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Age plays an important role in regulating the intra-annual changes in wood cell
development. Investigating the effect of age on intra-annual wood cell development
would help to understand cambial phenology and xylem formation dynamics of trees
and predict the growth of trees accurately. Five intermediate trees in each stand (total
of 5 stands) in five age groupings of Chinese fir (Cunninghamia lanceolata Hook.)
plantations in subtropical China were monitored on micro-cores collected weekly or
biweekly from January to December in 2019. We modeled the dynamics of wood
cell development with a mixed effects model, analyzed the age effect on intra-annual
wood cell development, and explored the contribution of rate and duration of wood
cell development on intra-annual wood cell development. We found a bimodal pattern
of wood cell development in all age classes, and no matter the date of peak or the
maximal number of cells the bimodal patterns were similar in all age classes. In addition,
compared with the older trees, the younger trees had the longest duration of wood cell
development because of the later end of wood cell development and a larger number
of wood cells. The younger trees had the faster growth rate than the older trees, but the
date of the maximal growth rate in older trees was earlier than younger trees, which led
to the production of more wood cells in the younger trees. Moreover, we found that the
number of cells in wood cell formation was mostly affected by the rate (92%) rather than
the duration (8%) of wood cell formation.

Keywords: age, wood cell development, microcores, Chinese fir, bimodal pattern

INTRODUCTION

The intra-annual radial growth of trees can be monitored using dendrometers, pinning, and micro-
coring (Seo et al., 2007; Drew and Downes, 2009). Compared with the other two methods, micro-
coring could monitor cambial cell division and the dynamics of xylem cell formation directly, and
combined with paraffin sections to show the details of wood cell development (cambial division,
enlarging, wall-thickening, and maturation) (Gruber et al., 2010; Kalliokoski et al., 2011; Lenz et al.,
2013). Moreover, wood microcores sampled by Trephor (PD2004A000324) had a small volume and
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produced little damage to trees, which could be collected
continuously and help define the timing of wood cell
development and calculate the rate of wood cell development
(Zhai et al., 2012; Lupi et al., 2013; Cuny et al., 2014;
Huang et al., 2014).

Older trees exhibit smaller tree rings than younger trees,
resulting in a declining trend of ring-width series across the
diameter from pith to bark (Panyushkina et al., 2003). Lundqvist
et al. (2018) reported that the annual growth, fiber and wood
properties of Norway spruce [Picea abies (L.) Karst.] change
dynamically, particularly at young ages. Timing and duration of
xylem formation differed between adult (50–80 years) and old
(200–350 years) trees [Larix decidua Mill., Pinus cembra L. and
Picea abies (L.) Karst.] which is typically 2–3 weeks shorter in
both timing and duration of xylem formation in old trees and
lead to reductions of 15–20% in the overall duration of xylem
differentiation (Rossi et al., 2008). Zeng et al. (2017) also found
that tree age played an important role in the timing and duration
of growth in Chinese pine (Pinus tabulaeformis Carr.) and Qilian
juniper (Juniperus przewalskii Kom.) in a semi-arid region of
northwestern China. In the Tibetan Plateau, compared with old
(162 ± 26 years) Smith fir [Abies georgei var. smithii (Viguie &
Gaussen) W. C. Cheng & L. K. Fu], young (43 ± 4 years) Smith
fir had an earlier onset of xylogenesis, a longer growing season
and a higher growth rate, resulting in a higher number of xylem
cells (Li et al., 2012).

Obviously, there is an evident effect of age on the number
of cambial cell division and wood cell formation, timing, and
duration of wood cell development and the rate of wood cell
development. Furthermore, age also impacts wood structure and
function (Rodriguez-Zaccaro et al., 2019), fibers (Lundqvist et al.,
2018), and wood density (Sousa et al., 2016). However, most
of these studies (Li et al., 2017; Ren et al., 2018; He et al.,
2019; Castagneri et al., 2020; Huang et al., 2020; Tabakova
et al., 2020; Versace et al., 2020; Zenga et al., 2020) focused
on exploring the effect of exogenous factors on intra-annual
wood cell development. Fewer studies (Rossi et al., 2008;
Plavcova et al., 2013) investigated the effect of endogenous
factors on intra-annual wood cell development although they
had the non-negligible regulation on the intra-annual wood cell
development, especially the effect of age on the intra-annual
wood cell development. Investigating the effect of age on wood
cell development provides improved understanding of cambial
cell division and xylem cell formation dynamics of trees, and
can in turn lead to a more accurate evaluation and prediction
of radial growth.

In addition, the effect of age and altitude on wood formation
and the relationship of “wood formation-climate” has been
explored in temperature and boreal forests using the micro-
sampling approach (Zhai et al., 2012; Huang et al., 2014).
However, investigations of intra-annual wood formation in
tropical and subtropical forests using the micro-sampling are
still lacking (Morel et al., 2015; Bosio et al., 2016), as well as
studies exploring the effect of age on wood cell development,
despite there being∼1.39 trillion trees in tropical and subtropical
forests among 3.04 trillion trees globally (Crowther et al.,
2015; Huang et al., 2018). Additionally, studies in tropical and

subtropical forests indicated that seasonal cambium activity
and xylem formation are species-specific (Morel et al., 2015;
Bosio et al., 2016).

Moreover, studies in temperature and boreal forests showed
a unimodal pattern of intra-annual xylem formation (Moser
et al., 2009; Lupi et al., 2010; Zhang J. et al., 2018). However,
studies in Mediterranean and tropical zones showed a bimodal
pattern of intra-annual xylem formation: i.e., the cambial layer
would be dormant during the growing season because of extreme
environment and then resumed activity at the appropriate
environment and led to two growing seasons in a year (Liphschitz
et al., 1984; Venugopal and Krishnamurthy, 1987; Camarero
et al., 2010). How about the dynamics of forests in subtropical
climate zone? Is there a unimodal pattern or a bimodal pattern in
the intra-annual wood cell development in subtropical forests?

Furthermore, a similar amount of xylem cells can be produced
either with a faster growth rate over a shorter growing season,
or with a slower growth rate maintained for a longer period
(Deslauriers and Morin, 2005; Ren et al., 2015; Guo et al., 2019).
Prislan et al. (2019) found that growing season length determines
the radial growth of trees in beech (Fagus sylvatica L.) forest
located in the Kamnik-Savinja Alps. In cold climate zones, the
greatest growth increment was observed with cell productions
lasting more than 70 days, and rate of cell production only
marginally affected the number of cells. In addition, the analysis
of Rossi et al. (2014) estimated the effects of the duration of
cell production and rate of cell production at 86 days and 14%,
respectively. In contrast, Ren et al. (2019) found that the number
of xylem cells was mostly related to growth rate rather than
duration of cell production. Exploring the effect of growth rate
and growth duration could help to understand the dynamics of
intra-annual radial growth.

Chinese fir is the most widely distributed with 9.9 million
ha in China’s subtropical forests among the plantation species
in China and has been increasingly planted in China due to
its high economic and ecological values (Zhang et al., 2013;
Wang et al., 2021). However, to our knowledge, no study has
investigated the age dependent nature of intra-annual wood cell
development of Chinese fir. The objectives of the study are to
(I) identify the dynamics of intra-annual wood cell development
(e.g., onset and end time of cambial cell division, duration
and rate of wood formation) of Chinese fir in different age
classes, (II) compare the differences in characteristics of wood cell
development between different age classes, and (III) investigate
the contribution of duration and rate of wood cell development
to the intra-annual wood cell development. These results will be
helpful for evaluating the carbon reserve of Chinese fir stands at
a higher temporal resolution.

MATERIALS AND METHODS

Study Area and Stands
The experimental site is located in Shanxia forest farm, situated
in Jiangxi province in southern China (Supplementary Figure 1).
It has a mean annual temperature of 17.9◦C and a mean annual
precipitation of 2047.5 mm. In November of 2018, we chose
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five stands with different age classes growing in similar site
conditions in the forest farm: trees planted in 2012, 2006, 2000,
1993, and 1969. In each stand, a permanent plot with an area of
20 m × 30 m was established. All trees were tagged in each plot,
and their heights, diameter at breast height and crown width were
measured in November of 2018.

According to their diameters at breast height, five intermediate
trees with upright and injury-free stems were selected for
sampling in each plot (Table 1). Trees with partially dead crowns
or evident damage were avoided.

Sampling Design and Laboratory
Preparation
Tree-ring formation was studied from January to December 2019.
Wood microcores (15 mm long, 2 mm diameter) with phloem,
cambial and xylem were collected with a sampling frequency of
every 7–10 days on the stem from 30 cm below to 30 cm above
breast height (1.3 m) at the same aspect using Trephor microcore
sampling tool (Rossi et al., 2006a; Supplementary Figures 2A,B).
Wood samples were always taken at least 5 cm apart to avoid the
influence from adjacent cores (Deslauriers et al., 2003). About 825
microcores were collected from the 25 trees weekly or biweekly
over the year. The collected microcores were fixed in formalin-
ethanol-acetic acid solution (Supplementary Figure 2C) and
stored at 5◦C to avoid tissue deterioration (Ren et al., 2019).
The microcores were dehydrated with successive immersions in
ethanol, D-limonene and paraffin, then embedded in paraffin and
transverse sections of 8–10 µm thickness were cut with a rotary
microtome (Rossi et al., 2006a).

Determination of Xylem Development
Sections were stained with safranin and fast green and observed
under the visible and polarized light at 400–500× magnifications
to distinguish the enlarging cells and wall-thickening cells (Rossi
et al., 2008; Huang et al., 2018). In cross-section, cambial cells
were characterized by thin cell wall and small radial diameters
(Zhang S. et al., 2018). The enlarging cell was still composed of
the thin primary wall but with radial diameter at least twice that
of a cambial cell (Rossi et al., 2008). Because of the arrangement
of the cellulose microfibrils, the developing secondary walls
glistened when observed under polarized light, and no glistening
was observed in enlargement zones (Supplementary Figure 3B;
Lupi et al., 2010). Given that safranin can react with the
lignin, we also detected the progress of cell wall lignification, as
indicated by a color change from green to pink. Furthermore,
a homogenous pink color over the whole cell indicates the end
of lignification and the maturity of a tracheid (Gricar et al.,
2005). Three rows of cambial and xylem cells in each slice
were selected to count the number of cambium cells, enlarging
cells, wall-thickening cells and mature cells (Rossi et al., 2006b;
Huang et al., 2014). The total number of wood cells was
calculated as the sum of cambium, enlarging, wall-thickening
and mature cells.

The number of xylem cells in the three rows per tree
were averaged and used to assess onset, end, and duration of
xylem growth. In spring, when at least one row of cells was

observed in the enlarging phase, the wood cell development
was considered to begin. In the late summer, when no new
enlarging cells were observed, and no cells were observed
in wall thickening and lignification stages, the wood cell
development was considered accomplished. The assessment of
the onset, end, and duration of wood cell development in
our study was based on the enlargement phase according to
Guo et al. (2020). The appearance of the first enlarging cell
and last enlarging cell of each tree were identified as the
onset and end of wood cell development, respectively. The
duration of wood cell development was assessed according
to the period between the appearance of the first and
last enlarging cell.

TABLE 1 | Age and size of the sampled trees.

Planting
year

Age
(years)

Age
classes

N
(trees/ha)

DBH (cm) H (m) CA (m2)

2012 8 Young 3,433 8.6 (0.46) 6.7 (0.21) 4.5 (1.00)

2006 14 Middle 2,800 12.6 (0.43) 12.8 (1.27) 5.0 (1.57)

2000 20 Near-
mature

766 16.7 (0.31) 13.6 (0.37) 10.3 (2.81)

1993 27 Mature 766 21.0 (0.39) 13.6 (0.39) 8.9 (1.19)

1969 51 Over-
mature

583 22.3 (0.74) 16.7 (0.98) 13.7 (1.58)

The values in brackets are standard deviation values.
N, represents the stand density. DBH, represents the average diameter at breast
height of five sampled trees in each stand. H, represents the average height of five
sampled trees in each stand. CA, represents the average area of tree crown of five
sampled trees in each stand.

TABLE 2 | Parameter estimates and their standard errors of the model for the
number of cells produced during wood cell development of Chinese fir plantations
using the Gompertz equation.

Planting year Parameter Estimates Std.error df T-value R2

2012 A 358.5 87.720 52 4.09 0.92

k 1.68 0.040 52 39.68

t 0.006 0.001 52 9.07

2006 A 116.4 20.56 73 5.66 0.89

k 1.46 0.040 73 34.26

t 0.007 0.001 73 9.10

2000 A 243.4 41.51 78 5.86 0.92

k 1.67 0.050 78 32.89

t 0.007 0.0008 78 8.88

1993 A 123.4 33.92 82 3.64 0.82

k 1.49 0.070 82 20.10

t 0.008 0.001 82 5.59

1969 A 94.7 25.780 84 3.68 0.76

k 1.38 0.080 84 17.49

t 0.008 0.0013 84 5.91

All p-values < 0.001.
Std.error, represents standard error. A, represents the asymptote parameter that
determines the final number of cells reached at the end of the growing season.
k, represents the growth-rate parameter that determines the spread of the curve
along the time axis. t, represents the day of the year. df, represents degree of
freedom.
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TABLE 3 | Inflection points of different cell stages.

Planting year Cambium Enlargement Wall-thickening Wall-thickening

Ft Fb St Sb Ft Fb St Sb t b

DOY 2012 51 (0) 108 (0) 151.2 (3.9) 189.4 (5.2) 108 (0) 169.4 (5.9) 236 (4) 335.4 (9.5) 191 (6.8) 321.8 (8.8)

2006 51 (0) 101.2 (9.4) 149.6 (3.2) 186.8 (6.4) 106 (4) 163 (0) 240 (7.5) 337.8 (4.4) 181.6 (5.2) 327.6 (9.3)

2000 51 (0) 91.6 (4.6) 152.6 (6.1) 189.4 (5.2) 110 (4) 166.4 (6.1) 234 (4.9) 335.6 (5.4) 192.6 (7.7) 306.8 (8.4)

1993 51 (0) 95.8 (8.0) 149.6 (3.2) 186.8 (6.4) 114 (4.9) 164.6 (3.2) 228 (8.9) 337.6 (7.9) 166.2 (3.9) 306.8 (8.4)

1969 51 (0) 94.4 (8.1) 151 (7.9) 192 (0) 108 (6.3) 164.8 (5.7) 234 (4.9) 335.6 (5.4) 169.4 (7.8) 325.4 (7.2)

NC 2012 7 (0.9) 2.7 (0.5) 6.3 (1.0) 2.4 (0.3) 12.7 (1.5) 0.8 (0.9) 6.3 (0) 1.1 (0.8) 8.0 (4.1) 1.2 (1.7)

2006 6.5 (2.1) 1.8 (0.4) 5 (1) 2.2 (0.3) 8.3 (1.1) 3.4 (0.5) 6 (2.4) 2.0 (0.5) 7.8 (2.0) 0 (0)

2000 7.1 (0.8) 1.7 (0.7) 5.8 (0.4) 2.7 (0.6) 7.2 (2.0) 1.5 (1.3) 9.8 (3.5) 0.3 (0.3) 10.7 (1.8) 0.8 (1.1)

1993 9 (2.5) 1.9 (0.5) 6 (0.8) 1.9 (0.3) 9 (1.1) 3.4 (0.5) 5.8 (0.7) 1 (0.8) 7.8 (0.8) 0 (0)

1969 6.6 (1.5) 1.5 (0.8) 4.6 (0.5) 2.2 (0.5) 7.8 (1.1) 2.6 (1) 4.6 (0.2) 0 (0.2) 8.2 (5.6) 0 (0)

The values in brackets are standard deviation values.
Ft, represents the first maximum. Fb, represents the first minimum. St, represents the second maximum. Sb, represents the second minimum. t, represents the maximum.
b, represents the minimum. DOY, represents the day of the year in 2019. NC, represents the number of cells.

Statistical Analyses
A S-shaped curve, Gompertz function, has been widely used in
modeling the increase in wood cell number (Rossi et al., 2003;
Zhang J. et al., 2018; Zhang S. et al., 2018), which was defined as
follows:

Y = A exp(− exp(β− kt)) (1)

where Y is the total number of cells at the time t; A is the
asymptote parameter representing the final number of cells
reached at the end of the growing season; β is the time axis
placement parameter which reflects the choice of the origin
time; and k is the growth-rate parameter that determines the
spread of the curve along the time axis. These parameters were
estimated using the package “nlme” in the R software (Pinheiro
et al., 2017; R Core Team, 2018), which involves the fitting of
nonlinear mixed-effects models by maximizing the restricted log-
likelihood. In the model, tree was considered as the random
factor, which was added to the asymptote parameter A.

From the estimated parameters of the Gompertz function, the
date of the inflection point (tp) and the corresponding maximal
growth rate (rmax) were computed:

tp = β/k (2)

rmax = kA/e (3)

where e is the Euler number, which approximately equals to
2.72 in our study.

The daily growth rate (r) of wood cell formation was calculated
as the slope of the modeled S-shape growth curve. In addition, the
average growth rate (rm)—computed between t5 and t95—was
completed:

rm =
0.95A−0.05A

t95 − t5
≈

9
40ermax

(4)

where t5 represents the date at which 5% of the wood cell
development is reached, and t95 represents the date at which 95%
of the wood cell development is achieved.

For examining the effects of rate and duration on wood cell
development, the following linear regression was used (Nally,
2002):

Y = α0 + α1x1 + α2x2 (5)

where Y is the total number of cells of xylem cell formation in
the year, α0 is the intercept, α1 and α2 are the parameters, x1
is the rate of xylem cell formation, and x2 is the duration of
xylem cell formation.

In addition, the R package “relaimpo” was used to calculate
the contribution of the rate and duration of xylem cell formation
more precisely (Gromping, 2006). Dynamics of cambial cells,
enlarging, wall-thickening and mature cells were modeled with
the “smooth function” in R to show original dynamics.

For each age class, the onset, end, and duration of wood
cell development were computed in days of the year. For
exploring the effects of age on the number of cells, onset, end,
and duration of wood cell formation, characteristics of rate
of wood cell formation, analysis of variance (ANOVA) was
performed in the study.

RESULTS

The Pattern of Wood Cell Development
The intra-annual dynamics of wood cell development could be
fitted well by the Gompertz function, with R2 = 0.92, R2 = 0.89,
R2 = 0.92, R2 = 0.82, R2 = 0.76 for the young, middle, near-mature,
mature, and over-mature stands, respectively. Furthermore, all
the parameters were significant at the level of 0.05 (Table 2). All
trees in different age classes showed the similar trend of wood
cell development but with a different timing of the inflection
point and different number of cells (Table 3). A bimodal
pattern was detected in number of cambial cells and number of
enlarging cells (Figures 1A,B). A bell-shaped curve was found
in the number of wall-thickening (Figure 1C). The dynamics
of the number of mature cells and total number of cells was
S-shape (Figures 1D,E).
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FIGURE 1 | Dynamics of different years of plantation establishment and aspects of wood cell development. (A) Cambial cells; (B) enlarging cells; (C) wall thickening
cells; (D) total number of cells; (E) mature cells.

The maximum number of cambial cells appeared in middle
of February, and then the number of cambial cells decreased.
By the middle of April, the number of cambial cells reached
the minimum value. By the end of May and start of June, the
maximum number of cambium cells appeared again, but the
value was smaller than the first maximum value. In the middle of
July, the number of cambial cells reduced to 2–3 cells and kept
a stable value. In contrast to the cambial cells, the number of
enlarging cells increased from the middle to the end of February.
The first maximum number of cells appeared around the middle
of April, and reduced to the minimum number by the middle
of June. The second maximum number of cells appeared in the
middle to end of August, but the value was smaller than the
former value. By the end of November, the number of cells

reduced to 0–3 cells. The date of the maximum number of wall-
thickening cells was similar to the date of the second minimum
number of cambial cells and the first minimum number of
enlarging cells. After that, the number of wall-thickening cells
reduced. By the middle of November, the number of wall-
thickening cells reduced to a minimum value, which was around
0–3 cells (Figures 1A–C and Table 3).

The dynamics of mature cells in five classes were S-shape curve
(Figure 1E), and had a significant age effect on the time of the
appearance of the first mature cell and the number of mature
cells: i.e., the first mature cell appeared earliest in the trees at the
young stand, followed by trees of the near-mature stand, mature
stand, and over-mature stand. Furthermore, trees in the young
stand had the highest number of cells (204.5 cells), followed by
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FIGURE 2 | Rate of wood cell development for stands with different planting
years.

trees in the near-mature stand (155.8 cells), mature stand (83
cells), and over-mature stand (63.2 cells) (Figure 1E). Compared
with other age classes, the middle-aged stand had the largest stand
density (Table 1), and the effect of stand density on radial growth
was larger than the effect of age on radial growth; consequently,
the growth curve of the middle-aged stand was similar with the
mature stand and over-mature stand (Figure 1E and Table 3).

Rate of Wood Cell Development
The trend in the rate of wood cell development was similar
between the five age classes with a significant effect of age on the
value of maximum and the date of maximum (Figure 2). Trees in
young stand had the highest rate of wood cell formation, with
a maximal rate was 0.83 cells/day and an average rate of 0.51
cells/day, followed by trees in near-mature stand (the maximal
and average rate was 0.65 and 0.4, respectively), mature stand
(0.34 and 0.21, respectively), middle-aged stand (0.31 and 0.19,
respectively), and over-mature stand (0.27 and 0.17, respectively).
Moreover, the date of the maximal rate was different in five age
classes: trees in over-mature stand appeared earliest, followed by
trees in mature stand stage, near-mature stand stage, middle-aged
stand stage, and young stand (Table 4).

Duration of Wood Cell Development
Trees in young stand had the longest duration of wood cell
development, followed by the middle-aged stand, near-mature
stand, mature stand, and over-mature stand (Figure 3). The
onsets of wood cell development were similar in the five age
classes. All trees started to grow in 77th day of the year. However,
the ends of wood cell development were different in the five age
classes: trees in young stand ended at 318± 20.7 days of the year,
trees in middle-aged stand ended at 315.8± 18.7 days of the year,

trees in near-mature stand ended at 306.2± 21.6 days of the year,
trees in mature stand ended at 298.4 ± 18.8 days of the year,
and trees in over-mature stand ended at 290 ± 22.4 days of the
year, which in turn resulted in different durations of wood cell
development (Table 4).

The Effect of Age on Wood Cell
Development
According to the results of ANOVA, the number of wood cell
development, the end and duration of wood cell development, the
date of the maximal rate of wood cell development, the maximal
and average rate of wood cell development had a significant age
effect (P ≤ 0.05), while the onset of wood cell development was
not significant (p > 0.05, Table 5).

The Contribution of Duration and Rate
on Wood Cell Development
The rate of wood cell development had a significant effect on
wood cell development (p ≤ 0.05), while the duration of wood
cell development did not have a significant effect on wood cell
development (p = 0.067 (Table 6). Moreover, we analyzed the
contribution of duration and rate to wood cell development
using R package “relaimpo,” and found that 92% of wood cell
development was explained by the rate of wood cell development,
while 8% of wood cell development was explained by duration.
Thus, the number of wood cell development was much more
sensitive to the rate than the duration of wood cell development.

DISCUSSION

A Bimodal Pattern of Wood Cell
Development
We found that there was a bimodal pattern in the dynamics
of the cambial and enlarging phases and divided the wood cell
development into two periods, which is similar to the pattern
of conifer species (Juniperus thurifera, Pinus halepensis, and
Pinus sylvestris) endemic to the western Mediterranean Basin
(Spain, Morocco, France and Algeria) (Camarero et al., 2010).
In their context, the bimodal pattern of xylem formation was
characterized by spring and autumn precipitation; furthermore,
in order to reduce the water consumption during the drought

TABLE 4 | Characteristics of the rate of wood cell development.

Planting
year

Sample
size

DOY r-max r-m Onset End Duration

2012 59 264.7 0.83 0.51 75.2 (4.4) 318 (20.7) 242.8 (24.7)

2006 80 200.4 0.31 0.19 76.6 (7.2) 315.8 (18.7) 239.2 (17.6)

2000 85 229.4 0.65 0.4 77.4 (5.6) 306.2 (21.6) 228.8 (22.5)

1993 89 198.6 0.34 0.21 77.4 (5.4) 298.4 (18.8) 221 (13.8)

1969 91 178.5 0.27 0.17 78.8 (7.4) 290 (22.4) 211.2 (26.2)

The values in brackets are standard deviation.
DOY, represents the day of the year in 2019. r-max, represents the maximal rate of
cell production. r-m, represents the average rate of cell production.
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FIGURE 3 | Duration of wood cell development compared between stands of different planting years.

condition, the cambial cells would be in dormancy, and could
resume the cell division when the moisture levels are suitable
(Camarero et al., 2010).

Cambium division and post-cambial growth are strictly
connected (Rossi et al., 2003, 2006b): once the enlarging phase
started, the number of cambial cells will be reduced, and thus a
bimodal pattern of cambial zone resulted in a bimodal pattern of
the enlarging phase.

The Effect of Age on Characteristics of
Wood Cell Development
As reported by Rossi et al. (2008), our results showed that trees
in five age classes had a similar onset but different timing of
the end of wood cell development (Table 4). In the early growth
phase, the onset of radial growth was potentially controlled by the
exogenous factors such as temperature and precipitation (Piper
et al., 2005; Rossi et al., 2011; Ren et al., 2018). However, in
contrast to the early growth, the effect of exogenous factors is
likely reduced in the late stages of growth and the late growth

TABLE 5 | The summary results of ANOVA.

df Sum-Sq Mean-Sq F-value p-value

Number 1 9704.00 9704.00 10.58 0.004

Onset 1 29.60 29.60 0.73 0.401

End 1 2504.00 2504.10 5.35 0.030

Duration 1 3078.00 3077.80 5.99 0.023

t-p 1 23912.00 23912.00 41.56 <0.001

r-max 1 0.30 0.30 15.11 <0.001

r-m 1 0.15 0.15 15.15 <0.001

Where p-value ≤ 0.05 indicates significant differences.
t-p, represents the time of the maximal rate of xylem cell formation. r-max,
represents the maximal rate of xylem cell formation. r-m, represents the average
rate of xylem cell formation. Df, represents the degree of freedom of one-way
analysis of variance. Sum-Sq, represents sum of square. Mean-Sq, represents
mean of square.

TABLE 6 | Parameter estimates of wood cell development linear model against
rate and duration.

value T-value p-value

Intercept –56.36 –2.58 0.019

Rate 397.28 13.6 <0.001

Duration 0.19 1.95 0.067

p-value ≤ 0.05 indicates significant differences.

was mainly controlled by endogenous factors (Luo et al., 2018;
Wang et al., 2020), which led to trees in five age classes having the
different timing for the end of wood cell development.

Our results showed that trees in the young stand produced
the highest number of cells while trees in over-mature stand
produced a lower number of cells (Figure 1D), which supported
the view that intra-annual radial growth changed significantly
with tree age (Melesse and Zewotir, 2018). Except at the later
end of wood cell development, younger trees produced a higher
number of cells along the radial direction in the stem, which may
also lead to younger trees having the longer duration of wood cell
development (Gricar et al., 2005; Li et al., 2012). In addition, the
rate of radial growth had a significant age effect: younger trees
had a faster growth rate, whereas older trees had a slower growth
rate, which was also found by Li et al. (2012). Compared with
younger trees, older trees may have a higher hydraulic resistance
and lower photosynthetic rates (Mérian and Lebourgeois, 2011),
which might reduce the growth rate of older trees.

Furthermore, we also found that the timing of the maximal
growth rate revealed a strong age effect, with older trees
experienced the maximal growth rate earlier, whereas younger
trees experienced the maximal growth rate later. This difference
may be because the trees in different age classes may have a
different sensitivity of climate (Rozas, 2005): i.e., younger trees
had a longer xylogenetic activity and produced a dilution of
the climatic signal over a longer period, and thus reduced the
response level to climate (Carrer and Urbinati, 2004).
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Contribution of Duration and Rate
Our results showed that similar duration but significantly
different rate of wood cell development led to significantly
different number of xylem cells in the year. This was
confirmed by our analysis that 92% of the wood cell
formation was contributed by the rate of wood cell formation,
while 8% of the wood cell formation was contributed
by the duration of wood cell development. In addition,
the intra-annual wood cell development in our study was
mainly related to the growth rate rather than duration of
radial growth, which is different from studies in boreal
forests (Griffis et al., 2003; Prislan et al., 2019), but was
observed by studies in the temperature forests and north-
eastern Tibetan Plateau area (Ren et al., 2015, 2019;
Zhang J. et al., 2018).

CONCLUSION

Our study indicated there was an age-related signal in wood
cell development of Chinese fir with respect to the number
of wood cell development, the end and duration of wood
cell development, the date of the maximal rate of wood cell
development, the maximal and average rate of wood cell
development. The similar bimodal pattern in all age classes
might be due to exposure to a similar set of exogenous factors
which should be examined in detail in future studies. The cell
number of wood cell development was related to growth rate
and duration, but was mainly dependent on the former (92%)
compared to the later in our study. These results have contributed
to improving understanding of the pattern of cambial phenology
and xylem formation dynamics and evaluating the carbon

reserves of Chinese fir stands in subtropical China at a higher
temporal resolution.
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