been demonstrated
as an effective approach for non-medicinal cannabis, while
reducing the amount of emergent genetic variability (Wróbel
et al., 2020). A cannabis micropropagation approach truly
optimized for cross-cultivar maintenance and proliferation
should allow formative physiological development on a pathway
to photoautotrophic competence, coaxed through abiotic
conditioning in the absence of PGRs. Though certain in vitro
propagation, embryogenesis, and regeneration procedures rely
on PGRs, many beneficial physiological characteristics can be
induced or enhanced by appropriately adjusting light quality,
quantity, and carbohydrate supply. In vitro shoot growth and
development may be achieved or enhanced by manipulating light
and sugar in the absence of PGRs.

Though micropropagation protocols show promise to advance
certain aspects of the cannabis industry, there remain issues with
conventional in vitro systems. Photosynthetically incompetent
organs, and fragile roots are phenotypic traits commonly
observed in cultures (Jha and Bansal, 2012). Anatomical
variations tend to be culture-induced, emerging with high
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FIGURE 1 | A schematic representation of factors influencing in vitro culture.

humidity, elevated PGR concentrations, low light intensity, and
high substrate water potential, causing physiological disorders
such as hyperhydricity (Majada et al., 2000). These abiotic
factors, along with limited culture CO2 availability, and potential
for ethylene accumulation frequently impede photosynthetic
responses (Nguyen et al., 2001), complicating the ex vitro transfer
of specimens (Nathiya et al., 2013). Due to such limitations, new
cultures must be supplied alternative carbon sources to maintain
metabolic activity in otherwise daunting, closed environments
(Eckstein et al., 2012). Sugar occurrence allows continuous
plantlet development under low irradiance (Cioć et al., 2018),
commonly used in vitro. A standardized addition of 3% (w/v)
sucrose to the micropropagation media helps to counteract short-
term, negative environmental impacts by providing substitute
carbohydrates to elicit photo-mixotrophic metabolism (Gago
et al., 2014). In vitro sucrose levels impact plantlet physiology
by regulating genes relating to primary and secondary metabolic
function (Yang et al., 2012). While supplemental carbon supply is
a necessity for early-stage explants, developing plantlets can build
sucrose dependence (Lembrechts et al., 2015), further limiting
idealized physiological function and subsequent ex vitro re-
localization. Conversely, previous work has also demonstrated
that sugar can have positive effects on plantlet development under
different environmental conditions in vitro (Kozai et al., 1987;
Roh and Choi, 2004; Eckstein et al., 2012).

Although the occurrence of sucrose often activates
photomixotrophic metabolic responses, light nevertheless
bears high influence over in vitro success (Miler et al., 2019).

Sugar and light signal essential metabolic processes which govern
the condition of cultured plantlets (Eckstein et al., 2012). Though
low light intensity in vitro hampers photosynthetic efficiency,
overly high intensities can limit synthesis of photo-absorptive
pigments and damage certain components of the photosynthetic
apparatus (Cioć et al., 2018). Since high light levels throughout
different culture stages can be stressful to developing plantlets,
substitute carbon sources can help elicit photo-protective
responses, indicating a possible sugar/light signaling pathway for
photo-protection (Eckstein et al., 2012). Thus, photosynthetic
limitation in vitro could largely be more related sub-optimal
abiotic conditions in the presence of exogenous sugar, rather than
the impact of the sugar itself (Arigita et al., 2002). Chloroplast
localization (Eckstein et al., 2012), leaf area index (Snowden
et al., 2016), and leaf thickness are influenced by changes
in light quantity and quality (Silvestri et al., 2019). Proper
development of these traits can increase photoabsorption
saturation point (Macedo et al., 2011), enhancing plantlet fitness.
Sustainable adjustment of the abiotic conditions combined
with exogenous sugar can improve protective and repair
responses (Tichá et al., 1998; Eckstein et al., 2012), allowing
plantlets to more effectively sequester and utilize otherwise
excessive and damaging photo-irradiation. Preliminary work
conducted by our lab points in this direction in the case on
micropropagated cannabis. Modifying abiotic factors and
their interactions with sugar-related dynamics, is sometimes
overlooked in micropropagation (Eckstein et al., 2012). Thus,
research surrounding the potential to improve tissue culture
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protocols by optimizing abiotic influence and sugar-related
dynamics should be thoroughly pursued.

The use of light emitting diodes (LEDs) for plant tissue culture
allows strategic manipulation of light quality and intensity,
impacting biomass and secondary metabolite accumulation of
various species (Manivannan et al., 2015; Al-Mayahi, 2016; Ucar
et al., 2016; Cioć et al., 2018). Cool fluorescent lights have been
popular for conventional micropropagation systems (Fanga et al.,
2011) due to relatively low energy consumption, heat dissipation,
and cost. However, they deliver light at wavelengths outside of
the photoabsorptive range and lack control over spectral quality,
which limits its power over physiological conditioning (Bello-
Bello et al., 2016). There exists an established dogma that blue
light (B) heavily influences chloroplast development, chlorophyll
production, and stomata functionality, while red light (R)
influences carbohydrate localization, and various anatomical
processes such as leaf expansion (Hung et al., 2016; Ucar
et al., 2016). Various combinations of these wavelengths can
mutually and individually persuade shoot and root elongation
(Ramírez-Mosqueda et al., 2017). LED technologies hold
significant potential in the pursuit of plant growth in controlled
environments, including plant tissue culture (Fontana et al.,
2019). Control over spectral composition with LEDs allows
wavelength emission that match photoreceptor action spectra
to more directly trigger morphogenic responses (Li et al.,
2010), while limiting heat dissipation, and energy consumption
(Zhao et al., 2020). Photomorphogenic responses are primarily
prompted by light quality through phytochrome reception of R
and far-red light (Fr), and cryptochrome absorption of B (Miler
and Zalewska, 2006), which largely shape plant development and
physiology (Legris et al., 2019).

Despite the apparent simplicity of light quality and intensity,
it is a complex factor comprised of nearly infinite potential
mixtures which interact with other factors such as sucrose levels
to influence in vitro shoot growth and development as a non-
linear, multifactorial, and complex process. The establishment
and optimization of in vitro culture protocols have been principal
challenges for many tissue culture researchers. Historically,
micropropagation systems have been developed through serial
manipulation and optimization of single factors, individually.
Conventional statistical methods such as simple regression and
ANOVA have typically been recommended for small databases
with limited dimensions, and are therefore inappropriate for
analyzing data derived from complex and non-linear processes
such as light quality (Hesami et al., 2021b; Yoosefzadeh-
Najafabadi et al., 2021a). The high probability of overfitting is
one of the main disadvantages of using conventional statistical
methods (Jafari and Shahsavar, 2020; Yoosefzadeh-Najafabadi
et al., 2021b). Using conventional statistical methods, some of
the puzzle pieces of in vitro practices have been sequentially
assembled. However, many factors in tissue culture systems
remain unoptimized. To overcome such setbacks, different
factors can be simultaneously optimized through precision
in vitro culture techniques using machine learning methods
(Figure 2). In recent years, machine learning algorithms such
as artificial neural networks (ANNs) and neuro-fuzzy logic have
been successfully applied for modeling and predicting various

in vitro culture systems such as shoot growth and development,
callogenesis, somatic embryogenesis, androgenesis, secondary
metabolite production, and rhizogenesis (Hesami and Jones,
2020; Niazian and Niedbała, 2020). However, in most plant
tissue culture studies, individual models were employed, and the
efficiency of different machine learning algorithms has not been
compared (Hesami et al., 2021c).

There exist two general groups of optimization methods.
Classical optimization algorithms include dynamic programming
(DP), linear programming (LP), stochastic dynamic
programming (SDP) which have limitations restricting their
flexibility and efficiency. For instance, LP requires objective
function and constraint to be linear, which is not ideal for
plant tissue culture. Conversely, evolutionary optimization
algorithms are considered more powerful mathematic methods
for solving complex, multidimensional problems such as
designating optimal factors for micropropagation with high
accuracy and pace (Hesami and Jones, 2020). Although there
are different types of evolutionary optimization algorithms, the
genetic algorithm (GA) has been applied to the vast majority
of plant tissue culture optimization studies relating to shoot
proliferation, secondary metabolite production, and somatic
embryogenesis. Despite the advantages that GA imparts over
classical methods, premature convergence can sometimes lead to
failure in obtaining a fully optimized solution (Hosseini-Moghari
et al., 2015). To overcome this, new evolutionary optimization
algorithms, including biogeography-based optimization (BBO),
interior search algorithm (ISA), and symbiotic organisms
search (SOS) have been developed. These approaches have been
evaluated in different fields of study (Mokhtari Fard et al., 2012;
Hosseini-Moghari et al., 2015; Bozorg-Haddad et al., 2016;
Moravej and Hosseini-Moghari, 2016), and are expected to be
superior in optimizing plant tissue culture protocols.

The current study tests the combined effects of B (400–
500 nm), R (600–700 nm), Fr (700–800 nm), and White
(W) (400–700 nm) (Figures 3, 4) light at different intensities,
and carbohydrate concentrations on shoot length, root length,
number of nodes, number of shoots, and canopy surface
area. Data collected were assessed using machine learning and
evolutionary optimization algorithms to predict and optimize
these factors for cannabis maintenance and proliferation in vitro.
Predictions were then tested in a validation experiment to identify
the best optimization algorithm for in vitro plant applications.
Ultimately, the research presented will facilitate development of
current practices for maintenance, proliferation, and acclimation
of micropropagated cannabis, boosting our understanding of
the dynamics between light and sugar-related plantlet responses,
while identifying superior predictive analytic practices to guide
future experimentation.

MATERIALS AND METHODS

Plant Material and Experimental Design
In this study, the effects of different light qualities, intensities
and sucrose concentrations were evaluated for shoot growth,
canopy surface area, and additional growth parameters, using
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FIGURE 2 | A schematic representation of different classes of machine learning algorithms.

the medicinal strain of cannabis “UP-802” supplied by Hexo,
Brantford, ON. To this end, four plantlets per treatments were
cultured in single Magenta boxes, allowing one experimental
unit per treatment. Stock UP-802 specimens were maintained in
cultures supplemented with 30 g/L sucrose, maintained under
16-hr photoperiod with 75% R, 12.5% B, and 12.5% W LEDs at
50 µmol/m2/s. Both stock and experimental plantlets were grown
at approximately 26◦C. Non-experimental media components
included 5.32 g/L DKW with vitamins, 1 mL/L plant preservation
mixture, and 6 g/L (w/v) agar. Media pH was adjusted to 5.7
prior to agar addition, sterilization, and use with NaOH and HCl.
Chemicals were obtained from PhytoTech Labs.

To test the multivariable influences of sugar and light quality
(intensity and spectrum) on in vitro cannabis development,
plantlets were grown for 6-weeks with alternative sucrose
concentrations, in compartmentalized light treatments.
Programmable LED lights were used to provide light, allowing
different combinations of B (400–500 nm), R (600–700 nm),

Fr (700–800 nm), and W (400–700 nm) (Figures 3, 4) light at
specific intensities between 0 and 100 µmol/m2/s. The FinMax1

programmable LED lighting system was developed in-house to
empower photobiology research with precise lighting treatments
(Figure 3). The intensity of the nine independently dimmable
channels were programmed and calibrated at plant height using
a spectrometer (Li-Cor LI-180).

At the end of each experiment, shoot length was measured by
selecting the longest shoot and measuring from the root-shoot
junction to apical meristem. Similarly, root length was measured
from the root-shoot junction to root tip of the longest root.
Number of nodes was collected by counting nodes on longest
shoots. Shoot number was determined by counting emergent
stems. Canopy surface areas were obtained by dissecting leaves
and processing through ImageJ. All raw data were collected and
processed using ImageJ software (Rueden et al., 2017).

1bigfin.github.io/Prismatic
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FIGURE 3 | Spectral analyses of light treatments from the initial experiment. Images indicate relative amounts of fluencies emitted per treatment. Light spectra
presented were obtained using Li-Cor LI-180 spectrometer. Presented are (A) 25 µmol/m2/s B + 25 µmol/m2/s W, (B) 50 µmol/m2/s B + 50 µmol/m2/s W, (C)
50 µmol/m2/s B, (D) 100 µmol/m2/s B, (E) 12.5 µmol/m2/s R + 12/5 µmol/m2/s B + 12.5 µmol/m2/s Fr + 12.5 µmol/m2/s W, (F) 12.5 µmol/m2/s R +
37.5 µmol/m2/s B, (G) 16.67 µmol/m2/s R + 16.67 µmol/m2/s B + 16.67 µmol/m2/s Fr, (H) 25 µmol/m2/s R + 25 µmol/m2/s B + 25 µmol/m2/s Fr +
25 µmol/m2/s W, (I) 25 µmol/m2/s R + 25 µmol/m2/s B, (J) 25 µmol/m2/s R + 75 µmol/m2/s B, (K) 25 µmol/m2/s R + 25 µmol/m2/s W, (L) 33.33 µmol/m2/s R +
33.33 µmol/m2/s B + 33.33 µmol/m2/s Fr, (M) 37.5 µmol/m2/s R + 12.5 µmol/m2/s B, (N) 50 µmol/m2/s R + 50 µmol/m2/s B, (O) 50 µmol/m2/s R +
50 µmol/m2/s W, (P) 50 µmol/m2/s R, (Q) 75 µmol/m2/s R + 25 µmol/m2/s B, (R) 100 µmol/m2/s R, (S) 25 µmol/m2/s W + 25 µmol/m2/s Fr, (T) 50 µmol/m2/s W
+ 50 µmol/m2/s Fr, (U) 50 µmol/m2/s W, and (V) 100 µmol/m2/s W.
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FIGURE 4 | Spectral analyses of light treatments from the validation experiment. Images demonstrate relative amounts of fluencies emitted per treatment. Light
spectra presented were obtained using Li-Cor LI-180 spectrometer. Presented are optimized light treatments for (A) genetic algorithm (GA) shoot length, (B) GA
canopy surface area, (C) GA number of shoots, (D) GA number of nodes, (E) biogeography-based optimization (BBO) canopy surface area, (F) BBO shoot length,
(G) interior search algorithm (ISA) shoot length, (H) ISA number of nodes, (I) ISA root length, (J) ISA number of shoots, (K) symbiotic organisms search (SOS) shoot
length, (L) ISA canopy surface area, (M) SOS root length, (N) BBO number of nodes, (O) SOS canopy surface area, (P) SOS number of nodes, (Q) BBO number of
shoots, and (R) SOS number of shoots.
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For the preliminary experiment, apical explants were collected
from stock UP-802 cultures, and sub-cultured to Magenta
boxes with experimental media containing 1, 3, or 6% (w/v)
sucrose. One culture of each sucrose concentration was randomly
assigned to one of 22 different light treatments listed in Table 1,
where they remained for 6-weeks. Data on shoot length, root
length, number of shoots, number of nodes, and canopy surface
area that was collected from 264 plantlets, as presented in Table 1,
and processed with ImageJ software (Rueden et al., 2017). Raw
experimental datasets were then analyzed using machine learning
algorithms to build an appropriate model for cannabis shoot
growth and development.

Modeling Procedure
Three well-known machine learning algorithms, MLP, GRNN,
and ANFIS, were applied to model and predict in vitro
shoot growth and development of cannabis using the collected
dataset. Box-Cox transformation was employed to normalize the
data before using the machine learning algorithms. Principal
component analysis (PCA) was applied to detect outliers, but no
outliers were identified. In this study, the fivefold cross-validation
approach, with 10 repetitions was applied to evaluate the
prediction accuracy of the tested machine learning algorithms.

Different light qualities (B, R, W, and Fr) at various intensities
and different levels of Sucrose were selected as input variables,
while shoot length, root length, number of nodes, number
of shoots, and canopy surface area were considered as target
(output) variables (Figure 5A).

To evaluate and compare the efficiency and accuracy of the
machine learning algorithms, R2 (coefficient of determination),
mean bias error (MBE), and root mean square error (RMSE) were
employed based on the following equations:

R2
= 1−

∑n
i=1

(
yi−̂yi

)2∑n
i=1

(
yi−̂yi

)2 (1)

RMSE =

√√√√( n∑
i=1

(
yi−̂yi

)2
)

/n (2)

MBE = 1/n
n∑

i=1

(
yi−̂yi

)
(3)

Where yi is the value of prediction, n is the number of data,
and ŷi is value of observation.

Multilayer Perceptron
Multilayer perceptron belongs to the ANNs which is inspired by
the neural structure of the human brain. A neuron in the human
neural network receives impulses by using a number of dendrites
from other neurons. Based on the received impulses, a neuron
through its single axon may send a signal to other neurons. Like
the human neural network, ANNs contain nodes, each of which
receives a number of input variables and produce a single target
variable, where the target variable is a relatively simple function
of the input variables (Figure 5B).

The 3-layer backpropagation MLP is a parallel and distributed
algorithm that uses supervised learning for the training subset.

The following equation is employed to minimize the error
between the input and target variables:

Error =
1
n

n∑
n=1

(ys−̂ys)
2 (4)

Where ys is the sth observed variable, n is the number of
observations, and ŷs is the sth predicted variable.

To determine the ŷ in the model k output variables and with p
neurons in the hidden layer, following function is employed:

ŷ = f

 p∑
j=1

wj.g(
k∑

i=1

wjixi + wj0)+ wo

 (5)

where wj represents the weighted input data into the jth neuron
of the hidden layer, w0 equals the bias connected to the neuron
of output, wji represents the weight of the direct relationship of
input neuron i to the hidden neuron j, xi is the ith target variable,
f represents activation function for the target neuron, wj0 shows
the bias for node jth, and g shows the activation function for
the hidden neuron.

Since the number of hidden units and the number
of neurons in each node play an important role in the
efficiency of MLP, they should be determined. In the present
investigation, trial and error-based approach was used to
detect the optimal neuron number in the hidden layer. Also,
linear function (purelin) as the transfer functions of output
layer and hyperbolic tangent sigmoid function (tansig) as the
transfer functions of hidden layer were applied. Moreover, A
Levenberg-Marquardt algorithm was employed for adjusting
bias and weights.

Generalized Regression Neural Network
The generalized regression neural network as another kind of
ANNs consists of four layers (Figure 5C). The node in input
layer completely enters the node in pattern layer. The output
of each neuron in pattern layer is connected to the summation
neurons. The unweighted pattern neuron outputs are determined
by D-summation neuron, while the weighted pattern neuron
outputs are computed by S-summation neuron. Finally, the
following equation is employed to determine the output:

ŷ =

∑n
i=1 yi exp (− Di

2

2σ 2 )∑n
i=1 exp (− Di2

2σ 2 )
(6)

D2
i = (x− xi)T(x− xi) (7)

where σ represents width parameter, ŷ shows the average of all the
weighted observed output data, yi shows the ith output variable,
and Di

2 equals a scalar function which is based on any xi and
yi observed data.

Adaptive Neuro-Fuzzy Inference System
Adaptive neuro-fuzzy inference system developed by Jang (1993)
is one of the most well-known neuro-fuzzy logic systems. The
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TABLE 1 | Effect of light and carbohydrate on in vitro Cannabis shoot growth and development.

Input variables Output variables

Blue
(µmol/m2/s)

Red
(µmol/m2/s)

White
(µmol/m2/s)

Far-red
(µmol/m2/s)

Sucrose
(%)

Shoot length Root length Node Shoot Canopy surface

(mm) (mm) number number area (mm2)

25 0 25 0 1 38.77 ± 8.101 108.87 ± 10.097 8.50 ± 0.645 1.00 ± 0.000 2309.42 ± 314.907

25 0 25 0 3 32.44 ± 7.036 42.47 ± 29.857 8.00 ± 0.408 2.25 ± 0.479 2028.24 ± 598.380

25 0 25 0 6 63.26 ± 16.667 117.06 ± 20.197 8.00 ± 0.408 2.25 ± 0.479 1885.75 ± 385.882

50 0 0 0 1 32.94 ± 2.406 26.45 ± 23.515 7.25 ± 0.750 1.00 ± 0.000 1848.11 ± 214.644

50 0 0 0 3 44.35 ± 20.174 24.56 ± 15.198 7.25 ± 1.601 1.50 ± 0.500 1495.87 ± 757.315

50 0 0 0 6 39.03 ± 10.839 142.17 ± 45.483 7.50 ± 0.866 1.25 ± 0.250 1589.48 ± 578.975

50 0 50 0 1 31.20 ± 5.443 151.40 ± 35.982 8.25 ± 0.629 1.00 ± 0.000 1717.80 ± 582.898

50 0 50 0 3 40.91 ± 13.542 82.77 ± 17.954 8.50 ± 0.500 1.25 ± 0.250 1802.86 ± 390.860

50 0 50 0 6 53.83 ± 13.807 112.46 ± 26.505 9.00 ± 0.707 1.75 ± 0.479 1880.05 ± 744.967

100 0 0 0 1 23.43 ± 2.634 0.00 ± 0.000 5.75 ± 0.479 1.25 ± 0.250 493.01 ± 111.615

100 0 0 0 3 22.95 ± 2.991 15.04 ± 8.855 6.75 ± 0.479 1.00 ± 0.000 650.45 ± 126.813

100 0 0 0 6 33.42 ± 11.272 102.47 ± 60.796 6.50 ± 0.500 2.00 ± 0.577 890.63 ± 444.374

12.5 12.5 12.5 12.5 1 43.13 ± 9.839 97.61 ± 34.009 7.25 ± 0.479 1.50 ± 0.289 2442.35 ± 506.213

12.5 12.5 12.5 12.5 3 59.60 ± 10.319 89.45 ± 31.042 7.75 ± 0.854 1.75 ± 0.250 3193.41 ± 888.482

12.5 12.5 12.5 12.5 6 64.51 ± 38.597 63.48 ± 34.099 8.25 ± 2.016 1.75 ± 0.479 2594.11 ± 1648.261

37.5 12.5 0 0 1 47.40 ± 11.309 63.68 ± 24.567 7.00 ± 0.816 1.50 ± 0.289 1519.41 ± 345.197

37.5 12.5 0 0 3 66.39 ± 16.880 136.61 ± 28.052 8.00 ± 1.080 2.25 ± 0.629 2177.63 ± 519.451

37.5 12.5 0 0 6 38.41 ± 5.652 100.51 ± 37.320 7.75 ± 0.479 1.50 ± 0.289 1698.48 ± 448.503

16.69 16.69 0 16.69 1 106.24 ± 35.988 127.38 ± 40.798 8.00 ± 0.707 1.25 ± 0.250 3350.76 ± 789.191

16.69 16.69 0 16.69 3 142.22 ± 36.056 101.97 ± 41.471 9.75 ± 0.750 2.50 ± 0.866 4355.61 ± 1395.277

16.69 16.69 0 16.69 6 38.89 ± 11.084 46.67 ± 29.388 6.75 ± 0.854 1.25 ± 0.250 1360.77 ± 155.798

25 25 0 0 1 57.72 ± 14.566 149.92 ± 35.873 8.75 ± 1.181 1.00 ± 0.000 3776.96 ± 1017.968

25 25 0 0 3 56.83 ± 32.880 105.16 ± 44.817 7.50 ± 0.645 1.75 ± 0.250 1737.36 ± 1056.285

25 25 0 0 6 61.38 ± 9.666 38.72 ± 23.529 8.25 ± 0.946 2.00 ± 0.408 1216.37 ± 114.887

25 25 25 25 1 87.11 ± 22.707 134.47 ± 48.218 8.75 ± 0.854 1.75 ± 0.250 6340.05 ± 1284.607

25 25 25 25 3 56.06 ± 12.648 72.80 ± 36.452 9.25 ± 0.250 1.00 ± 0.000 3117.44 ± 887.353

25 25 25 25 6 59.93 ± 24.137 146.00 ± 54.432 7.00 ± 0.707 1.25 ± 0.250 1829.20 ± 645.785

75 25 0 0 1 33.30 ± 5.883 65.71 ± 42.275 7.50 ± 1.041 1.00 ± 0.000 2560.02 ± 620.724

75 25 0 0 3 103.74 ± 44.839 112.05 ± 16.975 10.50 ± 2.021 2.00 ± 0.408 3964.16 ± 1336.336

75 25 0 0 6 41.43 ± 1.379 29.16 ± 13.225 7.50 ± 0.645 1.25 ± 0.250 813.38 ± 188.339

33.33 33.33 0 33.33 1 36.42 ± 6.816 150.89 ± 51.445 8.75 ± 0.854 1.25 ± 0.250 2091.81 ± 525.087

33.33 33.33 0 33.33 3 98.40 ± 44.716 477.10 ± 287.094 11.50 ± 2.901 1.00 ± 0.000 2483.71 ± 627.011

33.33 33.33 0 33.33 6 85.94 ± 16.989 147.32 ± 7.069 9.25 ± 0.854 1.75 ± 0.250 7136.78 ± 1770.492

12.5 37.5 0 0 1 49.05 ± 14.862 120.84 ± 70.678 7.75 ± 0.854 1.25 ± 0.250 3232.08 ± 1237.421

12.5 37.5 0 0 3 32.11 ± 3.359 10.84 ± 10.841 7.00 ± 0.000 2.00 ± 0.408 2505.37 ± 374.173

12.5 37.5 0 0 6 50.48 ± 11.078 122.62 ± 37.803 8.25 ± 0.479 2.25 ± 0.946 1992.30 ± 318.378

0 50 0 0 1 77.72 ± 11.483 97.43 ± 36.702 8.25 ± 0.479 1.25 ± 0.250 2500.70 ± 678.427

0 50 0 0 3 99.81 ± 31.278 158.00 ± 58.672 7.75 ± 0.946 1.75 ± 0.479 3148.87 ± 1255.456

0 50 0 0 6 46.90 ± 1.499 35.98 ± 20.840 8.50 ± 0.289 1.50 ± 0.289 1383.03 ± 349.575

50 50 0 0 1 29.51 ± 6.815 77.13 ± 45.344 8.50 ± 0.866 1.25 ± 0.250 2447.43 ± 737.653

50 50 0 0 3 68.50 ± 16.044 73.50 ± 26.470 8.75 ± 0.629 2.25 ± 0.479 13061.97 ± 10839.642

50 50 0 0 6 55.40 ± 24.082 29.79 ± 29.794 9.00 ± 0.707 2.00 ± 0.408 1963.27 ± 1336.004

0 50 25 0 1 63.01 ± 11.807 87.61 ± 55.464 9.00 ± 0.707 1.50 ± 0.289 2763.95 ± 630.766

0 50 25 0 3 130.47 ± 48.757 152.19 ± 40.475 9.75 ± 1.181 1.25 ± 0.250 6939.43 ± 2672.142

0 50 25 0 6 91.80 ± 61.557 132.78 ± 92.911 9.50 ± 1.555 1.75 ± 0.750 3000.23 ± 1620.640

0 50 50 0 1 55.39 ± 6.538 47.25 ± 33.256 8.50 ± 0.866 1.00 ± 0.000 3123.43 ± 594.904

0 50 50 0 3 73.49 ± 16.669 159.08 ± 45.374 9.50 ± 0.645 1.75 ± 0.479 5721.65 ± 2203.448

0 50 50 0 6 78.72 ± 27.594 91.01 ± 34.488 8.50 ± 0.500 1.50 ± 0.289 3337.97 ± 1156.575

25 75 0 0 1 49.02 ± 6.926 121.57 ± 43.981 8.50 ± 0.866 1.00 ± 0.000 3843.37 ± 1073.415

25 75 0 0 3 78.73 ± 21.040 79.38 ± 39.101 10.50 ± 1.190 1.00 ± 0.000 6154.32 ± 1303.577

(Continued)
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TABLE 1 | (Continued)

Input variables Output variables

Blue
(µmol/m2/s)

Red
(µmol/m2/s)

White
(µmol/m2/s)

Far-red
(µmol/m2/s)

Sucrose
(%)

Shoot length Root length Node Shoot Canopy surface

(mm) (mm) number number area (mm2)

25 75 0 0 6 55.71 ± 17.245 75.76 ± 27.694 9.00 ± 0.408 1.25 ± 0.250 2682.36 ± 913.655

0 100 0 0 1 48.72 ± 17.838 152.42 ± 43.433 8.00 ± 0.816 1.25 ± 0.250 1642.67 ± 438.197

0 100 0 0 3 101.24 ± 32.678 207.67 ± 41.674 7.50 ± 0.289 1.25 ± 0.250 1529.03 ± 407.505

0 100 0 0 6 84.14 ± 37.295 143.37 ± 84.434 8.25 ± 0.854 2.00 ± 0.408 915.09 ± 717.054

0 0 25 25 1 76.46 ± 34.634 160.01 ± 49.307 7.75 ± 0.750 1.25 ± 0.250 2370.35 ± 467.347

0 0 25 25 3 154.68 ± 51.228 171.42 ± 17.863 8.50 ± 1.041 1.50 ± 0.289 2707.43 ± 652.476

0 0 25 25 6 86.78 ± 29.794 86.57 ± 38.613 8.00 ± 0.408 1.25 ± 0.250 2782.91 ± 1022.655

0 0 50 0 1 39.50 ± 5.238 128.04 ± 12.026 8.50 ± 0.289 1.25 ± 0.250 2751.85 ± 906.598

0 0 50 0 3 35.85 ± 6.990 74.44 ± 27.158 8.25 ± 0.479 1.50 ± 0.289 1706.28 ± 611.107

0 0 50 0 6 82.77 ± 43.133 72.39 ± 41.802 8.00 ± 1.000 1.50 ± 0.289 2249.33 ± 1412.720

0 0 50 50 1 38.61 ± 6.648 0.00 ± 0.000 8.75 ± 0.479 1.00 ± 0.000 2169.51 ± 649.210

0 0 50 50 3 136.64 ± 29.794 148.92 ± 23.789 8.75 ± 0.629 2.00 ± 0.408 3411.27 ± 345.452

0 0 50 50 6 36.78 ± 0.374 4.40 ± 4.396 8.00 ± 0.408 1.25 ± 0.250 859.96 ± 78.081

0 0 100 0 1 27.70 ± 2.311 4.36 ± 4.363 7.25 ± 0.479 1.50 ± 0.289 519.06 ± 182.411

0 0 100 0 3 39.88 ± 3.684 9.05 ± 5.546 8.00 ± 0.707 1.00 ± 0.000 1954.42 ± 506.636

0 0 100 0 6 101.32 ± 35.475 177.03 ± 26.461 8.00 ± 1.080 3.00 ± 0.577 2593.13 ± 526.681

Values in each column represent means ± Standard error.

overall ANFIS model with two Takagi and Sugeno type if-then
rules can be defined as follow:

Rule I : if x is A1 and y is B1 then f1 = p1x+ q1y + r1
Rule II : if x is A1 and y is B2 then f2 = p2x+ q2y + r2

(8)

Where x and y are input variables; f1 and f2 are the outputs
within the fuzzy area determined by the fuzzy rule; A1, A2, B1,
and B2 are the fuzzy sets; p1, p2, q1, q2, r1, and r2 are the design
parameters that are specified during the training set. The ANFIS
model is built of five layers (Figure 5D) as follow:

Layer 1 (adaptive or input layer): Every adaptive (input) node
i in layer 1 defines a square node with a node function:

O1
i = µai(x) (9)

Where O1
i is the fuzzy membership grade, x is the input of

adaptive node i, and µAi is Gaussian membership function which
is deremined as follow:

µAi(x) = exp

[
−

(
x −ci
ai

)2
]

(10)

where ai and ci are premise parameters.
Layer 2 (rule layer): Every role node in layer 2 can be

considered as a circle node labeled
∏

where the output is the
result of all incoming inputs.

wi = µAi(x)× µBi(x) i = 1, 2 (11)

Each node output displays the rule’s firing strength.
Layer 3 (average layer): Each node as a fixed node in layer 3 is

labeled N. The ith node determines the ratio of the firing strength
of ith rule to the total rules’ firing strengths. The outputs of layer

3 (normalized firing strengths) are calculated as follow:

wi =
wi

w1 + w2
i = 1, 2 (12)

Where wi is output of this layer.
Layer 4 (consequent layer): Nodes in layer 4 are called

consequent nodes. The following equation is used to calculate the
output of this layer.

O4
1 = wif i = wi(pix+ qiy + Ri) (13)

Where pi, qi, and ri are parameter sets and wi is
output of layer 3.

Layer 5 (output layer): There is only one single fixed node
labeled S in this layer. The final output (O5

i ) of the model is
calculated based on the following equation:

O5
i =

2∑
i=1

wif i (14)

In the current study, the Gaussian membership function
(between 3 and 5 membership functions for different variables)
was considered based on a trial and error approach. The
number of epochs to train the models was also set to
10. Moreover, the least-squares method and backpropagation
algorithm were applied to adjust the consequent and premise
parameters, respectively.

Sensitivity Analysis
Sensitivity analysis was performed to assess the degree of
importance of various forms of light (B, R, W, and Fr) and
exogenous carbohydrates on shoot length, root length, number of
nodes, number of shoots, and canopy surface area by determining
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FIGURE 5 | Step-by-step methodology of the current study, including (A) data obtained, (B–D) data modeling through multilayer perceptron (MLP), generalized
regression neural networks (GRNN), and adaptive neuro-fuzzy inference system (ANFIS), respectively, (E) main steps of optimization process through different
optimization algorithms, (F,G) results of the validation experiment for shoot growth and canopy surface area, respectively, and (H,I) shoot growth and canopy surface
area obtained from symbiotic organisms search (SOS).

the variable sensitivity ratio (VSR). VSR can be defined as the
ratio of variable sensitivity error (VSE) to the RMSE of the
developed model. VSE is described as the standardized value
of the trained machine learning model when the independent
variable is removed from the developed model. A greater VSR
shows a higher degree of importance.

Optimization Procedure
In the current study, four different single-objective evolutionary
optimization algorithms including BBO, ISA, SOS, and GA were
separately employed to find optimal levels of input variables
(Sucrose, B, R, W, and Fr) for maximizing each fitness function
(shoot length, root length, number of nodes, number of shoots,
and canopy surface area). Generally, evolutionary optimization
algorithms consist of five main steps including creating an
initial population, fitness computation, selection, creating a new
generation, and displaying the best solution (Figure 5E). The
details of each algorithm have been presented below.

Biogeography-Based Optimization
The term “Biogeography” refers to the study of ecosystems
and the geographical distribution of species. BBO introduced
by Simon (2008) is based on biogeographic concepts such as
migration, evolution, adaptation, and extinction of organisms
among habitats. In theory, appropriate regions for living
organism’s settlement are defined by the habitat suitability index
(HSI) that depends on several factors such as precipitation,
temperature, area, and vegetative cover which are known as
suitability index variables (SIVs). Indeed, HIS as a dependent
variable is determined by SIVs as independent variables.
Therefore, more living organisms can be accommodated in
habitats with higher values of HIS and vice versa, lower
HSI values support fewer organisms. Subsequently, a stronger
tendency for living organisms to emigrate from the habitat
to find new places with lower population density and more
suitable conditions can be seen by increasing the number of
species in a habitat.
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FIGURE 6 | A schematic representation of biogeography-based optimization (BBO) algorithm.

The highest λ can be seen when there are no species in the
habitat. The λ decreases by increasing the number of species in
the habitat and, finally, the λ becomes zero when the habitat
capacity is completed (the maximum number of species in the
habitat equals Smax). On the other hand, the µ enhances by
increasing the number of species in the habitat until the habitat
becomes empty. Hence, the equilibrium number of species in the

habitat can be seen when λ equals µ. Generally, λ and µ can be
determined based on the following equations:

µ = E×
(

S
Smax

)
(15)

λ = I ×
(

1−
S

Smax

)
(16)
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Where S is the number of species, I shows the maximum rate
of immigration, and E is the maximum rate of emigration.

In the BBO method, habitat and SIVs play the role of solution
and the decision variables, respectively. Therefore, the HSI can
be considered as the objective function in this optimization
algorithm. If there is a particular graph with E = I for each
solution, HSI has a direct relationship with S, in which case HSI
values can be used instead of S. The step-by-step procedure of the
BBO method has been presented in Figure 6.

With a specific probability Pmod, different solutions can
help each other for improvement. If the Si is selected as an
improvement, the λ is employed to adjust its SIVs. Subsequently,
the µ relevant to other solutions is applied to choose the
improved solution. The SIVs of the Si solution are then
used for randomly replacing SIVs from selected solutions. The
suitable values of µ can be arbitrarily considered by using an
arithmetic progression, with the common difference of successive
members equal to 1/(population size−1), between 0 and 1. After
calculation of µ, λ can be determined as λ = 1− µ.

For lack of elitism, all solutions should be modified at all steps.
However, modifying the amount of any solution is conversely
related to its HSI. A roulette wheel is used for choosing the
modifier solution which is based on a probability proportional
to the µ. Transferring SIVs, as an inferior strategy, from one
solution to another solution restricts the search choices within
the decision space. Therefore, the following equation has been
recommended for replacing SIVs:

SIVnew
i,m = SIV i,m + α

(
SIV j,m + SIV i,m

)
(17)

Where SIVnew
i,k equals mth modified SIV of the ith solution, α

is a parameter between 0 and 1, which is determined by the user,
SIV j,m is mth SIV of the jth solution, and SIV i,m equals mth SIV
of the ith solution.

Severe catastrophes such as natural hazards, the spreading of
infectious diseases, and other catastrophes can quickly change
the HSI of a habitat. These unfavorable conditions act like
mutations in GA.

In this study, initial population, generation number,
mutation rate, mutation function, selection function, and α

were, respectively, considered as 200, 1000, 0.05, Gaussian,
Roulette Wheel, 1.00.

Interior Search Algorithm
The ISA method introduced by Gandomi (2014) is based on the
concepts of interior design and decoration using mirrors, such
that, several mirrors can be used to create a more decorative
environment. To meet decoration project goals, it is necessary to
satisfy the desires of the clients’ desires using available resources.
The interior design commences with centering bounded elements
to create a more appealing interior vista based on client approval.
The ISA method is inspired by this repetitive process to solve
optimization problems. With this algorithm, an element can
only be moved to a position allowing a more decorative view
(better fitness) while satisfying customer resource and need
demands (constraints).

The most important step of interior design is positioning the
mirrors by the fittest and most striking elements to highlighting

their attractiveness. Generally, the elements are classified in
two ways (i) the composition category, which is applied for
composition optimization, and (ii) the mirror category, which is
employed for mirror search. Therefore, the ISA method can be
explained as follow.

1) Create the position of elements between upper bound
(UB) and lower bound (LB) randomly and determine
their fitness value.

2) Discover the element with minimum objective function in
minimization problem (the fittest element) in jth iteration.

3) Apply a random variable r1 (ranging between 0 and1 for
each element) and α as a threshold value (α is also a value
between 0 and 1) to divide other elements, except the fittest
element, into mirror category and composition category.
Elements with α ≤ −r1 go to the composition category;
otherwise, they go to the mirror category. Since a is the only
parameter of the ISA method, it is necessary to carefully
tune α for obtaining balance between diversification and
intensification.

In the current study, a linear equation from 0.1 to 0.9
was used for determining the value of α during optimization
iterations, meaning the α value modifies as iteration goes up
toward its maximum number. This method provides a parametric
optimization algorithm in which the algorithm can automatically
adjust its parameter. As the iteration approaches the highest
iteration number, the α value reaches 0.9. Subsequently, the
optimization procedure slowly shifts to mirror search to promote
exploitation at the end of repetitions.

4) For the fittest element, it is beneficial to lightly change
positions using the random walk for a local search around
the fittest element. The following equation can be used for
calculating the fittest element.

xjgb = xj−1
gb + rn× λ (18)

Where, xj
gb is the fittest element, λ is scale

factor = 0.01(UB − LB), and rn presents vector of normally
distributed random numbers.

5) For the composition category, each element in this category
is randomly displaced. The following equation is used for
determining the changes in UB and LB:

xji = LBj
+
(
UBj
−LBj)

× r2 (19)

Where xj
i shows ith element in the jth iteration, UBj and LBj

represent upper and lower bounds of the class in jth iteration,
respectively, and r2 is random value between 0 and 1.

6) For the mirror category, a mirror is randomly placed
between the fittest element and each composition element.
The following equation is applied for calculating the
position of a mirror for the ith element of the jth iteration:

xjm,i = r3xj−1
i + (1−r3)× xjgb (20)
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Where xj
m, i equals the position of a mirror for the ith element

of the jth iteration, and r3 is a random value between 0 and 1.
The virtual location of the element (the image of the element

in the mirror) depends on the position of the mirror and is
calculated based on the following equation:

xji = 2xjm,i−x
j−1
i (21)

7) The virtual elements and fitness values of the new positions
of the elements should be determined. The positions
should be updated if their finesses are improved. It can
be calculated based on the following equation (for a
minimization problem):

xji =

{
xjif

(
xji
)

< f
(
xj−1
i

)
xj−1
i otherwise

(22)

1. If any of the termination criteria are not satisfied, the steps
should be repeated from step 2. The step-by-step procedure
of the ISA method has been presented in Figure 7.

Symbiotic Organisms Search Algorithm
The SOS introduced by Cheng and Prayogo (2014) can be
considered a nature-inspired optimization method. The SOS
algorithm simulates three various interactions of symbioses
amongst species of an ecosystem. Much like the majority of
evolutionary optimization algorithms, SOS creates an ecosystem
as an initial population plus particular operators through an
iterative method to find a near-optimal solution among candidate
organisms as possible solutions within the promising space of
a search area. However, the SOS method does not reproduce
offspring. Step-by-step SOS procedure methods are presented in
Figure 8.

After defining the maximal number of iterations and the
number of species, the initial ecosystem is specified by generating
a uniform random number between the upper and lower values of
ecosystem size and a design variable (D) number. After that, Xbest
as the best current solution should be determined. In a process,
named mutualism, two randomly chosen species along with Xbest
participate in a dialectic relationship that is profitable for both.
New candidate solutions are generated based on the following
equations:

xinew = xi + rand (0,1)× (xbest −MV × BF1) (23)

xjnew = xj + rand (0,1)× (xbest −MV × BF2) (24)

Where rand (0, 1) shows a vector of random numbers, and the
mutual vector (MV) equals the average value of xj and xi which
enables the organisms to be updated concurrently rather than
separately. In a mutualistic symbiosis between two species within
nature, one species might gain a great advantage while the other
receives no significant profit. This is presented by BF1 and BF2,
which are randomly specified as either 1 or 2 {BFi = Rand (rand
(0, 1)+1]; i = 1 and 2} to display the level of profits obtained from
the relationship.

In the next step, the entire population is updated.
Subsequently, the old candidate solutions xj and xi are compared
with the new ones. More fit organisms are chosen as new
solutions for the next iteration. The selections and comparisons
start and end with the counter 1 and the counter equal to the
population size (npop), respectively. For each i, the solution
j is randomly chosen within the new population. Afterward,
fitter organisms take part in the next step which is named
commensalism. In commensalism, although one organism gains
profits, the other remains neutral. Similar to the previous step,
xj is randomly chosen from the population to interact with xi.
While xi attempts to get profits from the engagement, xj remains
unaffected. If the new fitness value shows better performance
than the previous one, the following equation is employed for
updating xi:

xinew = xi + rand (0,1)×
(
xbest −xj

)
(25)

In the third step, which is named parasitism, the mutation
operator of the SOS is required. In this step, xj and xi are
the artificial host and parasite, respectively. In parasitism, one
organism receives profits while the other is harmed. The sign of
the parasite vector (PV) is that it competes with other randomly
chosen dimensions instead of its parent with a series between
upper and lower bounds. In this step, an initial parasite vector
is produced by multiplying organism xj. Some of the decision
variables from the parasite vector are randomly changed to
recognize the parasite vector from xj. A random number should
be produced in the range of [1, decision variable number]
to describe the total number of changed variables. A uniform
random number is produced for each dimension to achieve the
position of the changed variables. Finally, a uniform distribution
within the search area is needed for changing the variables and
providing a parasite vector for the parasitism step. If the parasite
vector displays better performance than xj it becomes part of
the population, whereas if xj is not outperformed the parasite
vector, PV eliminates from the population. The parasite vector
is produced by changing xj in random dimensions with random
numbers rather than making small modifications in xj. If the
current xj and parasite vector are not the last member of the
population, the SOS returns to the mutualism step that chosen
Xbest until obtaining a specified stopping criterion. In this study,
initial population and generation number were, respectively,
considered as 200 and 1,000.

Genetic Algorithm
The GA, introduced by Holland (1992) is based on the Darwinian
concepts of genetics and natural selection. Before applying
the GA, some parameters such as crossover fraction, selection
method, mutation rate, etc., should be specified. Subsequently,
a set of possible answers are generated. The GA considers a set
of chromosomes containing genes as an initial population. The
genes represent the number of problem dimensions. During the
optimization process, the genetic operators (e.g., Roulette Wheel
and Tournament Selection) of the mutation and crossovers
improve these genes.

Based on the competence of the chromosomes’ corresponding
objective function, genes are selected to transfer to the next
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FIGURE 7 | A schematic representation of interior search algorithm (ISA).

generation. The crossover operator replaces a number of genes
from two chromosomes with each other. Moreover, the mutation
operator changes some genes randomly. The elitism parameter is
used to improve the chance of choosing the best chromosomes,
then increase the convergence of the algorithm. When creating
each new generation, three operators (i.e., crossover, selection,
and mutation) regulate the optimization process in a way that the
generated chromosomes improve the objective function value at
each repetition until the optimization process will be completed
by satisfying one of the termination criteria. The step-by-step
procedure of the GA method has been presented in Figure 9.
In this study, initial population, generation number, mutation
rate, mutation function, selection function, cross-over fraction,
and cross-over function were, respectively, considered as 200,
1000, 0.05, uniform, Roulette Wheel, 0.6, and Two-point cross-
over.

Validation Experiment
To evaluate the efficiency and reliability of the hybrid GRNN-
evolutionary optimization algorithms, the predicted-optimized
treatments obtained from evolutionary optimization algorithms
(GA, ISA, SOS, and BBO) were separately evaluated in the lab as

the validation experiment (Figure 4). The validation experiment
was performed based on a completely randomized design with
four replications. Effectiveness of optimized treatments were
assessed by comparing error bars, representing standard error
of means, as presented in Figures 5G,H. For experimentation,
specific light intensities of precise LED spectrum channels were
programmed into the FinMax (see text footnote 1) programmable
LED lighting system and calibrated using a LI-180 spectrometer
(Li-Cor, Lincoln, NE), as closely as possible. However, it should
be acknowledged that it was not possible to produce the exact
predicted intensities presented to three decimal points. For this
experiment, the light intensities were adjusted as closely as
possible and fell within 1 µmol/m2/s of the target.

RESULTS

Effects of Light and Carbohydrate
Sources on Cannabis Shoot Growth and
Development
While this experiment was designed specifically for machine
learning applications and standard statistical comparisons cannot
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FIGURE 8 | A schematic representation of symbiotic organisms search (SOS) algorithm.

be made, a wide range of responses were observed through
the different treatments applied (Table 1). For instance, the
greatest shoot length was acquired from 25 µmol/m2/s W +
25 µmol/m2/s Fr + 3% Sucrose (154.68 ± 51.228 mm), while
shoot length was most stunted when grown with 100 µmol/m2/s
B + 1% Sucrose (27.70 ± 2.311 mm). Greatest root length
was achieved with 33.33 µmol/m2/s R + 33.33 µmol/m2/s B
+ 33.33 µmol/m2/s Fr + 3% Sucrose (477.10 ± 287.094 mm),
though no roots emerged from 100 µmol/m2/s B + 1% Sucrose,
or 50 µmol/m2/s W+ 50 µmol/m2/s Fr+ 1% Sucrose specimens,

and lowest root lengths were observed from those of the
100 µmol/m2/s W + 1% Sucrose (4.36 ± 4.363 mm) treatment.
Plantlets developing the most nodes came from 33.33 µmol/m2/s
R + 33.33 µmol/m2/s B + 33.33 µmol/m2/s Fr + 3% Sucrose
(11.50 ± 2.901), while the fewest nodes were observed in
100 µmol/m2/s B + 1% Sucrose (5.75 ± 0.479) treated plantlets.
The largest canopy surface area was attained by plantlets grown
under 50 µmol/m2/s R + 50 µmol/m2/s B + 3% Sucrose
(13061.97 ± 10839.642 mm2), whereas smallest canopy was
observed in 100 µmol/m2/s B + 1% Sucrose (493.01 ± 111.615
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FIGURE 9 | A schematic representation of genetic algorithm (GA).

mm2), 100 µmol/m2/s W+ 1% Sucrose (519.06± 182.411 mm2).
Results for the preliminary experiment are outlined in Table 1.
Treatments consisted of single experimental units with four
biological replicates each, which satisfied the models used,
with high accuracy.

Based on our observations (Table 1), a general trend
is observed for appreciable shoot length when sucrose
concentration is 3% (w/v), irradiance levels are in range of
50–100 µmol/m2/s, and when W is included in multi-spectral
treatments. These treatments allowed long shoot length that
developed between 32.44 ± 7.036 and 154.68 ± 51.228 mm.
Additionally, there was a broad tendency for multi-spectral
treatments with 75–100 µmol/m2/s that included R and 3% (w/v)
sucrose to develop large canopy surface areas, which ranged from
2483.71± 627.011 to 13061.97± 10839.642 mm2 (Table 1).

Of the 66 treatments tested, 50 µmol/m2/s W+ 50 µmol/m2/s
Fr + 1% Sucrose noticeably accumulated phenolic compounds
in the media, which was not observed in any other treatment
(data not shown). Additionally, 12 cultures produced plantlets
with floral organs despite being grown under a long day

photoperiod. Cultures included 25 µmol/m2/s B+ 25 µmol/m2/s
W + 1% Sucrose, 25 µmol/m2/s R + 75 µmol/m2/s B + 1%
Sucrose, 25 µmol/m2/s R + 75 µmol/m2/s B + 3% Sucrose,
33.33 µmol/m2/s R + 33.33 + 33.33 Fr + 1% Sucrose, 33.33
R + 33.33 B + 33.33 Fr + 3% Sucrose, 25 µmol/m2/s
R + 75 µmol/m2/s B + 6% Sucrose, 25 µmol/m2/s R +
25 µmol/m2/s B + 25 µmol/m2/s Fr + 25 µmol/m2/s W
+ 6% Sucrose, 25 µmol/m2/s R + 25 µmol/m2/s B + 6%
Sucrose, 100 µmol/m2/s B + 6% Sucrose, 50 µmol/m2/s B +
6% Sucrose, 25 µmol/m2/s B + 25 µmol/m2/s W + 6% Sucrose,
50 µmol/m2/s + 6% Sucrose, 50 µmol/m2/s R + 50 µmol/m2/s
B + 3% Sucrose, 50 µmol/m2/s W + 50 µmol/m2/s Fr
+ 3% Sucrose.

Fifty µmol/m2/s B treatments, for the most part, showed
higher values relating to developmental features than
100 µmol/m2/s B (Table 1). This is likely due to malfunctioning
100 µmol/m2/s B lights, which were repaired within a
few days. However, we nonetheless attribute the delayed
development of 100 µmol/m2/s B treatments to the brief period
of light malfunction.
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Data Modeling Through Multilayer
Perceptron, Generalized Regression
Neural Network, and Adaptive
Neuro-Fuzzy Inference System
Machine learning algorithms including MLP, GRNN, and ANFIS
were employed to model and predict cannabis shoot growth
and development traits (shoot length, root length, number of
nodes, number of shoots, and canopy surface area) as target
variables based on five input variables (Sucrose, B, R, W, and
Fr). R2, RMSE, and MBE were used to assess the prediction
performance of the developed machine learning algorithms
(Table 2). The GRNN model presented higher R2 as one of
the most important performance indices in comparison to MLP
or ANFIS in both training and testing processes for all shoot
growth and development traits including shoot length (R2 > 0.96
for GRNN vs. R2 > 0.58 for ANFIS or R2 > 0.95 for MLP),
root length (R2 > 0.91 for GRNN vs. R2 > 0.58 for ANFIS or
R2 > 0.89 for MLP), number of nodes (R2 > 0.74 for GRNN vs.
R2 > 0.54 for ANFIS or R2 > 0.39 for MLP), number of shoots
(R2 > 0.71 for GRNN vs. R2 > 0.50 for ANFIS or R2 > 0.42
for MLP), and canopy surface area (R2 > 0.94 for GRNN vs.
R2 > 0.64 for ANFIS or R2 > 0.92 for MLP) (Table 2). Also, lower
RMSE and MBE for GRNN in comparison to MLP and ANFIS for
all studied traits indicated that the assessed results were highly
accurate and correlated, showing the good performance of the
developed GRNN models (Table 2). Moreover, the regression
lines displayed a good fit correlation between experimental and
predicted data for all the shoot growth and development traits in
both training and testing processes (Figure 10).

Determining the Importance of Each
Input on Cannabis Shoot Growth and
Development
To determine the importance of each input variable on the
objective function (studied parameter including shoot length,
root length, number of nodes, number of shoots, and canopy
surface area) sensitivity analysis was performed by calculating
VSR. The results showed that both shoot length and node number
were more sensitive to Sucrose followed by B, Fr, R, and W,
while root length was more sensitive to Sucrose followed by R,
Fr, W, and B light (Table 3). Also, the results demonstrated more
sensitivity of shoot number to Sucrose followed by B, R, Fr, and
W color (Table 3). Moreover, Sucrose > R > B > W > Fr were
ranked for canopy surface area (Table 3).

Optimization Process via Genetic
Algorithm, Symbiotic Organisms Search,
Interior Search Algorithm, and
Biogeography-Based Optimization
In the present study, four different evolutionary optimization
algorithms including BBO, ISA, SOS, and GA were separately
used to determine the optimal level of Sucrose, B, R, W, and Fr
for maximizing each fitness function (shoot length, root length,
number of nodes, number of shoots, and canopy surface area).
Although all optimization algorithms predicted the same best

fitness function value, they found a different optimal level of
inputs for each fitness function (Table 4).

Determining the Reliability of the
Developed Models
The optimized-predicted results from each evolutionary
optimization algorithm for shoot length and canopy surface area
as fitness functions were experimentally tested in a validation
experiment to evaluate the reliability of the developed models.
Based on the validation experiment results, the differences
among evolutionary optimization algorithms (GA, ISA, BBO,
and SOS) and optimized-predicted results for both shoot length
(Figure 5F) and canopy surface area (Figure 5G) were negligible,
which demonstrated the reliability of the developed models.
However, the maximum shoot length (206.76 ± 41.542 mm)
(Figure 5H) and canopy surface area (8193.49± 2102.624 mm2)
(Figure 5I) were achieved from the GRNN-SOS, while GRNN-
BBO resulted in the lowest shoot length (181.83 ± 39.676 mm)
and canopy surface area (5745.34 ± 919.848 mm2). Therefore,
it seems that the SOS has better performance than the other
optimization algorithms.

DISCUSSION

As with any in vitro culture system, many intrinsic (e.g., genotype,
type, and age of explant) and extrinsic (e.g., basal salt medium,
vitamins, PGRs, gelling agent, carbohydrate source, additives,
temperature, and light) factors influence in vitro shoot growth
and development. Fortunately, due to the highly controlled
nature of plant tissue culture, most of these factors can be
manipulated to evaluate their impact on system optimization.
Historically, micropropagation systems were refined using
traditional statistical models to sequentially manipulate and
optimize single factors. This approach often requires hundreds
or even thousands of treatments to be tested, and even then
sequential optimization does not account for interactions and
can miss the best combinations (García-Pérez et al., 2020; Hameg
et al., 2020). Due to the cost and time requirements, most species
are cultured in conditions optimized for other species with
minor modifications and are not fully optimized for any given
application. In our study, we demonstrate that specific growth
responses of in vitro cannabis can be directed by manipulating
abiotic factors such as light intensity, spectrum, and exogenous
carbon availability, and that machine learning approaches
provide an effective approach to optimize these factors for
specific outcomes. It is possible that these modifications could
trigger developmental changes by regulating photosynthetic
activity (Hdider and Desjardins, 1994), or by regulating intrinsic
concentrations of phytohormones (Premkumar et al., 2001).
Additional experiments must be completed to indicate the precise
mechanisms by which dynamic physiological responses occur.
Ultimately, we clearly show that plant growth and development
can be influenced by light quality and sucrose levels in the
absence of PGRs.

Efficient protocol development is a long-standing challenge
in the field and more advanced statistical models using surface
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TABLE 2 | Performance indices of different machine learning algorithms (MLP, GRNN, and ANFIS) for modeling and predicting shoot length, root length, number of
nodes, number of shoots, and canopy surface area of Cannabis.

Model Performance index Shoot length Shoot number Node number Root length Canopy surface area

Training Testing Training Testing Training Testing Training Testing Training Testing

MLP R2 0.972 0.954 0.625 0.421 0.717 0.390 0.938 0.900 0.953 0.928

RMSE 4.929 6.927 0.396 0.632 0.702 1.202 15.112 15.956 277.487 340.538

MBE −0.090 1.673 0.009 −0.001 0.017 0.260 0.001 2.259 30.952 25.016

GRNN R2 0.983 0.964 0.733 0.714 0.791 0.744 0.941 0.914 0.962 0.944

RMSE 3.879 6.081 0.347 0.606 0.594 0.933 14.754 14.972 248.737 300.911

MBE 0.001 1.540 0.001 0.012 −0.001 0.063 0.001 2.581 0.001 2.388

ANFIS R2 0.770 0.590 0.647 0.501 0.767 0.549 0.781 0.589 0.733 0.644

RMSE 17.538 23.327 0.407 0.557 0.650 0.942 41.881 39.007 1282.011 1282.697

MBE −4.549 −5.508 0.006 −0.065 −0.003 0.037 5.962 8.546 −26.525 −32.037

ANFIS, adaptive neuro-fuzzy inference system; GRNN, generalized regression neural network; MBE, mean bias error; MLP, multilayer perceptron; R2, coefficient of
determination; RMSE, root mean square error.

response curves have been applied with some success (Niedz
and Evens, 2016; Niedz and Marutani-Hert, 2018; Pence et al.,
2020). While these methods are more efficient than sequential
optimization and can account for interactions among factors,
they are still limited in the number of factors that can be
included in a single experiment, require several assumptions
to be met that are often not possible to achieve, require
significant numbers of treatments, and rely on relatively simple
interactions that can be compared using regression analyses. An
alternative to address the inherent complexity of plant tissue
culture systems is to apply machine learning methodology. This
approach leverages modern computing power and developments
in artificial intelligence to efficiently recognize patterns in
complex and disorderly datasets, typical of what is observed
in plant tissue culture (Hesami and Jones, 2020; Hesami et al.,
2021b). Machine learning algorithms can then be combined
with optimization algorithms to decipher complex interactions
and predict theoretically optimized combinations of factors for
desired outcomes. The combination of machine learning and
optimization algorithms has the potential to overcome many
of the challenges associated with optimizing in vitro plant
systems and enable development of more effective protocols
using fewer treatments. Ultimately, this approach can be used
to change the face of plant tissue culture advancements by
enhancing the viability of optimization for specific species, or
even individual genotypes.

Here, ANNs (MLP and GRNN) and neuro-fuzzy logic
(ANFIS) were employed and compared to model and predict the
effects of light quality and carbohydrate supply on growth and
development of in vitro cannabis plants. Based on our results,
using the stated parameters, GRNN had better performance
than either MLP or ANFIS. Although there are no studies in
plant tissue culture comparing the predictive performances of
neuro-fuzzy logic systems and ANNs, several studies in other
fields have demonstrated that GRNN often performs better than
MLP or ANFIS. For instance, Sridharan (2021) reported that the
prediction accuracy of GRNN was better than MLP and ANFIS
for modeling and predicting global solar irradiance. Similar
results were also reported by Ausati and Amanollahi (2016)

who showed GRNN performed better than ANFIS and MLP for
modeling and predicting air pollution.

In the present study, four evolutionary optimization
algorithms (BBO, GA, ISA, and SOS) were individually linked
to the GRNN to determine optimal levels of Sucrose, B, R, W,
and Fr for maximizing each fitness function (shoot length, root
length, number of nodes, number of shoots, and canopy surface
area). Based on mean standard errors reported in our results,
there is no difference in the predicted values of fitness functions
among different optimization algorithms. Although the results
of the validation experiments showed that the differences in the
performance of the optimization algorithms were negligible,
SOS led to the highest level of studied fitness functions. For
instance, GRNN-SOS showed that using the theoretical optimal
combination of light quality and sucrose levels, average shoot
length, and canopy surface area were 206.76 ± 41.542 mm and
8193.49± 2102.624 mm2, respectively. Although no studies exist
for using and comparing dissimilar optimization algorithms for
in vitro culture optimization, several studies previously showed
that SOS can be considered one of the most powerful of the
evolutionary optimization approaches (Cheng and Prayogo,
2014; Bozorg-Haddad et al., 2016). Bozorg-Haddad et al. (2016)
compared GA and SOS for optimization of reservoir operation.
They run these two algorithms 10 times and reported that there
was no significant difference between the performances of GA
and SOS, however, SOS calculated higher fitness function values
than GA in all 10 runs. Similar to this result, the results of our
validation experiment showed that SOS resulted in a higher value
of fitness function in comparison with other algorithms.

Based on the sensitivity analysis, sucrose was the most
important factor for all traits studied (shoot length, root length,
shoot number, node number, and canopy surface area). This
likely reflects the mixotrophic nature of in vitro plants and
limitations the sealed environment (depletion of CO2, high
relative humidity, etc.) places upon their photosynthetic capacity
(De La Viña et al., 1999; Nguyen et al., 2001; Shin et al., 2013).
Due to these limitations, supplemental sucrose appears to be
critical to support plant growth and development. It is likely
that different results may be obtained if this experiment were
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FIGURE 10 | Scatter plot of experimental data vs. predicted data of (A) shoot length, (B) root length, (C) node number, (D) shoot number, and (E) canopy surface
area in in vitro Cannabis shoot growth and development, using generalized regression neural network (GRNN) in both training and testing subsets.

conducted using vented lids or forced air, which would improve
potential photosynthesis and increase the relative importance
of light quality.

In our experiment, evolutionary optimization algorithms
predicted that ∼3% sucrose would result in the highest shoot
growth and development. A plethora of previous studies have

found 2–4% sucrose, in particular 3% (w/v), to be optimal
for various species and this has become a standard for most
micropropagation systems (reviewed by Yaseen et al., 2013).
For instance, the results of GRNN-SOS showed that 3.157%
sucrose would lead to the highest shoot length. Similar to our
results Romano et al. (1995) and Baskaran and Jayabalan (2016),
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TABLE 3 | Importance degree of light (blue, red, white, and far-red) and carbohydrate sources on shoot length, root length, number of nodes, number of shoots, and
canopy surface area of Cannabis through sensitivity analysis.

Trait Item Blue Red White Far-red Sucrose

Shoot length VSR 3.005 1.957 1.647 2.141 5.191

Rank 2 4 5 3 1

Root length VSR 1.54 2.211 1.669 1.909 3.887

Rank 5 2 4 3 1

Node number VSR 1.379 1.257 1.065 1.288 1.597

Rank 2 4 5 3 1

Shoot number VSR 1.554 1.217 1.105 1.168 1.651

Rank 2 3 5 4 1

Canopy surface area VSR 1.662 2.616 1.657 1.622 3.693

Rank 3 2 4 5 1

VSR, variable sensitivity ratio.

TABLE 4 | The results of optimization process via different evolutionary optimization algorithms (BBO, SOS, ISA, and GA).

Fitness function Optimization
algorithm

Optimal level of input variables Predicted fitness
function value

Blue (µmol/m2/s) Red (µmol/m2/s) White (µmol/m2/s) Far-red (µmol/m2/s) Sucrose (%)

Shoot length (mm) BBO 15.412 9.412 15.997 43.271 3.142 160.78

SOS 4.460 19.051 27.337 39.472 3.157 160.78

ISA 0.439 18.494 36.234 33.122 3.319 160.78

GA 2.937 0.270 13.036 30.605 3.505 160.78

Root length (mm) BBO 5.756 87.381 31.523 19.343 3.504 262.21

SOS 0.508 79.897 4.733 17.209 3.673 262.21

ISA 3.779 81.519 25.386 13.321 3.634 262.21

GA 5.797 98.198 36.208 1.237 3.507 262.21

Node number BBO 62.998 92.238 48.520 8.830 3.709 12.25

SOS 57.682 87.192 45.468 19.924 3.711 12.25

ISA 46.845 90.135 20.969 16.824 3.220 12.25

GA 50.960 88.355 11.000 11.673 3.709 12.25

Shoot number BBO 16.581 36.686 0.592 19.995 2.909 3.75

SOS 15.930 21.183 9.723 24.304 2.372 3.75

ISA 21.336 29.584 0.332 17.387 2.174 3.75

GA 25.303 25.471 0.262 18.125 3.160 3.75

Canopy surface area (mm2) BBO 52.563 84.052 26.262 22.456 3.809 7168.05

SOS 54.688 95.974 30.099 24.543 3.664 7168.05

ISA 44.889 99.642 49.994 24.674 3.285 7168.05

GA 37.646 83.928 17.507 1.811 3.083 7168.05

BBO, biogeography-based optimization; GA, genetic algorithm; ISA, interior search algorithm; SOS, symbiotic organisms search.

respectively studied different levels of in vitro sucrose on shoot
growth and development of Quercus suber L. and Eclipta
alba (L.) Hassk. They reported that 3% sucrose was optimal
for maximizing shoot length in vitro. Although the effect
of sucrose concentration on cannabis micropropagation needs
more attention, previous reports generally use 3% (w/v) for
shoot growth and development (reviewed by Hesami et al.,
2021a). These results support the standard use of 3% sucrose
for micropropagation, but more importantly demonstrate the
ability of machine learning techniques to optimize environmental
factors in tissue culture systems using a relatively small
number of treatments.

Though sucrose is identified as the most important factor
in plant growth and development in this study, light intensity

and spectrum also play important roles for in vitro morphogenic
and developmental processes (Batista et al., 2018). Different
photoreceptors recognize the quality and quantity of light
(e.g., phytochromes absorb red and far-red, phtotropins and
cryptochromes absorb blue light), and subsequently use this
information to direct photomorphogenic functions (Li et al.,
2012; Parihar et al., 2016). Several studies have previously shown
the impact of light quality and quantity on different tissue culture
systems for shoot growth and development (Hung et al., 2016),
somatic embryogenesis (Ferreira et al., 2017; Hesami et al.,
2019), rhizogenesis (Gago et al., 2014), and secondary metabolite
production (Dutta Gupta and Karmakar, 2017; Silva et al., 2017).
However, each in vitro developmental stage requires a specific
light condition (Batista et al., 2018). Our sensitivity analysis
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showed that, among light treatments, B was the most important
factor for shoot length, shoot number, and node number, while
R had the highest degree of importance on root length and
canopy surface area. The importance of B and R on in vitro
shoot growth and development has been previously confirmed
in different plants such as Myrtus communis L. (Cioć et al.,
2018), Plectranthus amboinicus (Lour.) Spreng (Silva et al., 2017),
Pfaffia glomerata (Spreng.) Pedersen (Silva et al., 2020), Achillea
millefolium L. (Alvarenga et al., 2015), and Stevia rebaudiana
Bertoni (Ramírez-Mosqueda et al., 2017).

Light intensity is another important parameter that should
be optimized for each in vitro culture stage. Through GRNN-
SOS, the predicted optimal spectrum included 4.460 µmol/m2/s
B + 19.051 µmol/m2/s R + 27.337 µmol/m2/s W +

39.472 µmol/m2/s Fr light + 3.157% Sucrose to maximize
shoot length. In total, this provides about 50.8 µmol/m2/s
PAR plus 39.472 µmol/m2/s Fr. In line with our results, Silva
et al. (2017) reported that light intensity below 51 µmol/m2/s
resulted in the highest shoot length in P. amboinicus. Similar
results were also reported by Alvarenga et al. (2015) for
A. millefolium. However, using GRNN-SOS to predict the
optimal spectrum to maximize canopy surface area, the
conditions included 54.688 µmol/m2/s B + 95.974 µmol/m2/s
R + 30.099 µmol/m2/s W + 24.543 µmol/m2/s Fr +
3.664% sucrose, for a total of 180.8 µmol/m2/s PAR plus
24.5 µmol/m2/s Fr. Alternatively, GRNN-BBO conditions
included 52.563 µmol/m2/s B + 84.052 µmol/m2/s R +
26.262 µmol/m2/s W + 22.465 µmol/m2/s Fr + 3.809% sucrose,
totaling 162.9 PAR + 22.5 µmol/m2/s Fr, which ultimately
resulted in the lowest canopy surface areas. Here, the difference
between GRNN-SOS and GRNN-BBO relating to Fr fluence
is 2.1 µmol/m2/s, while the total difference in PAR fluence is
17.9 µmol/m2/s, 11.9 µmol/m2/s of which is the dissimilarity of R
intensity. This leads us to speculate that PAR intensity, specifically
R, is an important factor governing canopy development. This
is confirmed with the sensitivity analysis ranking, as R is the
most important spectra for this growth parameter. Alternative
wavelengths of light can be efficiently absorbed at different depths
within the leaf tissue. This can also be enhanced with increasing
light intensity. While certain wavelengths of green light can
penetrate deeper into leaves, R and B can effectively be absorbed
toward the leaf surface (Zheng and Van Labeke, 2017), triggering
phytochrome and cryptochrome—mediated re-localization of
phytohormones for photo-morphogenesis (Miler and Zalewska,
2006). Although the optimal light intensity varies by species,
most micropropagation systems use light levels ranging from
40 to 80 µmol/m2/s PAR (Nhut et al., 2003; Miler et al., 2019;
Murphy and Adelberg, 2021). However, some species perform
better at higher fluence rates, for example, Actinidia deliciosa
(Gago et al., 2014), Lippia gracilis (Lazzarini et al., 2018), and
Solanum tuberosum (Kulchin et al., 2018). In general, cannabis
is known to grow best in vivo under higher light levels (Wróbel
et al., 2020; Murphy and Adelberg, 2021), with yields increasing
linearly up to at least 1,600 µmol/m2/s PAR (Chandra et al., 2008;
Lata et al., 2016; Rodriguez-Morrison et al., 2021), depending
on the culture system. As such, the prediction to use such high
light levels may reflect the nature of the species. Our validation

experiment demonstrates that cannabis responded to these high
light levels as predicted.

Similarly, in our initial experiment, we observed higher
intensities of R in combination with equal or lower intensity of
B or W to be beneficial to canopy development in the presence
of 3% Sucrose. Unlike some other treatments, 50 µmol/m2/s
R + 50 µmol/m2/s B + 3% Sucrose, with the largest canopy
surface area, did not give largest averages in any additional
growth parameters measured. This is counterintuitive on the
premise that canopy surface area is a metric of leaf size in
addition to leaf number. We might expect highest canopy surface
area treatments to be mutually high in other shoot growth
parameters such as shoot length, number of nodes, or number of
shoots. R significantly impacts endogenous action of gibberellic
acid which is involved in cell elongation, root inhibition, and
stimulating mitosis in meristematic cells (Manivannan et al.,
2015) for replication. Gibberellic acid action is known to trigger
anisotropic responses for leaf expansion in monocots (Xu et al.,
2016; Sprangers et al., 2020), though R can impart different effects
on leaf morphology for different plants in vitro. B increased
leaf thickness, leaf numbers and leaf areas compared to R,
which reduced leaf thickness and area in cultured Alternanthera
brasiliana (Macedo et al., 2011). Similarly, B mutually amplified
leaf thickness and leaf area of Ficus benjamina (Zheng and
Van Labeke, 2017), and Cucumis sativus in vivo, as well as
micropropagated Solanum tuberosum L. (Chen et al., 2020). B
also had a tendency to increase leaf area of Cordyline australis
and Sinningia speciosa in vivo (Zheng and Van Labeke, 2017).
Since we observed opposite influences of B, we can speculate that
influences of this spectrum to be species-dependent. Wei et al.
(2021) found that LED-treated hemp plants produced smaller
leaf areas than high pressure sodium treatments, though the
LED treatments with higher R:B at higher intensities produced
larger leaf areas than treatments of lower R:B ratios at higher or
lower intensities. They also found leaf areas to bear a significantly
positive correlation leaf number, though no additional growth
responses or treatments were significantly correlated with leaf
area (Wei et al., 2021). These results correspond more similarly
with the data obtained in our study, though it’s difficult to
imply for certain if in vitro medicinal cannabis responds to
light quality and intensity with the same general trend when
influenced by sucrose in a sub-optimal gaseous environment.
It is also difficult to infer molecular mechanisms for such
in vitro plant responses, since they are beyond the scope of
the presented study. Thus, subsequent experiments should be
devised to test molecular mechanisms of the growth parameters
measured to further elucidate the molecular devises contributing
to the factors observed.

Our preliminary experiment also indicated shade avoidance-
like responses observed when comparing R + B + Fr + 3%
Sucrose treatments at different light intensities. Higher light
intensity generally produced shorter shoots with more nodes vs.
longer shoots with fewer nodes when irradiance was lower. At
higher light intensities, R + B + Fr + 6% Sucrose specimens
also averaged longer stems with more nodes than at 1% Sucrose,
though at low light intensity R + B + Fr + 1% Sucrose grew
longer stems with more nodes than 6% plants of the same
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light treatment. These observations imply that that there is a
complex interaction between sugar and light signaling whereby
the impact of sugar can allow plants to dynamically adjust to
higher light intensities (Tichá et al., 1998), or impede certain
physiological responses when exogenous carbon is too high and
abiotic factors are sub-optimal (Roh and Choi, 2004). However,
in all cases, greatest averages were achieved with 3% sucrose,
which suggests that sugar concentrations above 4% and below
2% can have diminishing returns on shoot development and
number (Sivanesan and Park, 2015). This observation supports
the widespread practice of using 3% sucrose in plant tissue
culture systems, and the results of our sensitivity analysis. Gago
et al. (2014) modeled 14 growth parameters of in vitro kiwifruit
based on Sucrose concentration and irradiance, using Neuro-
fuzzy logic. They found an in vitro sucrose concentration of
2.3% or higher to be indispensable in achieving many of the
optimal growth parameters investigated, either independently or
in interaction with light intensity. Dynamic interactions between
light and exogenous sugar are important for evoking many
additional physiological responses relating to light attenuation
and metabolism (Tichá et al., 1998; Roh and Choi, 2004; Gago
et al., 2014).

Lalge et al. (2017) observed that taller cannabis clones
developed with W compared to B + R LEDs when grown in
controlled climates. The optimal levels of R:Fr in promoting
stem elongation has been well-documented (Trupkin et al., 2014;
Ballaré and Pierik, 2017; Ma and Li, 2019). Though B also impacts
stem growth (Snowden et al., 2016; Magagnini et al., 2018; Ma and
Li, 2019), it can sometimes have the opposite influence of R:Fr,
resulting in more compact phenotypes (Magagnini et al., 2018).
The optimized combinations R:Fr in addition to B could have
ultimately impacted shoot elongation of the treatments assessed
(Cope and Bugbee, 2013). Emission of low B from warm W
LEDs can amplify stem elongation and leaf expansion, while
high B from cold W LEDs can have the opposite effect, resulting
in more compact specimens. Results from our preliminary
experiment provide evidence that appropriate levels of R:Fr can
greatly influence stem elongation to a greater degree than B
(Magagnini et al., 2018). The reduction of photosynthetically
active radiation resulting from shading limits the amount of
R, B, and Fr received by the canopy, though the degree of R
reduction tends to be far greater than that of Fr (Xu et al.,
2020). Hence, low irradiance and wavelength perception work
mutually to allow shoot elongation, perhaps in combination with
the influence of exogenous sucrose. In agreement with these
principles, the predicted optimal conditions for shoot elongation
included low R:Fr ratios, including Fr intensities ranging from
30.6 to 43.3 µmol/m2/s and R between 0.3 and 19.1 µmol/m2/s.
Likewise, shoot elongation was maximized under relatively low
PAR light levels from 15.7 to 80.8 µmol/m2/s, while canopy area
and number of nodes were predicted to be greater with low levels
of Fr (1.8–24.7 and 8.8–19.9 µmol/m2/s, respectively) and higher
PAR (139.1–194.5 and 150.3–203.8 µmol/m2/s, respectively)
fluence rates. As with previous literature, it appears that in vitro
cannabis plants produce longer stems with fewer nodes and
more narrow leaves when cultured at low light levels and
higher amounts of Fr. These results demonstrate that in vitro

cannabis plants respond to light signals similar to what would
be expected in vivo. Further, the ability of machine learning
and optimization algorithms to make predictions that agree with
the general body of literature further supports the ability to
recognize complex patterns using relatively quickly with few
treatments. Thus, balances between alternative light spectra, their
intensities and exogenously supplied carbohydrates are critical
factors determining the outcome of many plantlet responses
in vitro.

The effect of light quantity and quality studied together in vitro
has been perused for many years in micropropagation but have
been hampered due to the limitations of lighting systems and
difficulties in proper replication (Tanaka et al., 1998; Kim et al.,
2004; Miler et al., 2019). Many previous experiments explored
the influences of single or binary combinations light spectra and
their intensities on in vitro plantlet development (Lian et al.,
2002; Manivannan et al., 2015; Shukla et al., 2017). Our study
enlists novel LED technology combined with machine learning
and optimization algorithms in an innovative system that assesses
a vast assortment of sucrose concentrations and the cumulative
impact of four different light qualities at a wide array of intensities
to devise precision tissue culture protocols. Furthermore, for
the first time, we suggest a superior machine learning and
optimization algorithm approach for future plant tissue culture
studies. Additionally, the results of the preliminary experiment
exemplify that specific growth responses of in vitro cannabis can
be directed by manipulating abiotic factors such as light intensity
and quality in addition to exogenous carbon availability. This is
further demonstrated by the results of the validation experiment.
Such discoveries have valuable implications for the development
of cannabis tissue culture techniques in the absence of PGRs.

CONCLUSION

This machine learning—assisted, multivariable
micropropagation study has demonstrated that distinct growth
responses in cannabis can be shaped by changing the influences
of sugar and light dynamics in the absence of PGRs. The
development of alternative protocols to guide plant growth
toward specific responses shows endless value for numerous
in vitro applications. For instance, protocols to induce long
stems, large internodes, many nodes, or many stems could be
implemented when growing cultures for clonal propagation
and sub-culturing, while cultures developing large root masses
and large canopies could very well be more suited for ex vitro
transfer. In addition, culmination of the protocols devised could
be implemented, perhaps to trigger different developmental
responses during different growth phases. Finally, the results
obtained from this experiment allows us to recommend GRNN-
SOS to be a more efficacious algorithm to study dynamic plant
responses to multivariable stimuli in vitro for development of
new methods, and optimization of current protocols. Rather
than using traditional statistics to evaluate large datasets for
making optimization predictions for tissue culture applications,
the use of effective machine learning strategies for optimization
of in vitro protocols should further be assessed as an alternative,
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or in combination with traditional statistical approaches to allow
precision tissue culture practices.
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