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Diterpene biosynthesis commonly originates with the methylerythritol phosphate (MEP) 
pathway in chloroplasts, leading to the C20 substrate, geranylgeranyl pyrophosphate 
(GGPP). The previous work demonstrated that over-expression of genes responsible for 
the first and last steps in the MEP pathway in combination with GERANYLGERANYL 
PYROPHOSPHATE SYNTHASE (GGPPS) and CASBENE SYNTHASE (CAS) is optimal 
for increasing flux through to casbene in Nicotiana benthamiana. When the gene responsible 
for the last step in the MEP pathway, 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE 
REDUCTASE (HDR), is removed from this combination, casbene is still produced but at 
lower amounts. Here, we report the unexpected finding that this reduced gene combination 
also results in the production of 16-hydroxy-casbene (16-OH-casbene), consistent with 
the presence of 16-hydroxy-geranylgeranyl phosphate (16-OH-GGPP) in the same 
material. Indirect evidence suggests the latter is formed as a result of elevated levels of 
4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) caused by a bottleneck at the 
HDR step responsible for conversion of HMBPP to dimethylallyl pyrophosphate (DMAPP). 
Over-expression of a GERANYLLINALOOL SYNTHASE from Nicotiana attenuata (NaGLS) 
produces 16-hydroxy-geranyllinalool (16-OH-geranyllinalool) when transiently expressed 
with the same reduced combination of MEP pathway genes in N. benthamiana. This work 
highlights the importance of pathway flux control in metabolic pathway engineering and 
the possibility of increasing terpene diversity through synthetic biology.
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INTRODUCTION

Many of the gem-dimethylcyclopropyl class of bioactive casbene-derived diterpenoids from 
plants have been shown to have pharmacological activities. Low abundance in their natural 
host (Hohmann et  al., 2000; Johnson et  al., 2008) along with their structural complexity 
(Jorgensen et  al., 2013; Kawamura et  al., 2016; Hashimoto et  al., 2017) has led to efforts to 
engineer alternative microbial (Hill et  al., 1996; Callari et  al., 2018; Wong et  al., 2018), algal 
(Mehrshahi et  al., 2020), or plant-based production platforms (Forestier et  al., 2021). The 
majority of diterpenes in plants are biosynthesized in chloroplasts (Rohmer et al., 1993; McGarvey 
and Croteau, 1995; Lichtenthaler et  al., 1997) from the five-carbon building blocks, isopentyl 

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.757186﻿&domain=pdf&date_stamp=2021-10-20
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.757186
https://creativecommons.org/licenses/by/4.0/
mailto:ian.graham@york.ac.uk
https://doi.org/10.3389/fpls.2021.757186
https://www.frontiersin.org/articles/10.3389/fpls.2021.757186/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.757186/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.757186/full


Forestier et al. 16-OH-GGPP Diterpene Synthase Precursor

Frontiers in Plant Science | www.frontiersin.org 2 October 2021 | Volume 12 | Article 757186

pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), 
provided by the MEP pathway and combined together in a 
three-to-one ratio to form the C20 precursor, GGPP (Gershenzon 
and Croteau, 1993).

We recently developed a Nicotiana benthamiana platform 
optimized for production of casbene and derivatives by 
engineering flux through the MEP pathway (Forestier et  al., 
2021). We  demonstrated how this platform could be  used for 
production of the lathyrane jolkinol C by introduction of 
functionally characterized P450 oxidases (Forestier et al., 2021). 
The elucidation of the biosynthetic steps from casbene to the 
tigliane (Kulkosky et  al., 2001; Kissin and Szallasi, 2011; De 
Ridder et al., 2021), ingenane (Siller et al., 2010) and jatrophane 
(Corea et  al., 2009; Hadi et  al., 2013) classes of diterpenoids 
has also been investigated but remains to be  resolved.

In our work on N. benthamiana to optimize flux through 
the MEP pathway to GGPP – the substrate for casbene production 
– we  unexpectedly detected the novel compound, 16-hydroxy-
casbene. The design of our experiments suggested that this 
metabolite did not arise from a hydroxylation downstream of 
GGPP and we  therefore hypothesized that 16-hydroxy-casbene 
could derive from an alternative substrate. Herein, we  present 
results leading us to conclude that 16-hydroxy-GGPP can act 
as a novel precursor for diterpene biosynthesis.

MATERIALS AND METHODS

Transient Expression of Genes in Nicotiana 
benthamiana
Arabidopsis thaliana cDNAs of 1-DEOXY-D-XYLULOSE-5-
PHOSPHATE SYNTHASE (DXS, AT4G15560.1), 4-HYDROXY-3-
METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR, 
AT4G34350.1, Phillips et  al., 2008), and GERANYLGERANYL 
PYROPHOSPHATE SYNTHASE 11 (GGPPS11, AT4G36810.1, 
Beck et  al., 2013) coding for plastidial enzymes referenced in 
TAIR (The Arabidopsis Information Resource) and cDNA of 
CASBENE SYNTHASE (CAS) from Jatropha curcas (King et  al., 
2014) were cloned into pEAQ-HT (Sainsbury et al., 2009) vector 
as described in Forestier et al. (2021). A codon optimized cDNA 
of NaGLS based on the sequence accession number XM_019410085 
was synthesized by gBlock IDT with extensions allowing to clone 
it directly with In-Fusion® in AgeI/StuI linearized pEAQ-HT 
vector. Transient expression in wild-type N. benthamiana was 
performed as described in Forestier et  al. (2021).

Isolation and Quantification of 
Diterpenoids, GGPP, and OH-GGPP
We detected both casbene and 16-OH-casbene in transiently 
expressed plants by extracting around 200 mg of dry material 
with 5 ml of hexane containing 100 μg/ml of β-caryophyllene, 
then sonicating for 15 min. We  quantified the compounds by 
GC–MS as detailed in Forestier et  al. (2021). For geranyllinalool 
and its derivatives, we  extracted around 150 mg of dry weigh 
(DW) of infiltrated tobacco with 1 ml of ethyl acetate containing 
100 mg/L of β-caryophyllene. The samples were shaken overnight 

at 2000 rpm on a IKA Vibrax VXR basic shaker and then 
centrifuged, and 100 μl of the supernatant was used directly for 
GC–MS.

We isolated GGPP and 16-OH-GGPP by adapting the protocol 
described by Nagel et al. (2014). Approximately 750 mg of ground 
dry material was extracted with 15 ml of methanol/H2O (7:3, 
v/v) and sonicated for 30 min. We  then added 5 ml of water to 
the mixture, centrifuged for 3 min at 2000 g, and filtered through 
Whatman filter paper grade 1 and cotton. The cleared extracts 
were passed through Chromabond HX RA columns and 
pre-conditioned with 5 ml of methanol and 5 ml of water, and 
compounds were eluted with 3 ml of ammonium formate 1 M 
in methanol. Each eluate was dried under a stream of nitrogen 
and re-dissolved in 250 μl of water/methanol (1:1). We transferred 
100  μl into glass HPLC vials, and 2  μl aliquots were analyzed 
by LC–MS as described by Catania et al. (2018). Additional high-
resolution mass spectral data were obtained on a parallel LC 
interfaced to a Thermo Orbitrap Fusion mass spectrometer, 
operating in ESI mode at 500000 (FWHM) resolution for MS1 
data, with MS2 data collected at 120000 resolution using stepped 
collision energies between 20 and 60 units in both HCD and 
CID modes.

Accumulation and Purification of 
Compounds for NMR Spectroscopy
To identify 16-OH-casbene, we  ground 4.9 g of dry material 
obtained from 10 full-grown plants infiltrated with DXS, GGPPS, 
and CAS, and extracted with 100 ml of hexane. After 1 h of 
sonication and 2 days shaking, the extract was centrifuged for 
3 min at 2000 g, filtered through Whatman paper grade 1 and 
cotton, and evaporated to obtain 350 mg of oily residue. The 
residue was re-suspended in 10 ml of hexane/ethyl acetate 
(70:30, v/v) and purified through a 40 g Buchi silica column 
on a PuriFlash® 4,250 system (Interchim). We  used the same 
method of flash chromatography as described in King et  al. 
(2014) to fractionate the extract into 80 samples. GC–MS was 
used to identify the fraction containing our compound of 
interest, and 2.6 mg of this was obtained after evaporation, at 
sufficient purity for direct 1H NMR analysis on a Bruker AVIII 
700 MHz instrument equipped with a cryoprobe.

For 16-OH-geranyllinalool, we  infiltrated 40 young plants 
with DXS, GGPPS, and NaGLS, which provided 10 g of dry 
material after freeze-drying and grinding. We  extracted this 
with 150 ml of ethyl acetate and left to shake for 5 days on a 
rotary shaker. After centrifugation and filtration as detailed 
above, we reduced the volume down to 1 ml before re-suspending 
in 9 ml of hexane/ethyl acetate and purifying with the same 
column and method as described above. The fractions of interest 
were combined and dried to obtain 16.4 mg of extract that 
was further purified with a reverse phase column [C18-HQ 
5 μm 250 mm × 10  mm (Interchim)] to remove the pigment 
content. The reverse phase column was first equilibrated with 
solvent A – mix of water/acetonitrile (95:5, v/v) – for eight 
column volumes (CV), before injecting the extract, diluted in 
2.5 ml of the same solvent, into a 5 ml injection loop. The 
separation method consisted of one CV of solvent A, followed 
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by a gradient of nine CV, to reach 100% acetonitrile (solvent 0B). 
This solvent was maintained for a further 10 CV, and the 
entire run was carried out at a flow rate of 3 ml/min. We  used 
an in-line connected Advion Expression compact mass 
spectrometer (CMS), which enabled product isolation guided 
by mass spectra. To evaluate the fragmentation of 
16-OH-geranyllinalool, we additionally ran the extracts on 
UPLC-MS, allowing us to determine two main ions at m/z 
271 and m/z 289, which we used to select our compound of 
interest on the Puriflash-CMS. We collected one fraction, which 
after evaporation contained 4.6 mg of sufficiently pure metabolite 
for NMR identification.

RESULTS

Transient Expression of 1-DEOXY-D-
XYLULOSE-5-PHOSPATE SYNTHASE With 
GERANYLGERANYL PYROPHOSPHATE 
SYNTHASE and CASBENE SYNTHASE in 
Nicotiana benthamiana Can Produce 
Metabolites in Addition to Casbene
In the previous work, we  tested the transient co-expression 
of different MEP pathway genes and GGPPS from A. thaliana 
with CAS from Jatropha curcas to evaluate the best combination 
for the highest production of casbene. We  determined  
that the combination of DXS (catalyzing the first step in 
the MEP pathway), HDR (4-hydroxy-3-methylbut-2-enyl 
diphosphate reductase, catalyzing the last step), GGPPS, and 

CAS resulted in an up to 5-fold increase in casbene production, 
compared to CAS expression alone (Forestier et  al., 2021). 
Omitting HDR from this combination resulted in lower 
production of casbene (Forestier et  al., 2021). Further 
inspection of the total ion chromatograms of plant extracts 
from this reduced gene combination identified three additional 
peaks (Figure 1A), compared to co-expression of DXS, HDR, 
GGPPS, and CAS which only produced casbene (Figure 1B).

The largest of the three additional peaks was present in sufficient 
amount to allow its identification as 16-hydroxy-casbene 
(16-OH-casbene) by NMR spectroscopy (Supplementary  
Figure S1). 16-OH-casbene was present at approximately 30% 
of casbene levels when HDR was absent from the gene combination 
(Supplementary Figure S2).

The fact that 16-OH-casbene is only produced when HDR 
is omitted from the gene combination used to increase flux 
into the C20 GGPP precursor for casbene production, led us to 
investigate the possibility that the hydroxyl group at the 16-position 
of the precursor is also hydroxylated. GGPP is formed by head-
to-tail condensations between one molecule of DMAPP and 
three molecules of IPP (Ogura and Koyama, 1998), with the 
chain-starter DMAPP ending up distal to the pyrophosphate 
group (Figure 2A). In the MEP pathway, the immediate precursor 
to DMAPP is (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate 
(HMBPP; Figure 1C), which has the same structure as DMAPP, 
but with a hydroxyl functionality at position 4 (Figures  2A,B). 
This hydroxyl group would appear at the 16-position of GGPP 
after chain-extension by IPP if HMBPP is accepted by GGPPS 
as an alternative chain starter to DMAPP (Figure  2B). 

A C

B

FIGURE 1 | GC–MS total ion chromatograms (TIC) showing the diterpene profile of N. benthamiana infiltrated with casbene synthase (CAS) and different precursor 
genes. (A) Co-expression of DXS + GGPPS + CAS. (B) Co-expression of DXS + HDR + GGPPS + CAS. (C) Simplified diagram of the MEP pathway plus geranylgeranyl 
pyrophosphate synthase (GGPPS). MEP pathway enzymes are DXS (1-deoxy-D-xylulose 5-phosphate synthase), DXR (1-deoxy-D-xylulose 5-phosphate 
reductoisomerase), MCT (2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase), CMK (4-(cytidine 5’diphospho)-2-C-methyl-D-erythritol kinase), MDS 
(2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase), HDS (4-hydroxy-3-methylbut-2-enyl-diphosphate synthase), HDR (4-hydroxy-3-methylbut-2-enyl 
diphosphate reductase), and IPPI (isopentenyl diphosphate Δ-isomerase). 1, casbene; 2, 16-hydroxy-casbene; and 3 and 4, undetermined compounds.
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We  considered therefore that 16-OH-GGPP could be  formed 
if there were an excess of HMBPP, caused by the over-expression 
of DXS and GGPPS with insufficient conversion to DMAPP 
and/or IPP due to this being dependent on an endogenous 
HDR. 16-OH-GGPP could then be  further incorporated into 
the casbene backbone assuming that CAS accepts 16-OH-GGPP 
as substrate for production of 16-OH-casbene (Figure  2B).

Detection of GGPP and Putative 16-OH-
GGPP in Planta by Transient Over-
Expression of DXS + GGPPS and 
DXS + HDR + GGPPS
To establish whether 16-OH-GGPP accumulates depending  
on the gene combination, either DXS + GGPPS or 
DXS + HDR + GGPPS were transiently expressed in N. 
benthamiana and C20 prenyl diphosphate intermediates were 
extracted as described by Nagel et  al. (2014). UPLC-MS/MS 
negative mode analysis of methanolic extracts was used to 
detect GGPP by selecting the m/z range 449–450 and by 
comparison with an authentic GGPP standard (Figures 3A–C). 
In the absence of a 16-OH-GGPP standard, we predicted that 
since m/z 449.2 represents the [M-H]- ion for GGPP (Figure 3F), 
hydroxylated forms should be detectable at an added mass of 
16; i.e at 465.2. Hydroxylated forms of prenyl diphosphates 
would be  more hydrophilic and therefore elute at an earlier 
retention time compared to GGPP in reverse phase 
chromatographic separation. A clear peak at m/z 465.2, was 
detected at the earlier retention time of 2.5 min, in the extract 

of material over-expressing DXS + GGPPS (Figures  3D, F), 
consistent with 16-OH-GGPP. High-resolution mass spectrometry  
analysis revealed a m/z of 449.1869 for GGPP ([M-H]− theoretical 
449.1864; error 1.11 ppm) and m/z of 465.1819 for 16-OH-
GGPP ([M-H]− theoretical 465.1813; error 1.29 ppm). Both 
peaks generated a common 158.9252 m/z MS2 fragment, 
identified as the diagnostic pyrophosphate group ion, [P2O6H]−. 
We  were unable to detect the m/z 465.2 peak in the gene 
combination of DXS + HDR + GGPPS (Figure  3E), consistent 
with the hypothesis that OH-GGPP is produced when HMBPP 
reduction is limiting due to lack of HDR activity.

Transient Expression in N. benthamiana of 
a GERANYLLINALOOL SYNTHASE From 
Nicotiana attenuata (NaGLS) Results in 
Production of Both Geranyllinalool and 
16-Hydroxy-Geranyllinalool When  
Co-expressed With DXS + GGPPS But  
Only Geranyllinalool When HDR Is  
Included in the Gene Combination
To further explore whether 16-OH-GGPP could be  used by 
other diterpene synthases, we transiently expressed the Nicotiana 
attenuata geranyllinalool synthase (NaGLS) in N. benthamiana, 
alone or in combination with DXS + HDR + GGPPS (Figure  4  
and Supplementary Figure S3). This resulted in accumulation 
of geranyllinalool in both cases. Co-expression of 
NaGLS + DXS + GGPPS produced geranyllinalool but also two 
additional peaks with retention times (Rt) of 30.0 and  

A

B

FIGURE 2 | Theoretical formation of GGPP/casbene and OH-GGPP/16-OH-casbene. (A) Condensation of dimethylallyl pyrophosphate (DMAPP) and isopentyl 
pyrophosphate (IPP) to form GGPP and cyclisation by casbene synthase to form casbene. (B) Condensation of HMBPP and IPP to form OH-GGPP and cyclisation 
by casbene synthase to form 16-OH-casbene.
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31.6 min (Figure  4A and Supplementary Figure S3E). We 
used UPLC-MS (Supplementary Figure S4) and flash 
chromatography to purify the compound giving rise to the 
larger peak at Rt 30.0 min in sufficient quantities to permit 
its identification by NMR spectroscopy as 16-OH-geranyllinalool 
(Supplementary Figure S5) This novel natural product 
represented up to 25% of the geranyllinalool peak (Figure 4C). 
This is comparable amount of 16-OH-casbene to casbene (30%) 
with the same reduced gene combination (Supplementary  
Figure S2).

Despite obvious parallels with the regio-isomeric  
17-OH-geranyllinalool (Supplementary Figure S6), the precursor 

of the insecticidal diterpene glycosides in many Nicotiana 
species (Snook et  al., 1997; Jassbi et  al., 2010; Falara et  al., 
2014), there is no indication that 16-OH-geranyllinalool could 
be  involved in the biosynthetic pathway to 17-OH-diterpenes. 
A recent work actually demonstrated that two cytochrome 
P450s from N. attenuata are responsible for the 17-hydroxylation 
of geranyllinalool (Li et  al., 2021).

We did not detect any other hydroxy geranyllinalool 
compounds apart from 16-OH-geranyllinalool with the 
DXS + GGPPS + NaGLS gene combination, providing further 
evidence that 16-OH-geranyllinalool is derived from a direct 
conversion of 16-OH-GGPP.

A

B

C

D

E

F

FIGURE 3 | UPLC-MS chromatograms showing the prenyl diphosphate profile of N. benthamiana infiltrated with different diterpene precursor genes. (A) Authentic 
standard of GGPP, m/z 449–450. (B) Co-expression of DXS + GGPPS, m/z 449–450. (C) Co-expression of DXS + HDR + GGPPS, m/z 449–450. (D) Co-expression 
of DXS + GGPPS, m/z 465–466. (E) Co-expression of DXS + HDR + GGPPS, m/z 465–466. (F) Mass spectrum of GGPP (1) and putative OH-GGPP (2).
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DISCUSSION

This work provides evidence for the formation of 16-OH-GGPP 
when the flux through the MEP pathway in N. benthamiana 
is altered. Both casbene synthase from Jatropha curcas and 
geranyllinalool synthase from N. attenuata result in production 
of 16-hydroxylated versions of their usual diterpene products 
when transiently expressed in N. benthamiana producing 16-OH-
GGPP. The detection of additional minor compounds from 
both enzymes suggests that additional products may also arise 
when 16-OH-GGPP is used as substrate. We  hypothesize that 
16-OH-GGPP is formed through the action of A. thaliana 
GGPP synthase when HMBPP levels are elevated due to increased 
flux through the MEP pathway and a bottleneck exists at the 

HDR step. When the HDR enzyme, which reduces the hydroxy 
group in HMBPP to make DMAPP, is co-expressed with DXS 
and GGPPS, neither 16-OH-GGPP nor 16-OH-diterpenes are 
detected. Taken together the evidence presented supports 
formation of 16-OH-casbene or 16-OH-geranyllinalool by 
promiscuous diterpene synthases acting on 16-OH-GGPP rather 
than P450-based hydroxylation of casbene or geranyllinalool. 
The fact that formation of these 16-hydroxylated compounds 
is exclusively associated with over-expression of the first step 
in the MEP pathway combined with omission of the last step 
points to the bottleneck at the HDR step giving rise to 16-OH-
GGPP via a plausible route. Interestingly, in Escherichia coli, 
overproduction of HMBPP is cytotoxic and removal of this 
effect is achieved by activation of IspG, the gene encoding the 

A

B

C

FIGURE 4 | NaGLS produces both geranyllinalool and 16-hydroxy-geranyllinalool in Nicotiana benthamiana (A) GC–MS TIC of extract from N. benthamiana 
infiltrated with DXS + GGPPS + NaGLS. (B) Extract from material infiltrated with DXS + HDR + GGPPS + NaGLS. (C) Quantities of compounds 1, 2, and 3 in extracts 
from the different gene combinations (ng/mg DW ± SD, n = 5). Symbols show significant differences between treatment means (p < 0.05, F-test and T-test).  
1, geranyllinalool; 2, 16-hydroxy-geranyllinalool; and 3, undetermined.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Forestier et al. 16-OH-GGPP Diterpene Synthase Precursor

Frontiers in Plant Science | www.frontiersin.org 7 October 2021 | Volume 12 | Article 757186

HDR equivalent in plants (Li et  al., 2017). The transient 
expression approach we  use in planta may have by-passed 
such regulation if indeed it is important in N. benthamiana.

There are precedents from the terpenoid literature for the 
formation of more highly oxidized precursors, which are then 
accepted as alternatives to the normal substrate in a known 
biosynthetic pathway. Thus, 2,3-oxidosqualene, the usual 
precursor of triterpenes and sterols, can undergo a second 
oxidization by the endogenous squalene epoxidase to form 
dioxidosqualene, when it accumulates in yeast (Salmon et  al., 
2016). Research has shown that a mutated triterpene synthase 
actually prefers this double-oxygenated substrate to the normal 
2,3-oxidosqualene, leading to the production of unusual 
triterpenes that incorporate an additional oxygen atom in the 
fifth ring (Salmon et  al., 2016). There are also examples of 
synthetic chemistry work focusing on obtaining analogues of 
the sesquiterpene precursor farnesyl pyrophosphate (Dolence 
and Dale Poulter, 1996; Placzek and Gibbs, 2011) or even 
(Z,E,E)-geranylgeranyl pyrophosphate (Minutolo et  al., 2006), 
demonstrating the interest of alternative substrates for 
terpenoid production.

It is perhaps unlikely that 16-OH-GGPP is a significant 
substrate in nature when the MEP and diterpene biosynthetic 
pathways are subject to their normal mechanisms of regulation. 
However, the substantial level of 16-hydroxylated diterpenes 
with native diterpenes synthases in transient expression systems 
might suggest that 16-OH-diterpenes can become more 
biologically relevant under abnormal circumstances, when such 
regulation is compromised.

In terms of engineering biology, this work demonstrates 
the importance of regulating flux through biosynthetic pathways 
to ensure intermediates do not accumulate as the promiscuity 
of substrate specificity can result in the production of unexpected 
end products. On the other hand, this example shows that 
the generation of a novel GGPP substrate can open the possibility 
of entirely new diterpenes that could be  further modified and 
evaluated in terms of their bioactivity.
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