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Lint percentage (LP) is an important yield component in cotton that is usually affected

by initial fiber number and cell wall thickness. To explore how fiber cell wall development

affects LP, phenotypic identification and dynamic transcriptome analysis were conducted

using a single segment substitution line of chromosome 15 (SL15) that harbors a major

quantitative trait locus (QTL) for LP. Compared to its recurrent parent LMY22, SL15 did

not differ in initial fiber number, but the fiber cell wall thickness and single-fiber weight

decreased significantly, altering LP. The comparative transcriptome profiles revealed

that the secondary cell wall (SCW) development phase of SL15 was relatively delayed.

Meanwhile, the expression of genes related to cell expansion decreased more slightly in

SL15 with fiber development, resulting in relatively higher expression at SL15_25D than

at LMY22_25D. SCW development-related genes, such as GhNACs and GhMYBs, in

the putative NAC-MYB-CESA network differentially expressed at SL15_25D, along with

the lower expression of CESA6, CSLC12, and CSLA2. The substituted chromosomal

interval was further investigated, and found 6 of 146 candidate genes were differentially

expressed in all four cell development periods including 10, 15, 20 and 25 DPA. Genetic

variation and co-expression analysis showed that GH_D01G0052, GH_D01G0099,

GH_D01G0100, and GH_D01G0140 may be important candidate genes associated

with qLP-C15-1. Our results provide novel insights into cell wall development and its

relationship with LP, which is beneficial for lint yield and fiber quality improvement.
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INTRODUCTION

Cotton (Gossypium spp.) is a principal source of natural fiber. To
fulfill the fiber needs of the ever-increasing global population, it
is essential to improve cotton yield (Tilman et al., 2011). Cotton
lint yield is constituted of three important components: boll
number, seed cotton weight per boll, and lint percentage (LP,
determined as lint weight [LW, g]/seed cotton weight [g]× 100).
Of these components, LP is notable for being more stable across
different environments (Muhammad et al., 2006; Su et al., 2016),
and is an important component for cotton yield (Wang et al.,
2014). Several studies on improving LP have taken a quantitative
genetics approach, identifying associated quantitative trait locus
(QTLs) in different populations (Yu et al., 2013;Wang et al., 2014,
2016). Recent rapid developments in sequencing technology
have enabled several Gossypium genomes to be sequenced and
reported in succession: G. raimondii (Wang et al., 2012), G.
arboretum (Li et al., 2014), G. hirsutum (Li F. et al., 2015; Zhang
et al., 2015; Hu et al., 2019), and G. barbadense (Liu et al., 2015;
Wang M. et al., 2019). Consequently, additional genome-wide
association studies (GWASs) have been carried out to identify
stable QTLs or critical genes associated with agronomic traits of
interest (Fang et al., 2017b; Sun et al., 2018; Song et al., 2019;
Su et al., 2019), thus identifying several candidate genes having
functional roles closely related to LP (Su et al., 2016, 2019; Sun
et al., 2018).

Cotton fiber cells serve as an effective single-cell system for
studying cell wall development (Haigler et al., 2012). Fiber cell
development is roughly divided into four overlapping growth
phases: initiation, elongation, secondary cell wall (SCW) cellulose
deposition, and maturity. LP is mainly determined by two main
factors, the number of initiation fibers on the ovule epidermis and
SCW thickness that correspond to the phases of fiber initiation
and SCW biosynthesis, respectively. Fiber initiation takes place
between−2 and 2 days post-anthesis (DPA) (Zhang et al., 2017a),
and phytohormones play an important role in this process. For
instance, indole-3-acetic acid is a major auxin that accumulates
in fiber cells and positively regulates fiber initiation (Zhang et al.,
2017a,b), while cytokinins negatively regulate fiber initiation by
exerting an antagonistic effect on auxin accumulation on the
ovule epidermis (Zeng et al., 2019). Transcription factors are also
critical during the initiation of fiber development. For example,
MYB-MIXTA-like transcription factors have been identified to
orchestrate epidermal cell differentiation (Haigler et al., 2009;
Wu et al., 2018), and several R2R3-MYB transcription factors
are responsible for cotton fiber initiation; of those, GhMYB25-
like has been identified as playing a key role in the early stage of
fiber cell differentiation (Walford et al., 2011), while GhMYB109,
homologous to AtMYBGL1, is specifically responsible for fiber
initiation and elongation (Suo et al., 2003).

In contrast to common plant cell walls in which elongation
and secondary wall thickening are independent events, the
development of cotton fiber SCW is a unique process comprising
two overlapping phases: cell elongation and wall thickening
(Schubert et al., 1973). The deposition of cellulose determines
fiber SCW thickness, with mature cotton fibers containing
over 90% crystalline cellulose. Endogenous gibberellins have

been found to play a critical role in cotton fiber SCW
biosynthesis, as manipulation of their levels by transgenic
methods led to significant increases in 1,000-fiber weight,
cell wall thickness, and cellulose content (Bai et al., 2014).
Sucrose is a major carbon source for cellulose biosynthesis,
and the novel sucrose synthase encoded by GhSusA1 has been
identified as being tightly associated with cotton fiber yield
(Jiang et al., 2012). Furthermore, several genes involved in
SCW deposition have been identified and validated. When the
R2R3-MYB transcription factor GhMYBL1 is overexpressed,
SCW-related genes are upregulated, resulting in increased
cellulose and lignin biosynthesis (Sun et al., 2015). Another
transcription factor, GhXLIM6, was found to promote cellulose
biosynthesis by negatively regulating GhKNL1 expression, thus
subsequently affecting the expression of cellulose synthase A
(CESA) genes (Li et al., 2018). Overall, it is well-established
that cotton fiber cellulose deposition and SCW thickness are
closely related to LP. However, few studies have investigated the
mechanisms underlying the direct relationship between fiber cell
wall thickness and LP.

In our previous study, a QTL cluster associated with fiber
strength, fiber elongation and lint percentage was identified on
chromosome 15 (Wang et al., 2020). Subsequently, a single
chromosomal segment substitution line (CSSL) containing this
QTL cluster (hereinafter referred to as SL15) was developed
through multigenerational backcrossing with LMY22, a cultivar
with a high lint percentage that is of low quality. In this study, the
fiber–related trait phenotype of SL15 was characterized, and the
transcriptome profile of SL15 together with its recurrent parent
LMY22 was also analyzed. Transcriptional analysis revealed
dynamic differences between SL15 and LMY22 in expression
patterns and regulatory networks relevant to fiber cell wall
development; in particular, this study identified co-expressed
genes that were predominantly or specifically expressed in some
stages of fiber development. The results would be beneficial
for better understanding the biological/molecular mechanisms
underlying fiber SCW thickening, as well as its most relevant LP.

MATERIALS AND METHODS

Plant Materials
Two upland cotton lines with significant differences in LP,
SL15 (low-LP), and LMY22 (high-LP), were used in this study.
SL15 was developed from a set of single chromosomal segment
substitution lines using LMY22 (recurrent parent) and LY343
(donor parent), meaning these lines are nearly isogenic.

All of the materials were grown under standard field
conditions at the Linqing Experimental Station, Shandong
Cotton Research Center (LES/SCRC) and Hainan Island in
the winter during 2016–2019. LP was assessed by conventional
cotton breeding methods. Fiber quality parameters were
evaluated by the Supervision, Inspection, and Test Center of
Cotton Quality, Ministry of Agriculture of China (Anyang,
Henan Province) using a high-volume precision instrument. In
addition, other yield data, namely boll weight, seed index, and
seed number per boll, were precisely weighed and counted. The
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mean fiber length was detected by the Supervision, Inspection,
and Test Center of Cotton Quality, Ministry of Agriculture of
China (Anyang, Henan Province, China) using an AFIS single
fiber test. Individual flower buds from each line were tagged at 0
days post-anthesis (DPA). Cotton fiber samples were collected at
10, 15, 20, and 25 DPA and frozen in liquid nitrogen for RNA-
seq analysis, with at least 5–10 bolls harvested at each time point
for two biological replicates; samples were labeled per line as
LMY22_10D to LMY22_25D and SL15_10D to SL15_25D.

Microscopic Observation of Fiber Initiation
and Cell Wall Thickness
To observe the initiation of fiber cells, bolls were collected at 0
DPA from a similar position in LMY22 and SL15. The ovules were
carefully taken from the same position of each boll and fixed in
2.5% (v/v) glutaraldehyde at 4◦C. After a series of dehydration
treatments and drying (Hu et al., 2016), the ovules were sprayed
with gold powder by a Cressington 108auto. Fiber initiation was
observed and photographed by a Hitachi TM3030 (Japan).

For the determination of cell wall thickness, cotton fibers
collected at the last stage of SCW thickening (30 and 35 DPA)
were fixed for 12 h at 25◦C in 2.5% glutaraldehyde. After a
series of washes, dehydration, and infiltration, the samples were
embedded in resin for 48 h at 60◦C; then, the middle parts of
the fibers were cut into 6µm sections. The slices were observed
under a microscope (Leica RM2235), and cell wall thickness
was surveyed using a ZEISS Axio Scope. A1. ZEISS software
ZEN (blue edition) was employed to measure the thickness
of cell walls, and approximately 100 fibers were measured for
each sample.

Determination of Single Fiber Weight and
Fuzz Content
Fibers on seeds were combed straight and striped manually. The
cotton fiber was cut (1 cm) in the middle part, and ∼2mg (W1)
was used to precisely count the number of mature fibers. Those
fibers were scattered over black cloth as much as possible, for
photography, and the counting function of Adobe Photoshop
CS6 was used to precisely count the number of fibers of 1 cm
length (N1). The number of fibers per unit weight was calculated
as (N2) = (N1×10)/(the mean fiber length of LMY22 and SL15,
respectively). The weight of single fibers (W2) was calculated
from the following equation: W2 = W1/N2. Fuzz content
(%)= (weight of seeds–weight of delinted seeds)/weight of seeds
× 100 as described (Zhang et al., 2011). Each set of data was
calculated with 50 sample repeats.

RNA Extraction, Library Construction, and
RNA-Seq Analysis
Total RNA was extracted from each tissue sample using
an RNAprep Pure Plant Kit (Huayueyang, Beijing, China)
and quantified using a NanoDrop 2000 spectrophotometer
(Thermo Scrientific, Waltham, Massachusetts, USA). RNA
degradation and contamination were evaluated using 1%
agarose gel electrophoresis. Meanwhile, RNA integrity was
confirmed by an Agilent 2100 Bioanlyzer (Agilent Technologies,

Santa Clara, California, USA). Finally, the 16 cDNA libraries
were constructed, and sequencing was performed (Novogene
Company, Tianjin, China) using the Illumina system (Illumina,
San Diego, USA), generating 125/150 bp paired-end raw reads.

Clean data (clean reads) were obtained from raw data by
removing adapters, reads containing poly-N stretches, and low-
quality reads. At the same time, Q20, Q30, and GC content were
determined for the clean data. Hisat2 v2.0.5 was used to build
an index of the G. hirsutum reference genome (Hu et al., 2019),
downloaded from Zhejiang University, as well as for mapping the
clean reads to the genome. The mapped output was processed
via feature Counts v1.5.0-p3 (Liao et al., 2014) to obtain FPKM
for all transcript sequences in each sample. Correlations between
biological replicates were determined via calculating Spearman’s
correlation coefficient (SCC).

Differentially Expressed Gene Analysis and
Comparison of Gene Expression Patterns
Differentially expressed genes (DEGs) were identified based on
counts using theDESeq2 R package. Genes were considered to be
differentially expressed if they had FPKM > 0.5, false discovery
rate < 0.01, and|log2 (fold change)|>1. To reveal the biological
processes in which these differentially expressed genes might be
involved, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were carried out
using the clusterProfiler R package and corresponding databases.
Terms or pathways with a corrected P < 0.05 were considered
significantly enriched in DEGs. The expression patterns of DEGs
were investigated using the cluster R package to assess whether
the different stages of fiber development might be regulated by
different DEG sets.

Verification of DEGs by Quantitative
Real-Time PCR
Total RNA was extracted from samples using the Plant RNA Kit,
and cDNA was generated by reverse transcription with HiScript
III RT SuperMix for qPCR with gDNA wiper (Vazyme, Nanjing,
China) following the manufacturer’s instructions. Quantitative
reverse transcription PCR (qRT-PCR) was performed on a Light
Cycler 480II (Roche, Germany) using SYBG Premix Ex Taq II
(TaKaRa Bio, Kusatsu, Japan). GhHistone3 (AF024716) (Xu et al.,
2004) and GhUBI1 (EU604080) (Zhang et al., 2018) were used as
internal reference genes. The gene-specific and internal control
primers are listed in Supplementary Table 1. Three biological
and technical replications were performed in all qRT-PCR assays.
The relative expression of differentially expressed genes was
calculated by the 2−11Ct method.

RESULTS

Phenotypic Characteristics of SL15
The substitution line SL15 was developed from a cross between
LMY22 (high lint percentage) and LY343 (high quality), followed
by continuous backcrossing with LMY22. To identify the genetic
background of SL15, 307 simple-sequence repeat (SSR) markers
that were evenly distributed across 26 chromosomes were
selected based on a high-density linkage map of LMY22 ×
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FIGURE 1 | Multi-year field data comparisons. (A) Lint percentage and (B) fiber length in LMY22 and SL15 during a four-year field trial from 2016 to 2019 (mean ±

s.d., n = 5, *P < 0.05, **P < 0.01, ***P < 0.001). (C) Representative fiber images from LMY22 (left) and SL15 (right). Scale bar, 3 cm.

LY343 (Wang et al., 2013; Song et al., 2020). The results showed
that 98.97% of the genetic composition of SL15 originated
from LMY22, while the remaining 1.03% was from Chr. 15

of LY343, suggesting that the genetic background of SL15 was

almost the same as LMY22 except for the segment of Chr. 15

(Supplementary Figure 1).
The key agronomic traits of SL15 were investigated

and no differences in plant architecture, leaf shape, and
boll shape were observed between SL15 and LMY22. The
yield-related traits, including boll weight, seed index, and
seed number per boll, also had no significant variation
(Supplementary Figures 2, 3). However, a 4-year field trial
showed that the LP of SL15 was significantly reduced (by
3.43–6.43%), and fiber length (FL) was remarkably increased
(1.1–1.4mm) (Figures 1A–C), although the other fiber-related
traits, namely fiber strength, micronaire and fuzz content not
different (Supplementary Figures 2, 3). These results suggest
that SL15 has a distinct fiber developmental performance relative
to LMY22, and it is suitable as genetic germplasm for further
studying fiber development.

Decreased Single-Fiber Weight Results in a
Lower LP in SL15
LP is an important lint yield component that is affected by two
main factors: the fiber numbers on the ovule surface and the
single-fiber weight. To explore the factors leading to decreased
LP in SL15, the number of fiber protrusions at 0 DPA ovules
(lint initiation stage) was investigated by scanning electron
microscopy, and no significant difference was observed between
SL15 and LMY22 (Figures 2A,B), suggesting that initial lint
number did not cause decreased LP in SL15.

Microscopy was used tomeasure the fiber cell wall thickness at
30 and 35 DPA (Figure 2C), when fiber SCW thickening entered
the final stage. The ratio (percentage) of cell wall thickness to
cell diameter was calculated, and the mean percentage was 33%
in SL15 at 30 DPA, which was much lower than that of LMY22
(55%). The low percentage remained until 35 DPA in SL15
(Figure 2D), indicating that SL15 had a thinner fiber cell wall.
Thismay be an underlying factor leading to decreased LP in SL15.

Interestingly, given an equal weight of dry cotton fibers,
the number of lint fibers in SL15 was dramatically increased
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FIGURE 2 | Detection of fiber initiation and cell wall thickness. (A) TEM view of fiber initiation at 0 DPA; (i) and (ii) present the whole ovule of LMY22 and SL15,

respectively, scale bar, 500µm; (iii) and (iv) present close-up views of LMY22 and SL15, respectively, scale bar, 50µm. (B) Counts of fiber initiations, mean ± s.d.,

n = 20. (C) Cross-sections of cotton fiber cells; (i) and (ii) present LMY22 and SL15 at 30 DPA, respectively; (iii) and (iv) present LMY22 and SL15 at 35 DPA,

respectively; scale bar, 20µm. (D) Ratio of cell wall thickness to cell radius (as percentage), mean ± s.d., n = 100, ***P < 0.001. (E) Weights of single fibers, mean ±

s.d., n = 50, **P < 0.01 and ***P < 0.001.

(Supplementary Figure 4), revealing that its single-fiber weight
was significantly decreased (Figure 2E). Taken together, these
results indicated that the decreased single-fiber weight resulting
from a thinner fiber cell wall may be responsible for the lower LP
in SL15.

The Transcriptome Provides Insights Into
the Decreased LP and Elongated Fiber of
SL15
To identify genes associated with fiber cell development,
transcriptional changes were assessed in 10, 15, 20, and 25
DPA fibers of LMY22 and SL15 (Supplementary Figure 5,
Supplementary Table 2). Principal component analysis (PCA)
revealed that the expression patterns of the two genotypes
were similar at any given time point except 20 and 25 DPA
(Supplementary Figure 11). Notably, the transcriptome profiles
of SL15_25D and LMY22_20D had higher similarity than those
of SL15_25D and LMY22_25D (Supplementary Figure 11),

which suggested that the fiber development of SL15 at 25 DPA
may be similar to that of LMY22 at 20 DPA. Throughout fiber
cell development, a total of 6,231 DEGs were identified, and
the greatest number of DEGs (4,860) was observed from the
comparison of SL15_25D and LMY22_25D (Figure 3A).

To explore the difference in transcriptional regulation
between SL15 and LMY22 during fiber SCW development, DEGs
were selected at three time points (15, 20, and 25 DPA) for
further analysis. Enrichment analysis of DEGs was performed
using GO and the KEGG terms (Supplementary Figures 6,
7, Supplementary Tables 3–6). Vertical comparison of DEGs
within genotype showed that more up-regulated DEGs involved
in cell wall formation occurred at 20 DPA in LMY22, while
in SL15, more up-regulated genes were present at 25 DPA
(Figure 3B). Additionally, MapMan (Thimm et al., 2004) was
used to visualize pathways at 25 DPA, and up-regulated genes
in SL15 were enriched in the glycolytic pathway, especially
in the break-up of pyruvate into acetaldehyde and lactate
(Supplementary Figure 8).

Frontiers in Plant Science | www.frontiersin.org 5 October 2021 | Volume 12 | Article 756434

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gao et al. Fiber Secondary-Cell-Wall Thickening Affect LP

FIGURE 3 | Global transcriptome analysis. (A) Numbers of DEGs within and between LMY22 and SL15. (B) GO analysis comparing 20 DPA and 25 DPA in LMY22

and SL15.

Fiber length is principally determined by cotton fiber
elongation from 5 to 25 DPA, and the maximum elongation rate
was observed at 10DPA (Li et al., 2017). Cotton fiber elongation is
driven by the cell turgor generated by an influx of osmoregulatory
solutes together with high expression of genes involved in
loosening the cell wall matrix (Ruan and Furbank, 2001; Andres
et al., 2014). Notably, the genes encoding extensin, expansin, and
kinesin, which are involved in plant cell growth, were highly
expressed at 10 DPA (Figure 4A). Furthermore, the expression
level of expansin (GhEXPs) and kinesin (GhKIN7D) in SL15
declined as fiber maturation progressed, similar to that in LMY22
(Figure 4A). However, the expression of these genes decreased
more slowly in SL15 fibers, resulting in their comparative up-
regulation at 25 DPA (Figure 4A). The prolonged expression
of these genes promotes cell growth and mediated cell wall
extension (Cosgrove, 1997; Li et al., 2012), thus potentially
promoting fiber elongation by alleviating the limitation of

the cell wall. Expression levels of a representative GhEXP
(GH_A12G1972) and GhKIN7D (GH_D13G0300) were further
confirmed by qRT-PCR (Figure 4C).

Plant cell wall extensibility is reportedly mediated by
xyloglucan endotransglycosylases/hydrolases (XTHs) (Lee et al.,
2010). The expression patterns of GhXTHs in our transcriptomes
were similar to the aforementioned expansion-related genes
(Figure 4B). In addition, three DEGs encoding calcium-binding
proteins (PBP1, CML50, and SRC2) were highly expressed in
SL15_10D and SL15_25D (Figure 4B). It is well-known that
potassium (K+) plays an important role during cotton fiber
elongation. GH_D04G0136, encoding a potassium transporter,
was highly expressed at 15 DPA and then gradually declined;
this gene was also up-regulated at 25 DPA fibers in SL15
fibers compared to those of LMY22 (Figure 4B). Similarly, other
transporter genes, such as AMT1-1, ZIP1, and URGT2, were also
up-regulated in SL15_25D (Figure 4B). Two transporter genes
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FIGURE 4 | Expression patterns of genes related to fiber elongation. Heat map for DEGs involved in (A) cell expansion and (B) cell wall loosening. (C) Expression of

four DEGs as determined by qRT-PCR. *P < 0.05, **P < 0.01, and ***P < 0.001.

were randomly selected and confirmed by qRT-PCR (Figure 4C).
Together, these results suggest that the fiber cells of SL15 undergo
more vigorous cell wall loosening and higher turgor during fiber
elongation and SCW thickening stages.

The Putative NAC-MYB-CESA Network
Affects LP by Regulating Fiber SCW
Development
Transcription factors (TFs) play key roles in plant cell wall
development (Zhang et al., 2018; Wessels et al., 2019; Sun et al.,
2020). In this study, a total of 527 TFs belonging to 32 gene
families were identified as involved in cotton fiber development
(Supplementary Figure 9), including the MYB, WRKY, and
NAC family members. They were simultaneously expressed at
four stages. NAC members are known to be critical for plant
cell wall development (Wang et al., 2011; Valdivia et al., 2013).
Four DEGs (GH_A03G1732, GH_A04G1218, GH_D02G1891,
and GH_D04G1551) were gradually low expression as fiber
maturation progressed in both genotypes. However, they were
highly expressed at SL15_25D fiber when compared with
LMY22_25D (Figure 5A), and NAC83 (GH_A05G3518) had
a unique expression pattern that was only highly expressed
in SL15_25D (Figure 5A). NST1 (NAC SECONDARY WALL
THICKENING PROMOTING FACTOR1) and XND1 (XYLEM

NACDOMAIN 1) have been reported to interact with each other
and regulate secondary cell formation in Arabidopsis thaliana
(Zhang et al., 2019). In our transcriptome, five NST1s had
similar expression patterns between SL15 and LMY22 at the
same time point (Figure 5A). However, the transcriptional level
of XND1 was sharply up-regulated in SL15_25D (Figure 5A).
In contrast, the gene encoding NAC72, which is related to
senescence (Li et al., 2016), had lower expression in SL15_25D
than that in LMY22_25D (Figure 5A). Coincidentally, NAC74
(GH_A07G2358) was also down-regulated in SL15_25D; its
homologous gene KIR1 (AT4G28530) is known to positively
regulate programmed cell death in the stigma of Arabidopsis
(Gao et al., 2018).

The number of differentially expressed MYB genes
was greatest at 25 DPA compared to other time points
(Supplementary Figure 9D). Expression pattern analysis
showed thatMYBs involved in the SCW formation pathway were
less expressed in SL15_25D than in LMY22_25D. For instance,
two MYB85s were lowly expressed at all points in SL15, but
highly expressed in LMY22 at 25 DPA (Figure 5B). Additionally,
MYB6s were down-regulated from 15 to 25 DPA were higher
in SL15_25D than in LMY22_25D (Figure 5B). In contrast,
GhMYB52 and GhWER had increased expression from 15 to
25 DPA in both genotypes, but they had lower expression in
SL15_25D compared to LMY22 (Figure 5B).
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FIGURE 5 | Expression patterns of genes in the NAC-MYB-CESA network. (A) Heat map for DEGs encoding NAC transcription factors. (B) Heat map for DEGs

encoding MYB-like transcription factors and cellulose synthase/synthase-like genes. (C) Expression of six DEGs as determined by qRT-PCR. *P < 0.05, **P < 0.01,

and ***P < 0.001.

The DEGs related to cell wall biosynthesis were further
investigated, and two cellulose synthase 6 (CESA6) genes
were gradually increased in LMY22 during fiber SCW
thickening stages (Figure 5B). However, the expression of
those CESA6s was lowly increased in SL15 (Figure 5B);

thus, the expression of CESA6s was significantly lower
in SL15_25D than in LMY22_25D (Figure 5B). Similarly,

cellulose-synthase-like C12 (CSLC12) was down-regulated in
SL15_25D (Figure 5B). Another cellulose-synthase-like gene,

CSLA2, was also down-regulated in SL15_15D and SL15_25D
(Figure 5B). Six DEGs, including GhXND1 (GH_A13G0689),
GhNAC74 (GH_D07G2358), GhMYBs (GH_D01G0020 and
GH_D09G1886), and GhCESA6 (GH_D05G2640), were
randomly selected to conduct qRT-PCR and confirmed the
reliability of our transcriptome data (Figure 5C). Collectively,
these results suggested that the up- or down-regulated expression
of genes in the NAC-MYB-CESA network during fiber SCW
development may lead to decreased wall thickness and LP
in SL15.

Candidate Genes Associated With LP
Formation
SL15 was developed due to a major QTL for LP (qLP-C15-
1) detected in our previous study (Wang et al., 2020).
Based on the genetic map (Supplementary Figure 1), the
substituted chromosome 15 segment interval was further
determined in SL15 via increasing marker density to identify the
candidate genes associated with lint-percentage. The substituted
segment was finally narrowed down to a 1069-Kbp genomic
region flanked by two SSR markers, HAU1058 and D01_90
(Figure 6A). According to TM-1 Refseq v2.0 sequences, this
region contains 146 candidate genes (Supplementary Table 7).
The genetic variation of these candidate genes was investigated
using DNA resequencing data from LMY22 and LY343
(the donor parent of SL15), and one non-sense mutation
each was observed in the exon of GH_D01G0089 (Exon2:
c.C382A; p.E128∗) and GH_D01G0100 (Exon2: c.229T;
p.E77∗), leading to premature translation termination
(Figure 6B).
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FIGURE 6 | Genetic structural variation and Expression patterns of candidate genes. (A) A schematic of introgressive segment on Chromosome 15 of SL15. (B) The

genetic structural variation of candidate genes. Orange yellow boxes represent exons and black lines represent introns; the arrow represents the direction of genes on

the chromosome. (C) Expression heat map for six candidate DEGs. (D) Expression of candidate genes as determined by qRT-PCR. *P < 0.05, **P < 0.01, and

***P < 0.001.

The transcriptome profile of all candidate genes was further
examined within the interval, and 96 genes were FPKM>1
and expressed at all fiber development time points, in which
six genes were differentially expressed in all four periods
(Figure 6C). Among those, GH_D01G0052, GH_D01G0095,
and GH_D01G0128 were highly expressed during all fiber
cell development and were correspondingly lower in SL15
than in LMY22; GH_D01G0133 was more highly expressed in
fibers at 10 DPA than the other periods, while GH_D01G0099
and GH_D01G0140 had almost no expression at 10 DPA.
GH_D01G0099 showed a sharp increased expression at 15 DPA,
followed by a gentle decrease at 20 DPA and an abrupt decline
at 25 DPA (Figure 6C). Four differently expressed candidate
genes in this QTL region were randomly selected and confirmed
by qRT-PCR (Figure 6D). The SNP or Indel variation in the
promoter region may cause the differential expression of the
candidate genes. Therefore, promoter variation of these six
DEGs was investigated using our resequencing data. The results
revealed that many SNPmutations were detected in the promoter
region (Supplementary Table 8).

To identify candidate genes co-participating in LP formation,
the cluster R package was used to analyze the expression
patterns of all DEGs, and eight clusters were identified in SL15
(Supplementary Figure 10). Most of the candidate genes were
grouped into clusters 1 and 2 (Supplementary Figure 10).
Notably, candidate genes GH_D01G0052, GH_D01G0099,
GH_D01G0100, and GH_D01G0140 together with
CESA6 and COBRA-like were co-expressed in cluster
1 (Supplementary Figure 10, Supplementary Table 9).
These results suggest that GH_D01G0052, GH_D01G0099,
GH_D01G0100, and GH_D01G0140 may be the core candidate
genes associated with qLP-C15-1.

DISCUSSION

Reduction of Cell Wall Thickness Is the
Major Cause for Lower LP in SL15
In our previous study, a substitution line SL15, which substituted
a LY343 chromosomal segment containing an LP QTL (qLP-C15-
1) into the LMY22 genetic background, was developed, leading
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to a reduction in LP, as observed in field trials conducted over
consecutive years. There was no significant difference in the boll
weight, seed index, and fuzz content between SL15 and LMY22.
Therefore, SL15 can be regarded as a mutant germplasm to mine
the core genes regulating LP formation.

Currently, germplasms with low LP mostly result from a
reduction in the initial fiber number (Ma et al., 2016; Hu et al.,
2018a). In contrast, our present anatomical images revealed that
the lower LP in SL15 mainly resulted from reduced thickness
of fiber cell walls. Few genes have been identified to affect LP
through involvement in fiber SCW development. Thus, SL15
and LMY22 are ideal near-isogenic lines to identify key genes
regulating LP formation and provide a new insight into the
cellular and molecular biological mechanisms that determine LP,
the main cotton lint yield component.

Multiple Pathways Affect Fiber Elongation
and SCW Thickening
Genome-wide transcriptome profiling can be used effectively
to uncover transcriptional regulatory mechanisms that impact
plant development and growth (Yoo and Wendel, 2014; Islam
et al., 2016; Garg et al., 2017; Wang et al., 2018). In a
previous study, the transcriptome of the high fiber strength
germplasm SL7 was dissected, and its introgressed chromosomal
segment regulated a hormone-transcription factor hierarchical
regulatory network that induces the expression of SCW-related
genes (Song et al., 2020). The present study compared the
transcriptomes of a CSSL (SL15) and its recurrent parent
(LMY22) during fiber cell development and identified a total of
6,231 DEGs. Within-genotype GO analysis of DEGs from the
adjacent periods of 20 and 25 DPA revealed that upregulated
DEGs of LMY22_20D were enriched in cell-wall-related GO
terms (Supplementary Table 10). Five of these DEGs encoded a
member of the COBRA-like extracellular glycosyl-phosphatidyl
inositol-anchored protein family, homologous to the IRX6
(AT5G15630) protein in Arabidopsis; the putative cotton
homolog, GhCOBL9A, was responsible for plant cell elongation
and thickening (Niu et al., 2018). However, differential expression
of this gene was not detected in SL15 (Supplementary Table 11).
Finally, several DEGs upregulated in SL15_25D that annotated
with the GO terms “cell periphery” (GO: 0071944) and “cell
wall” (GO: 0005618) were detected in LMY22_20D (Figure 3B,
Supplementary Table 11). Consequently, development of the
cotton fiber SCW was not synchronous for SL15 and LMY22.

SCW is primarily composed of cellulose, which is in
turn composed of UDP-glucose-bound substrates supplied by
sucrose synthase or UDP-Glc pyrophosphorylase through carbon
partitioning (Haigler et al., 2001; Verbančič et al., 2018). Using
MapMan pathways, SL15_25D was found to feature many
more upregulated DEGs in sucrose glycolysis, especially the
pyruvate decomposition pathway. This abnormal carbohydrate
metabolism may affect cellulose biogenesis. A high content
of osmotically active solutes has been reported as a major
factor in the imposition of maximal turgor pressure for fiber
elongation (Hu et al., 2019). The upregulated DEGs included
lactate dehydrogenase and pyruvate decarboxylase, which may

generate many metabolites that act as osmoregulatory solutes to
change or increase vacuole turgor pressure, thereby driving fiber
elongation. Meanwhile, DEGs associated with cell expansion and
cell wall loosening were also highly expressed in SL15_25D.
Furthermore, K+ transporter genes were also upregulated in
SL15_25D, providing abundant potassium tomaintain cell turgor
pressure for fiber elongation (Guo et al., 2017).

Transcription factors (TFs) also act as critical regulators
of secondary cell wall biosynthesis. Cotton fiber is developed
from a single ovule epidermal cell, so the development process
of fiber is almost similar to plant cells. Based on the NAC-
MYB-CESA network involved in cell wall biosynthesis in the
model plant Arabidopsis thaliana (Zhong et al., 2008, 2010;
Wang and Dixon, 2012), the DEGs related to the NAC-MYB-
CESA network were investigated, and some of them were
up- or down-regulation, affecting fiber SCW thickening of
SL15. NAC83 (AT5G13180) has been reported to interact with
VASCULAR-RELATED NAC-DOMAIN7 (VND7) to negatively
regulate xylem vessel formation in Arabidopsis (Yamaguchi et al.,
2010). In this study, differentially expressed transcripts encoding
NAC83 were upregulated in SL15_25D and may negatively
regulate fiber SCW development.NST1 is a key gene that initiates
SCW formation through a hierarchical transcription network;
its transcriptional activity is inhibited by XND1 (Zhang et al.,
2019). Here, DEGs encoding XND1 were sharply upregulated
in SL15_25D, suggesting full repression of NST1 transcriptional
activity at that time point. Additionally, the greatest number of
DEGs encoding MYB family members was observed at 25 DPA.
MYB6 has been reported to reduce secondary cell wall deposition
through interacting with KNAT7 in poplar and Arabidopsis
(Wang L. et al., 2019); its homologous gene GH_A05G2758 was
upregulated in SL15_25D. The expression of these transcriptional
regulators eventually leads to a decline in the expression of
CESA6, CSLC12, and CSLA2 in SL15. Overexpression of the
AtCesA6-like genes was also responsible for increased secondary
cell wall deposition, and led to improvedmechanical strength and
higher biomass production in transgenic Arabidopsis (Hu et al.,
2018b). Those DEGs were up- or downregulated in the putative
NAC-MYB-CESA network and affected the fiber SCW thickness
of SL15. In contrast, the NAC TFs GhNAC72 (Li et al., 2016) and
GhNAC74 (Gao et al., 2018), involved in the positive regulation of
plant senescence and programmed cell death, respectively, were
also downregulated in SL15, maintaining cell life activities to
prolong the period of fiber cell elongation.

Candidate Genes Located in the
Substituted Fragment of SL15
Numerous candidate genes involved in regulating LP have been
identified to date (Su et al., 2016; Han et al., 2020; Wang et al.,
2020). Here, candidate genes were mined in the introgression
fragment of a major QTL for LP by resequencing data and
transcriptome analysis. The expression of GH_D01G0089 and
GH_D01G0100 was not significantly changed between SL15 and
LMY22 during fiber development, but stop-gain SNP mutations
were observed in the exon. The candidate gene GH_D01G0089
encoded a vacuolar sorting receptor 3 protein and was
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FIGURE 7 | Model of fiber secondary cell wall thickening in LMY22 and SL15. Light gray and dark gray ovals respectively represent the cotton fiber primary cell wall

and secondary cell wall (SCW); the orange oval represents the plasmalemma of the cotton fiber cell. Cylinders represent GhNACs that negatively regulate fiber SCW

development, with orange and light gray indicating DEGs with up- or downregulated expression, respectively. Oblong waves represent MYBs involved in cellulose

biosynthesis, with brick red and light green indicating DEGs with up- or downregulated expression, respectively. Hexagons represent cellulose synthase or

cellulose-synthase-like genes, with bright red and light gray indicating DEGs with up- or downregulated expression, respectively. Colored dots represent various

osmotically active solutes. Black arrows qualitatively represent the amount of water flowing from cytoplasm into vacuole.

homologous to ATVSR3 (AT2G14740), playing an important role
in response to plant stress (Avila et al., 2008). GH_D01G0100
encoded a polyol/cyclitol/monosaccharide-H+-symporter and
was homologous to ATPMT5 (AT3G18830), which is involved in
plant cell wall modifications (Klepek et al., 2009).

In addition, four of six differently expressed candidate genes,
namely GH_D01G0052, GH_D01G0095, GH_D01G0128, and
GH_D01G0154, were differentially expressed in each period of
fiber development. GH_D01G0052 and GH_D01G0095 encoded
a transmembrane protein (TMN1) and a magnesium transporter
(MGT4), respectively, acting as mediators of the cellular content
of metals (Cu and Mg, respectively) and being involved in plant
cell development (Hegelund et al., 2010; Li J. et al., 2015). A
distinctive expression pattern was observed for GH_D01G0099,
which was initially expressed at 15 DPA and peaked at this point.
The expression of GH_D01G0099 in the fiber cell transition
and SCW thickening period of SL15 was dozens of times lower
than that of LMY22. Its Arabidopsis homolog (AT1G47530) was
reported to be widely expressed in all plant tissues, and as
a turgor-regulating chloride channel, it is involved in various
plant life activities (Zhang H. et al., 2017). Co-expression
analysis showed that four candidate genes, GH_D01G0052,
GH_D01G0099, GH_D01G0100, and GH_D01G0140, shared
expression patterns with CESA6 and COBRA-like (cluster 1),
which may co-participate in an unknown pathway to affect
secondary cell wall thickening.

It was reported that G. barbadense has extra-long fibers
due to substantially increased osmotically active solutes and
prolonged expression of genes involved in fiber elongation (Hu
et al., 2019). In this study, transcriptional temporal and spatial

differences during fiber development between SL15 and LMY22
were mainly caused by the substituted segment from LY343. Of
the chromosome 15 genomic sequence of LY343, 20.66% was
obtained from G. hirsutum race (Wang et al., 2020), which may
be inherited from G. barbadense during the early evolutionary
events (Fang et al., 2017a). Based on the genetic background of
SL15 and the transcriptome data analysis, a model was proposed
for qLP-C15-1 to regulate fiber development (Figure 7). The
candidate genes in the substituted fragment controlling fiber
elongation and SCW development, as well as LP by regulating
the expression of pyruvate catabolase genes to produce more
or less metabolites following the change in fiber intracellular
osmotic pressure, and expression level of TFs involved in
SCW development. However, how the candidate genes in the
introgressive segment simultaneously regulate fiber length and
SCW thickness should be further explored.
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