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The metabolism of polyphenolic polymers is essential to the development and response
to environmental changes of organisms from all kingdoms of life, but shows particular
diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed
by homologous gene families, polyphenolic metabolism depends on phenoloxidases,
a group of heterogeneous oxidases that share little beyond the eponymous common
substrate. In this review, we provide an overview of the differences and similarities
between phenoloxidases in their protein structure, reaction mechanism, substrate
specificity, and functional roles. Using the example of laccases (LACs), we also
performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis
and machine-learning based protein structure modelling to link functions, evolution, and
structures in this group of phenoloxidases. With these approaches, we generated a
framework to explain the reported functional differences between paralogs, while also
hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review
provides a basis to better understand the functional overlaps and specificities between
and within the three major families of phenoloxidases, their evolutionary trajectories, and
their importance for plant primary and secondary metabolism.

Keywords: lignin, polyphenolic polymers, laccase, polyphenol oxidase, peroxidase, bayesian phylogeny, protein
modelling

INTRODUCTION

Phenolic compounds form a large and heterogeneous group of primary and secondary metabolites
that contain at least one hydroxylated aromatic ring. Phenolics provide solutions to many of the
difficulties posed by terrestrial habitats, and their chemical diversification is closely associated with
the transition to life on land (Stafford, 2000). Phenolic pigments, like melanins and flavonoids,
are antioxidants that protect all major prokaryotic and eukaryotic taxa against UV radiation
and reactive oxygen species and function as visual signals to pollinators or seed dispersers in
plants (Cheynier et al., 2013; Carletti et al., 2014). Lignin and other structural phenolic polymers
accumulate in cuticle, seed coat, and vascular system to enable plant vertical growth, resistance to
desiccation and herbivores, as well as long distance water transport (Barros et al., 2015). Smaller
phenolics such as salicylic acid, tannins, (neo)lignans or phytoalexins act as chemical or olfactory
signals to coordinate responses to environmental factors and biotic interactions (Treutter, 2006).

The majority of known phenolic metabolites derive from the shikimate pathway present
in plants, prokaryotes, fungi and some protists. It produces simple phenolic and aromatic
amino acids. In plants, phenylalanine and tyrosine establish the starting point of the C6C3
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phenylpropanoid pathway. This pathway forms a metabolic
crossroad with multiple branching points leading to the
formation of different complex phenolics (Barros et al., 2015;
Tohge et al., 2017). Once synthesised and transported to
specific cellular compartments, many C6C3 phenylpropanoid
monomers undergo oxidative cross-coupling to form oligo-
or polymers (Figure 1). These polymerisation reactions are
catalysed by peroxidases (PRXs), polyphenol oxidases (PPOs),
and laccases (LACs), a heterogeneous group of enzymes
often called phenoloxidases. Phenolic polymerisation occurs
constitutively during development and homeostasis but can
also be triggered by wounding or defence pathways (Pourcel
et al., 2007; Chong et al., 2009; Barros et al., 2015). The most
abundant phenolic polymer in the biosphere is lignin, present
in vascular plants (Barros et al., 2015) and red algae (Martone
et al., 2009). Lignin derives from the oxidative polymerisation of
phenylpropanoids secreted to the cell wall, and forms complex
structures specific to distinct cell types and cell wall layers
(Terashima and Fukushima, 1988). Other polyphenolics have
more defined and repetitive structures than lignin. This includes
cross-linked phloroglucinol monomers forming phlorotannins in
brown algae (Berglin et al., 2004; Meslet-Cladiere et al., 2013) and
oxidised tyrosine forming melanins in the cuticle of insects and
mammalian melanosomes (Mason, 1947). Beside developmental
processes, some polyphenolics are formed specifically as a wound
response. In these cases, the phenolic monomers are spatially
separated from the phenoloxidase(s) in different subcellular
sites, enabling contact only if the tissue is ruptured. A readily
observable example of this mechanism is the O2 dependent
browning of cut fruits, which results from the polymerisation of
flavonoids and aromatic amino acids into melanins (Figure 1).
Stilbenoids are also known to undergo oxidative coupling
in response to biotic and abiotic stresses, forming phenolic
oligomers called viniferins (Figure 1; Pezet et al., 2003). The
oxidising capacity of phenoloxidases derives from the reduction
of either molecular oxygen or peroxides. These enzymes thereby
fulfil two functions that were crucial for plant adaptation to life
on land: they remove excess oxygen species to detoxify their
high atmospheric concentrations (Decker and Terwilliger, 2000),
and catalyse the formation of various polyphenolic compounds
enabling plants to adapt and thrive to changing environmental
conditions. Phenoloxidases are therefore essential not only to
better understand fundamental physiological processes, but also
regarding their potential uses to modify plant biomass and/or
adjust abiotic and biotic responses. Such engineered plants,
like non-browning apples with a silenced PPO, are readily
commercialised. In the present article, we will review the three
families of unrelated enzymes that compose the functional group
of phenoloxidases: PRXs (Welinder, 1992), PPOs (Sánchez-
Ferrer et al., 1995), and LACs (McCaig et al., 2005). To further
elucidate the diversity within each type of phenoloxidases, we
performed deeper analyses using the example of LACs which
have been functionally demonstrated to oxidise different phenolic
compounds. We generated a comprehensive phylogeny of plant
LACs to estimate their evolutionary emergence and subsequent
diversification. We also used machine learning based predictive
three-dimensional (3D) protein modelling of LAC paralogs to

start bridging the gap between sequence information and putative
biological functions.

Historical Perspective
The term phenoloxidase is used today to encompass three
main families of unrelated oxidising enzymes: PRXs, PPOs, and
LACs. However, the definition of phenoloxidase has evolved with
time, technologies, and model organisms. In plant and fungal
organisms, phenoloxidases refer to LACs, sometimes including
PPOs and even PRXs (Ander and Eriksson, 1976; Liu et al.,
1994; Ranocha et al., 1999; Barros et al., 2015; Kües, 2015).
In animals, phenoloxidases usually refer to PPOs, sometimes
including LACs but not PRXs (Hattori et al., 2005; Terwilliger
and Ryan, 2006; Luna-Acosta et al., 2011; Rao et al., 2014).
These differences derive from the original definition of the term,
based a specific enzymatic activity before the advent of DNA
sequencing and protein phylogenetics. Two centuries ago, first
Planche (1820) and then Schönbein (1856) became intrigued with
boletes, whose fruiting bodies rapidly turn blue when damaged
and exposed to air. They moreover observed that many plant
and fungal tissues were able to turn guaiacum (α-guaiaconic acid,
a C6C3 phenolic lignan extracted from the resin of Guaiacum
sp.; Figure 1) from colourless to blue, and that this capacity was
abolished after boiling. Schönbein (1856) also observed that the
alcoholic extracts of fungi were only able to produce the blue
colour in the presence of either “activated oxygen” from pressed
mushroom juice, or peroxides, thereby describing PRX activity
for the first time. Later on, an enzyme from Rhus vernicifera
was shown to harden the tree’s sap into lacquer (Yoshida, 1883)
and named laccase. Shortly after, LAC activity was shown to
turn guaiacum blue (Bertrand, 1894), using molecular oxygen
as a co-substrate (Kastle and Loevenhart, 1901). The discovery
of PPOs was made from observing that certain fungal species
turned not blue but red, and then black after cutting. These
fungi could oxidise tyrosine in the presence of O2, marking the
first description of the tyrosinase activity of PPOs (Bourquelot
and Bertrand, 1896). Already then, it was observed that LACs
were far more thermostable than PPOs, a criterion then used
to distinguish between the two phenoloxidases (Bourquelot and
Bertrand, 1896). The term oxydase was introduced by Bertrand
(1896) as a general term for these water-soluble oxidising
enzymes using O2, replacing the previous term of oxidising
ferments coined by Traube (1877). As these oxidases were all
phenoloxidases, the two terms were used synonymously at the
time (Kastle, 1910; Onslow, 1920; Szent-Györgyi, 1930). In 1903,
the “activated oxygen” initially described by Schönbein was
identified as hydrogen peroxide (Bach and Chodat, 1903). This
result led the same authors to postulate that all phenoloxidases
were two-component systems comprising an H2O2 generating
oxygenase and a phenol oxidising PRX (Chodat and Bach,
1903; Onslow, 1920). However, Szent-Györgyi (1925) rebutted
this two-component model and showed that the blueing of
guaiacum by a potato oxydase was independent from peroxide
and PRX activity. Szent-Györgyi (1925) moreover demonstrated
that the blueing reaction was indirect and depended on the
oxidation of an intermediate catechol, which then oxidised the
guaiacum itself. This represented the first description of indirect
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FIGURE 1 | Main groups of phenolic compounds in monomeric state and after oxidative coupling catalysed by phenoloxidases. Note that peroxidases (PRX) and
laccases (LAC) can oxidise most types of phenolics in contrast to polyphenol oxidases (PPO). Note also the historical substrate (α-guaiaconic acid) used for the
discovery of phenoloxidases, which turns blue after enzymatic oxidation by forming quinones.

phenoloxidase activity via redox shuttles that are now known
as mediators. Three decades later, the phenoldehydrogenase
enzyme that Freudenberg et al. (1952) had associated to
lignification was shown to be a LAC (Higuchi, 1958), leading
to the synonymous use of LAC and phenoloxidase by plant
scientists. Altogether, the term phenoloxidase evolved through
time depending on both individual author and scientific field.
Nowadays, phenoloxidases describe structurally heterogeneous
and phylogenetically unrelated enzymes including LACs, PPOs,
and PRXs, grouped together only by their common capacity
to oxidise directly and/or indirectly substrates presenting
a phenolic ring.

PEROXIDASES

Distribution of Peroxidases Among
Kingdoms and Species
Every organism in the biosphere contains PRXs (EC 1.11.1.X)
which oxidise their substrate using the reduction of H2O2 or
organic peroxides (Shigeto and Tsutsumi, 2016). The substrates,
co-substrates, active centres, protein structures, and reaction
mechanisms of the different PRX families and superfamilies are
so diverse and different that the relevance of the classification
of all PRXs into one EC 1.11.1 has been previously questioned
(Hofrichter et al., 2010). Even when focusing on PRXs that
primarily oxidise phenolic substrates, there are fundamental
differences between plant class III PRXs, fungal class II PRXs such
as lignin PRXs (LiPs), manganese PRXs (MnPs), and versatile
PRXs (VPs), as well as bacterial dye decolourising PRXs (DyPs).
Within these groups, however, PRXs are more conserved. Class
III PRXs have a minimum of 25% protein sequence identity
between plant species (Table 1 and Figure 2). Compared to

LACs and PPOs, class III PRXs show the steepest rise in
number of paralogs with increasing genome size, suggesting that
repeated gene duplication events occurred throughout evolution
(Figure 3A). In extant angiosperms, Arabidopsis thaliana has
73 paralogs, and Eucalyptus grandis has almost 200. Despite
some computational predictions of alternative splicing of class
III PRX genes, there is no experimental evidence defining either
their existence or importance. Class III PRXs are exclusive to
streptophytes (Nishiyama et al., 2018; Mbadinga Mbadinga et al.,
2020), suggesting that phenol oxidising PRXs appeared after
the transition of plants to terrestrial habitat but prior to the
appearance of vascular tissues.

Expression and Localisation of
Peroxidases
Class III PRXs are expressed in all plant organs and tissues, during
various developmental stages and stress responses, mirroring the
many functions fulfilled by these enzymes (Welinder et al., 2002;
Cosio and Dunand, 2009; Wang et al., 2015b). Most PRXs have
an N-terminal peptide signal targeting them via the secretory
pathway toward membrane structures, vacuole, cell wall, and/or
apoplast (Figure 3B). Some PRXs even exhibit specific cell wall
layer localisations. Zinnia violacea ZPO-C is exclusively localised
in the secondary cell walls of tracheary elements (Sato et al.,
2006). Arabidopsis AtPRX64 is present only in the middle lamella
and cell corners of interfascicular fibers (Chou et al., 2018)
but restricted to the casparian strip in endodermal cells (Lee
et al., 2013). Other PRX paralogs have been predicted to be
targeted to the mitochondria or bound to membranes (Lüthje
and Martinez-Cortes, 2018). These membrane-bound forms have
been confirmed biochemically although it remains unclear on
which side of the membrane these PRXs are located (Mika and
Lüthje, 2003; Mika et al., 2010). Overall, class III PRXs appeared
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TABLE 1 | Overview of the three groups of phenoloxidases in plants.

Class III PRXs PPOs LACs

Distribution Chlorophytes – ? ?

Charophytes + + –

Bryophytes + + +

Lycophytes + + +

Polypodiophytes + + +

Gymnosperms + + +

Angiosperms + + +

Protein sequence identity > 25% > 35% > 35%

Number of paralogs 20–200 0–15 1–80

Structure Type Monomeric Homomeric dimers and
oligomers

Monomers, homo-/
heteromeric dimers and
oligomers

Glycosylation Universal Some Universal

Peptide signal Many Some Many

Transit peptide – Many –

Shielding domain – Universal ?

Cofactors 1 Fe (heme), 2 Ca 2 Cu 4 Cu

Active protein size (kDa) 30–45 35–60 55–70

Co-substrate H2O2 O2 O2

Main subcellular localisation Cell Wall Plastid Cell Wall

Main phenolic metabolism Lignin Melanin Lignin

FIGURE 2 | Structural features and sequence conservation in mature protein chains of phenoloxidases. Conserved domains (plastocyanin, tyrosinase, and
calcium-binding for LAC3, PPO1, and PRX9, respectively) are shown as solid rectangles. Secondary structures, positions of ion coordinating residues,
N-glycosylation sites and disulfide bonds are indicated according to the respective published crystal structures. The bar coded sequence conservation is calculated
across all paralogs from Populus trichocarpa, Brachypodium distachyon, Physcomitrium patens, and Selaginella moellendorffii. We have adopted the recent revision
of the nomenclature of Physcomitrella patens to Physcomitrium patens (see Rensing et al., 2020).

to be mostly associated with cell wall, membrane-bound and
vacuolar phenolic metabolism.

Peroxidase Protein Structure
Plant class III PRXs are heme-dependent PRXs whose activity
relies on two calcium ions and a heme centred on an iron
atom (Fe) coordinated within a protoporphyrin IX (Figure 2).
In contrast to fungal class II PRXs, the heme in class III PRXs
is non-covalently linked between histidine residues (Moural
et al., 2017). Class III PRXs are formed by two domains, called

proximal and distal, each binding one calcium ion (Figure 2),
which are hypothesised to originate from an ancestral internal
gene duplication event (Passardi et al., 2007). Class III PRXs
do not appear to require proteolytic activation. Both class II
and III PRXs contain highly conserved disulphide bridges that
are required for heme coordination and enzyme activity (Ogawa
et al., 1979; Howes et al., 2001). Class III and II PRXs are generally
monomeric (Janusz et al., 2013; Bernardes et al., 2015) whereas
bacterial DyPs form dimers and oligomers (Colpa et al., 2014).
Class III PRXs are heavily glycosylated, which is important for
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FIGURE 3 | Differences in evolutionary duplication and sub-cellular
localisation of the different type of plant phenoloxidases. (A) Evolution of plant
phenoloxidase multigenic families. Number of genes encoding for PPOs,
LACs, and class III PRXs are plotted against the genome size of the respective
species. Circle size indicates evolutionary divergence from A. thaliana in million
years ago. Fitted lines represent the trends of multigenic family sizes against
total genome size. (B) Predicted and experimentally confirmed subcellular
localisations of PPO, LAC, and class III PRX paralogs in plants. Large dots
represent experimentally verified localisations, small dots are predictions.
PCW, primary cell wall; PM, plasma membrane; SCW, secondary cell wall. All
paralogs predicted to the apoplast are placed at SCW.

their stability and activity (Lige et al., 2001; Hofrichter et al.,
2010; Palm et al., 2014) although the glycosylation sites are not
conserved (Figure 2).

Reaction Mechanism
Class III PRXs possess two distinct reaction mechanisms: a
peroxidative cycle that uses H2O2 or other peroxides to oxidise
their substrate (Figure 4), and a hydroxylic cycle that converts
H2O2 into other types of reactive oxygen species (Liszkay
et al., 2003). In its peroxidative cycle, PRXs are the most
potent oxidants of all phenoloxidases with redox potentials
(E◦) sometimes exceeding 1 V. This enables PRXs to oxidise
substrates unusable by other phenoloxidases (Welinder et al.,
2002; Hofrichter et al., 2010). The optimal pH of phenol-
oxidising PRXs usually ranges from neutral to basic, with the
exception of DyPs which function best in acidic conditions
(Colpa et al., 2014). Mechanistically, PRX activity depends on
their H2O2 mediated two-electron oxidation into an intermediate
state, named compound I, in which the heme Fe(III) is oxidised
into Fe(IV) and a radical free electron is present on the key
residues of the active site. Compound I can then oxidise one
substrate molecule with the radical electron, and subsequently

FIGURE 4 | Classical reactions catalysed by PPOs (CO, catechol oxidase;
TYR, tyrosinase), LACs, and class III PRXs. Enzymatic and non-enzymatic
reactions are indicated with solid and dashed arrows respectively on the
example of simple mono- and diphenolic molecules. Monophenol
hydroxylation (I→ II) is generally considered to be exclusive to TYRs. The one
electron oxidation of diphenols (II) by LACs or PRXs leads to a semiquinone
radical (III). This can then couple with another semiquinone to form a dimer or
polymer (VI), transfer its radical to another compound (III + I→ II + V), or
disproportionate with another semiquinone to form a quinone (2 III→ IV + II).
Quinones (IV) can isomerise to quinone methides (VII), which undergo
non-enzymatic coupling reactions to form dimers (VI). Lastly, LACs and PRXs
can also oxidise monophenols (I) into phenoxy radicals (V).

a second substrate molecule via the reduction of Fe(IV) back
to Fe(III).

To oxidise substrates that do not fit into their substrate
binding pocket, PRXs exploit two alternative mechanisms of
substrate oxidation: indirect oxidation via mediators, and long-
range electron transfer from the enzyme core to its periphery.
Mediators are small molecules that act as transiently oxidised
intermediates, freely diffusing and transferring their radical
charge onto other molecules that are either too large or
inaccessible to PRXs. LiPs (Harvey et al., 1986), MnPs (Wariishi
et al., 1991), and VPs (Gómez-Toribio et al., 2001) use mediators
during the oxidative depolymerisation of lignin. The intervention
of mediators has also been suggested during the oxidative
polymerisation of lignin in plants (Önnerud et al., 2002; Ralph
et al., 2004). Long-range electron transfer functions by relocating
the site of substrate oxidation from the heme group in the core
of the protein to exposed amino acids at the surface of PRXs,
enabling the oxidation of large substrates such as lignin polymers.
Such long-range electron transfer is used by VPs (Ruiz-Dueñas
et al., 2008), LiPs (Miki et al., 2011), and DyPs (Strittmatter et al.,
2013) during the oxidative degradation of lignin. Similarly, this
mechanism has also been suggested to occur during the oxidative
extension of lignin polymers by plant class III PRXs (Shigeto
et al., 2014). Despite this flexibility in oxidative mechanism,
paralogs of class III PRXs in plants exhibit different in vitro
affinities toward artificial substrates (Shigeto et al., 2014) and
monomeric model compounds similar to precursors of syringyl
(S) and guaiacyl (G) residues of lignin (Shigeto and Tsutsumi,
2016; Shigeto et al., 2017). Altogether, the exact biological
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substrate(s), the site(s), and mechanism(s) of oxidation remain
uncertain for most PRX paralogs.

Functional Roles of Peroxidases
Class III plant PRXs have been associated to multiple processes
during development and stress responses (Cosio and Dunand,
2009). One of the main proposed roles of PRXs is during
lignin formation to oxidise secreted lignin phenolic monomers
in specific cell wall layers of distinct cell types (Herrero et al.,
2013; Shigeto et al., 2013). PRXs are the main phenoloxidase
responsible of the lignification of the casparian strip in
endodermal cells of A. thaliana (Lee et al., 2013; Rojas-Murcia
et al., 2020). Ectopic lignin formation in the cell walls of flax
bast fibres (Chantreau et al., 2014) and in the extracellular
medium of Norway spruce cell cultures (Laitinen et al., 2017)
also depend on PRXs. Loss-of-function mutations of class III
PRXs as well as their ectopic over-expression have varying effects
on lignin amount and residue composition (Table 2) mirroring
their diverse in vitro affinities (Shigeto and Tsutsumi, 2016).
Beside lignification, class III PRXs are also associated with the
cross-linking of extensins in cell walls (Jacobowitz et al., 2019),
the vacuolar degradation of anthocyanin in Brunfelsia (Zipor
et al., 2015), auxin homeostasis (Cosio et al., 2009), as well as
the partial cell wall degradation of seed coats (Kunieda et al.,
2013). Using their hydroxylic cycle, class III PRXs are moreover
involved in oxidative burst responses (Choi et al., 2007; Daudi
et al., 2012) and cell wall extension during cell elongation and
lateral root formation (Mei et al., 2009; Müller et al., 2009). In
contrast to plant PRXs, fungal MnPs and LiPs as well as bacterial
DyPs are exclusively implicated in the breakdown of lignin and
other polyphenolic compounds (Hammel and Cullen, 2008).
Altogether, we are beginning to outline the overall diversity
of class III PRXs but the specific biological functions and
redundancies between its many paralogs remain unclear.

POLYPHENOL OXIDASES

Distribution of Polyphenol Oxidases
Among Kingdoms and Species
Polyphenol oxidases (EC 1.10.3.1, 1.14.18.1) are copper
containing enzymes that are almost universally present in plants,
fungi and animals (Sánchez-Ferrer et al., 1995), common in
bacteria (Claus and Decker, 2006), and have more recently been
found in some archaea (Kim et al., 2016). They usually form small
gene families that rarely exceed 10 paralogs (Figure 3A; Esposito
et al., 2012; Tran et al., 2012; Martínez-García et al., 2016).
A systematic genome analysis found no PPO orthologs in green
algea (Tran et al., 2012). However, isolated reports of PPO
activity in chlorophytes (Tocher et al., 1966) and charophytes
(Holst and Yopp, 1976) together with putative PPO sequences
in the genome of Chara braunii (Nishiyama et al., 2018) suggest
an evolutionary origin before the emergence of terrestrial plants
(Table 1). During the course of plant evolution, PPOs are unique
among phenoloxidases in showing no significant increases in
paralog numbers with increasing genome size (Figure 3A) and
have even been lost completely in the genus Arabidopsis.

Expression and Localisation of
Polyphenol Oxidases
Plant PPO genes are generally up-regulated in response to biotic
and abiotic stresses. In tomato, different stresses and stress-
associated compounds affect PPOs expression in different tissues:
jasmonate up-regulated PPO expression in young leaves, ethylene
in older leaves and salicylic acid in whole shoots (Thipyapong
and Steffens, 1997). In pineapple, two PPO genes are expressed
constitutively in whole plants, and are drastically up-regulated in
fruits submitted to cold stress (Stewart et al., 2001). The promoter
of one PPO associated to the biosynthesis of the anthocyanin
betalain in red swiss chard is developmentally controlled in roots
and petioles even when introduced heterelogously in A. thaliana
(Yu et al., 2015). In plants, ∼75% of PPOs possess a plastid
transit peptide and are predicted to accumulate in the thylakoid
lumen using the twin arginine-dependent translocation pathway.
Only a few PPOs have signal peptides and are predicted to the
secretory pathway (Tran et al., 2012; Figure 3B). These non-
plastidial localisation of PPO in plants were confirmed for the
aureusidine synthase in Antirrhinum majus (Ono et al., 2006) and
PPO13 in Populus trichocarpa (Tran and Constabel, 2011) in the
vacuolar lumen. Additionally, another PPO was shown to localise
in the golgi-network in Annona cherimola (Olmedo et al., 2018;
Figure 3B). Across kingdoms, PPO localisation is more diverse:
animal and fungal PPOs are located in the cytosol and associated
to clotting after wounding in insects (Schmid et al., 2019) or
secreted to the apoplast to form fungal cell walls or insect cuticles
(Barrett, 1986; Mayer, 2006). In contrast, mammalian PPOs are
bound to membranes of specialised melanosomes (Wang and
Hebert, 2006). Based on these differences in localisation between
kingdoms and species, PPOs are likely involved in specialised
phenolic metabolism.

Structure of Polyphenol Oxidases
Polyphenol oxidases generally form homodimers or -oligomers
in plants (Dirks-Hofmeister et al., 2012; Molitor et al., 2016), and
homo- and hetero-oligomers in mammals (Wang and Hebert,
2006), arthropods (Li et al., 2009), molluscs (Jaenicke and Decker,
2003), and bacteria (Kong et al., 2000). Although N-glycosylation
is common in animal PPOs (Wang and Hebert, 2006), they
are rarely glycosylated in plants (Table 1). Aureusidine synthase
is the only reported glycosylated PPO (Nakayama et al., 2000)
although putative glycosylation sites have been predicted for the
A. cherimola PPO (Olmedo et al., 2018). A common feature of
most PPOs is the need for catalytic activation. In plants, PPOs
are translated as latent pro-PPOs composed of the N-terminal
plastidial transit peptide, the catalytic domain housing two
copper atoms, followed by a disordered linker and a C-terminal
shielding domain (Marusek et al., 2006). Fungal PPOs have a
similar structure but lack the transit peptide (Marusek et al.,
2006). In arthropods, the shielding domain is instead N-terminal
(Li et al., 2009) although some paralogs in Drosophila lack
this shielding domain (Chen et al., 2012). Mammalian PPOs
contain a C-terminal transmembrane domain, but no shielding
domain (Wang and Hebert, 2006), and bacterial PPOs exist in
a wide variety of structures (Faccio et al., 2012). The shielding
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TABLE 2 | Reported impact of phenoloxidase knock-out (KO), knock-down (KD), and over-expression (OE) on lignin amount and composition.

Gene family Gene/Target Species Lignin impact Type References

Class III PRX AtPRX2/25/71 Arabidopsis thaliana – S-units KO Shigeto et al., 2013

AtPRX3/9/39/64/72 Arabidopsis thaliana Unlignified casparian strip KD/KO Rojas-Murcia et al., 2020

AtPRX4 Arabidopsis thaliana – S-units KO Fernández-Pérez et al., 2015b

AtPRX17 Arabidopsis thaliana – Lignin KO Cosio et al., 2017

AtPRX17 Arabidopsis thaliana + Lignin OE Cosio et al., 2017

AtPRX52 Arabidopsis thaliana – S-units KO Fernández-Pérez et al., 2015a

AtPRX64 Arabidopsis thaliana Delayed casparian strip KD Lee et al., 2013

AtPRX72 Arabidopsis thaliana – Lignin KO Herrero et al., 2013

CsPRX25 Citrus sinensis + Lignin OE Li et al., 2020

OsPRX38 Arabidopsis thaliana + Lignin OE Kidwai et al., 2019

PtrPO21 Populus trichocarpa – Lignin KD Lin et al., 2016

ZePRX Nicotiana tabacum + S-units OE García-Ulloa et al., 2020

LAC AtLAC17 Arabidopsis thaliana – G-units KD Cesarino et al., 2013

AtLAC2 Arabidopsis thaliana + Root lignin KO Khandal et al., 2020

AtLAC2 Arabidopsis thaliana – Root lignin OE Khandal et al., 2020

AtLAC4 Arabidopsis thaliana – G-units KD Zhao et al., 2013

AtLAC4 Arabidopsis thaliana + Lignin OE Wang et al., 2014

AtLAC4/17 Arabidopsis thaliana – G-units KD/KO Berthet et al., 2011

AtLAC4/17/11 Arabidopsis thaliana Unlignified vasculature KD/KO Zhao et al., 2013

BdLAC5 Brachypodium dystachion – G-units KD Wang et al., 2015a

BdLAC5/8 Brachypodium dystachion – Lignin and G-units KD Le Bris et al., 2019

ChLAC8 Arabidopsis thaliana + C-units (exogeneous) OE Wang X. et al., 2020

ChLAC8 Cleome hassleriana – C-units KD Wang X. et al., 2020

GhLAC1 Gossypium hirsutum + Lignin OE Hu et al., 2017

miR397: 15 laccases Oryza sativa – Lignin OE Swetha et al., 2018

miR397a: 12 laccases Populus trichocarpa – Lignin and G-units OE Lu et al., 2013

miR397b: AtLAC2,4,17 Arabidopsis thaliana – Shoot lignin and G-units OE Wang et al., 2014

miR397b: AtLAC2,4,17 Arabidopsis thaliana + Root lignin OE Khandal et al., 2020

miR397b: AtLAC2,4,17 Arabidopsis thaliana – Root lignin KD Khandal et al., 2020

miR528: ZmLAC3, 5 Zea mays + Stem lignin KD Sun et al., 2018

miR857: AtLAC7 Arabidopsis thaliana – Lignin and S/G OE Zhao et al., 2015

miR857: AtLAC7 Arabidopsis thaliana + Lignin and S/G KD Zhao et al., 2015

MsLAC1 Arabidopsis thaliana + Lignin and G-units OE He et al., 2019

PtLAC2 Populus trichocarpa – G-units KD Bryan et al., 2016

ZmLAC3 Zea mays + Lignin OE Sun et al., 2018

G, guaiacyl units of lignin; S, syringyl units of lignin; C, caffeyl units of lignin; +, increase; –, decrease.

domain, when present, contains a placeholder residue that makes
the site of substrate oxidation inaccessible in pro-PPOs. Highly
specific serine proteases activate arthropod PPOs by cleaving
off the N-terminal shielding domain (Li et al., 2009). In plants
or fungi, no PPO activating protease has been identified, but
a similar specific proteolytic activation is hypothesised for the
aurone synthase of Coreopsis grandiflora (Molitor et al., 2016).
Alternatively, both plant and insect pro-PPOs have been shown
to be activated by low pH (∼3.5) or detergents instead of
proteolytic cleavage (Bidla et al., 2007; Leufken et al., 2015).
In plants, these treatments lead to a conformational change
of the shielding domain due to the disordered nature of its
linker (Leufken et al., 2015). Some bacterial PPOs alternatively
recruit the placeholder residue from an associated caddie protein
(Decker et al., 2007). PPOs containing a shielding domain are
relatively conserved in size between species and range between 40
and 70 kDa (Mayer, 2006; Li et al., 2009), whereas PPOs without

a shielding domain range from only 15 kDa in bacteria (Faccio
et al., 2012) to above 70 kDa in mammals (Wang and Hebert,
2006). Within kingdoms, PPO protein sequence identity ranges
from 30 to 50%, but decreases to 5% between kingdoms as only
the copper and oxygen binding motifs are conserved (Figure 2).
Although PPOs are very heterogeneous in structure between
kingdoms, their conserved activation mechanism suggests that
this post-translational regulation plays a pivotal role in their
physiological functions.

Reaction Mechanism
The enzymatic activity of PPOs depends on a dinuclear type
3 copper pair which is coordinated by 6 histidine residues
(Figure 2; Bijelic et al., 2015). The E◦ of this copper pair
is estimated at ∼260 mV (Ghosh and Mukherjee, 1998),
making PPOs the least potent oxidisers among phenoloxidases.
PPOs best function between pH 5 and 6.5 at temperatures
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of 20–40◦C (Queiroz et al., 2008). PPOs can catalyse two
distinct reactions using O2: (i) the ortho-hydroxylation of
monophenols, like tyrosine and tyramine, into ortho-diphenols
(monophenolase activity) and (ii) the oxidation of ortho-
diphenols or catechols into ortho-quinones (diphenolase or
catecholase activity) (Figure 4; Solomon et al., 1996). These
different activities establish the distinctive criterion separating
PPOs into tyrosinases (TYR, EC 1.14.18.1, monophenol/o-
diphenol:O2 oxido-reductases) capable of catalysing both
reactions, and catechol oxidases (CO, EC 1.10.3.1, o-diphenol:O2
oxido-reductases) only possessing the diphenolase activity
(Figure 4; Solomon et al., 1996). The structural reason behind
this biochemical distinction is still unclear as no fundamental
differences were identified in either the protein structure,
localisation, or expression between TYRs and COs (Bijelic
et al., 2015; Solem et al., 2016). An asparagine-glutamate couple
stabilising one water molecule in the active site appears to be
key for the electron abstraction of monophenolic substrates.
Site-directed mutagenesis to introduce an asparagine residue
into Vitis vinifera CO enabled a novel monophenolase activity
toward tyrosine (Solem et al., 2016). However, several known
TYRs lack this asparagine residue, suggesting other explanations
for the CO to TYR specificity (Pretzler and Rompel, 2017).
Alternatively, the monophenolase activity has been proposed to
depend on whether the substrate can be stabilised at the active
site (Bijelic et al., 2015; Molitor et al., 2016). Indeed, a leucine
residue gating the entry to the active site was shown to stabilise
classic TYR substrates in enzymes classified as TYRs (Goldfeder
et al., 2014; Bijelic et al., 2015). In COs, this leucine is replaced
by an arginine (Goldfeder et al., 2014; Bijelic et al., 2015). Again,
however, the universality of this rule is questioned by some TYRs
containing a supposedly destabilising arginine at this position
(Pretzler and Rompel, 2017). Beside the absence of a clear
structural determinant, the biochemical distinction between
TYRs and COs based on their ability to oxidise classical TYR
substrates like tyrosine and tyramine has also been questioned
(Molitor et al., 2016). The C. grandiflora aurone synthase lacks
activity toward these substrates and is accordingly classified as
a CO (Molitor et al., 2015). The enzyme does however exhibit
monophenolase activity toward its physiological substrate the
chalcone isoliquiritigenin (Figure 1; Molitor et al., 2016). The
oxidation of tyrosine or tyramine therefore does not seem to
enable a relevant mechanistic distinction between PPOs but
rather detects differences in substrate specificities. Consequently,
many enzymes categorised as COs may biologically function as
TYRs (monophenolase activity) on their physiological substrates.

Biological Function(s) of Polyphenol
Oxidases in Plants
Despite their structural heterogeneity, most PPOs in animal and
fungal species exclusively initiate the reaction cascade leading
to complex phenolic polymers such as melanin (Figure 1). In
plants, PPOs primary respond to wounding, which ruptures the
compartmentalisation separating PPOs in plastids from their
substrates stored in vacuoles. The expression of PPOs is up-
regulated by major defence pathways (Constabel and Ryan,

1998) and their functional loss increases disease susceptibility
(Thipyapong et al., 2004). For the post-harvest conservation of
fresh plant produces, silencing of PPOs in potato (Chi et al.,
2014; González et al., 2020), rice (Yu et al., 2008), and apple
(Waltz, 2015) almost completely abolishes the browning of
tubers, seeds, and fruits. PPOs have also been associated in the
wounding independent biosynthesis of anthocyanin (Gao et al.,
2009; Nakatsuka et al., 2013), aurones (Nakayama et al., 2000;
Kaintz et al., 2014), and lignans (Cho et al., 2003). While these
examples demonstrate the versatility of PPOs, the exact substrates
of most of these enzymes and whether they act as TYRs or COs
are unclear (Sullivan, 2015; Boeckx et al., 2017). However, the
fact that PPOs were not duplicated and even lost in Arabidopsis
suggests that they are implicated in non-essential pathways, or
that their loss has been compensated by other phenoloxidases
with greater E◦.

LACCASES

Distribution of Laccases Among
Kingdoms and Species
Laccases (EC 1.10.3.2, p-diphenol oxygen oxidoreductases) are
members of the multi-copper-oxidase family, together with
ascorbate oxidases and ferroxidases, which all share a copper-
mediated reaction but oxidise distinct substrates (Kües and
Ruhl, 2011; Reiss et al., 2013). LACs are present in all plants
(Weng and Chapple, 2010), widely distributed in fungi (Baldrian,
2006), and have also been found in bacteria (Santhanam et al.,
2011), archaea (Uthandi et al., 2010), arthropods (Barrett, 1986;
Hattori et al., 2005), and molluscs (Luna-Acosta et al., 2011) but
not in mammals. In plants, the number of LAC paralog genes
ranges from 1 in Marchantia polymorpha to more than 50 in
P. trichocarpa and E. grandis (Figures 3A, 5). LACs in other
kingdoms are however present as single genes or form small
multigenic families. LACs share around 40% protein sequence
identity within kingdoms (Figure 2) but conservation between
kingdoms is limited to residues around the active site (∼10–
30% total sequence identity). The conservation of LAC genes in
plants as well as the increases of paralog numbers with increasing
genome size (Table 1 and Figure 3A) suggest both critical roles
in the plant life cycle and repeated events of sub- and/or neo-
functionalisation during plant speciation. There are conflicting
reports on exact appearance of LACs in plants. Green unicellular
algae, such as Volvox carteri and Chlamydomonas reinhardtii,
were suggested to have genes encoding for LACs (Weng and
Chapple, 2010; Zhao et al., 2013) although no LAC enzymatic
activities had been detected in these species (Otto et al., 2015).
To address this open question, we generated a comprehensive
phylogeny of all LACs from 10 taxonomically diverse species
with published reference genomes (Figure 5). In contrast to
previous phylogenies (McCaig et al., 2005; Turlapati et al., 2011;
Zhao et al., 2013; Wang X. et al., 2020; Yonekura-Sakakibara
et al., 2020), we used only full-length sequences (to avoid
partial homology due to incomplete sequences) and included
ascorbate oxidases as an outgroup to distinguish between the two
families of multicopper oxidases. We moreover chose a bayesian
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FIGURE 5 | Phylogenetic analysis of LAC homologs. Bayesian phylogeny of
high-confidence LAC homologs from 10 species and ascorbate oxidases as
the outgroup. The A. thaliana paralogs can be grouped into eight clades
which broadly correspond to previous results (Turlapati et al., 2011; Zhao
et al., 2013), except for composition and position of clades I and II, and the
occurrence of clade III, which have not been described before. Note that the
only C. reinhardtii sequence is closer related to ascorbate oxidases than
LACs, while no sequence from V. carteri or C. braunii passed the motif-based
sequence filtering.

approach to provide probabilities (i.e., statistical support) for
each computed branch (Supplementary Figure 2). This new
phylogenetic analysis first enabled us to determine that the
LAC-like sequences present in the genome of unicellular green
algae are more likely ascorbate oxidases than bona fide LACs
(Figure 5). We determined that the most basal bona fide LACs are
from M. polymorpha and Physcomitrium patens, which together
with sequences from Azolla filiculoides form the paraphyletic
group of basal plant LACs (Figure 5). Our analysis therefore
suggests that ancestral bona fide LACs originated in multicellular
green algae or early land plants. The remaining LACs formed
eight well supported (posterior probabilities >0.9 except for clade
II at 0.62; Supplementary Figure 2) monophyletic clades named
in order of divergence from I to VIII. After the appearance of
basal LACs, multiple waves of gene duplication events occurred
with the sequential emergence of vascular plants, spermatophytes
and angiosperms, leading to repeated opportunities for sub-
and/or neo-functionalisations (Figure 5). These duplication
events predominantly affected clades IV–VIII, which contained
the majority of LACs from gymnosperms and angiosperms
but no lycophyte, fern, or moss sequences. This imbalance
suggests that the emergent functional diversity of LAC paralogs
is specifically associated with the evolution of spermatophytes.

Localisation and Expression of Laccases
At the whole plant level, LACs are mainly expressed in the
different lignified tissues. In A. thaliana, AtLAC4, 5, 10, 12,
and 17 are expressed in vascular bundles (Turlapati et al.,
2011) and co-regulated with secondary cell wall formation in
tracheary elements (Derbyshire et al., 2015) whereas AtLAC1,
3, 5, and 13 are expressed in endodermal cells (Rojas-Murcia
et al., 2020). AtLAC5 (Yonekura-Sakakibara et al., 2020) and
AtLAC15 (Turlapati et al., 2011) which catalyse the formation
of neolignans and proanthocyanidins respectively are strongly
expressed in seed coats. Pollen grains, which are sterile in loss-of-
function mutants affecting phenylpropanoid biosynthesis (Rohde
et al., 2004; Schilmiller et al., 2009; Weng et al., 2010), exclusively
express AtLAC8 (Turlapati et al., 2011). The unlignified phloem
and cortex express AtLAC8 and AtLAC9, respectively (Turlapati
et al., 2011) which both undergo alternative splicing (Zhang
et al., 2010). Overall, different LAC paralogs are specifically
expressed in different lignified and unlignified cell types, thereby
suggesting neo-functionalisation in which LAC paralogs do not
all function redundantly.

The majority of LACs present an N-terminal signal peptide
targeting them to the secretory pathway (Figure 3B).
LACs generally accumulate in the cell walls of plants
(McCaig et al., 2005; Chou et al., 2018), in the extracellular
space of fungi and archaea (Baldrian, 2006; Uthandi et al.,
2010), or in the saliva, digestive apparatus, and/or exoskeletal
cuticle for insects (Dittmer et al., 2004; Arakane et al., 2005;
Hattori et al., 2005). In contrast, LACs in bacteria are often
intracellular or periplasmic (Rosconi et al., 2005; Santhanam
et al., 2011). Secreted LACs in plants are not free in the apoplast
but ionically or covalently bound to the cell wall (Bao et al.,
1993; Liu et al., 1994; Ranocha et al., 1999). Moreover, different
plant LACs localise in specific cell wall layers. In A. thaliana,
AtLAC4 fluorescent fusions are immobilised to the secondary
cell wall of interfascicular fibers (Chou et al., 2018) whereas
immunolocalisation of AtLAC4 and AtLAC17 show more
accumulation in the S3 layer of these secondary walls (Berthet
et al., 2011). Other LAC paralogs such as AtLAC1, 3, 5, and 13
also specifically accumulate in the casparian strip of endodermal
cells (Rojas-Murcia et al., 2020). In Chamaecyparis obtusa,
CoLAC1 and CoLAC3 were respectively localised in the inner
and outer S2 layers of tracheid compression wood (Hiraide et al.,
2021). Beside cell wall localisation, LACs can be targeted to
vacuoles in litchi (Fang et al., 2015), to the cytoplasm in hairy
roots of Brassica juncea (Telke et al., 2011), but are also predicted
to mitochondria in Pinus taeda, Oryza sativa, and Gossypium
spp. (Figure 3) and peroxisome in Lolium perenne (Gavnholt
and Larsen, 2002). Overall, however, the majority of LACs in
plants are targeted to the cell walls (Figure 3B).

Structure of Laccases
Laccases are active as monomers but also as homomeric and
heteromeric oligomers in plants (Jaiswal et al., 2014, 2015), algae
(Otto and Schlosser, 2014), fungi (Perry et al., 1993; Ng and
Wang, 2004; Junghanns et al., 2009), and bacteria (Diamantidis
et al., 2000; Rosconi et al., 2005). Although glycosylation is
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universally predicted for eukaryotic LACs, glycosylation sites are
not conserved (Figure 2). Partial or complete deglycosylation of
fungal LACs does not significantly alter their enzymatic activity,
but increases their susceptibility to proteolysis (Yoshitake et al.,
1993; Vite-Vallejo et al., 2009). However, heterologous expression
in Pichia pastoris of fungal LAC mutated in single glycosylation
sites resulted in LACs with more than 50% reduced activity
(Maestre-Reyna et al., 2015). This observation suggested potential
roles of glycosylation sites for specific LAC paralogs. Each
LAC monomer contains three distinct cupredoxin-like domains
(Figure 2), housing the catalytic copper atoms. These domains
are characterised by several tightly packed anti-parallel β-sheets
known as a greek-key motif, which forms the hydrophobic
core of the enzyme (Figure 2; Hakulinen and Rouvinen, 2015).
An intriguing exception to the three-domain structure are
bacterial two-domain or small LACs, which only contain two
cupredoxin-like domains and are obligate homotrimers to be
active, with the third copper binding site formed at the interface
between the interacting monomers (Endo et al., 2002; Skálová
et al., 2009). Beside bacterial small LACs, the size of LAC
monomers is conserved across kingdoms at 55–70 kDa without
the glycan moieties. Some LACs from ascomycetes (Hakulinen
et al., 2002) and basidiomycetes (Bleve et al., 2013) are encoded
as pro-proteins with a C-terminal blocker tail which needs
to be proteolytically removed to activate LACs (Bulter et al.,
2003; Kiiskinen and Saloheimo, 2004; Bleve et al., 2013). In
contrast to PPOs, this tail is only 10–15 amino acids long and
specifically blocks the O2 reduction site. Among the plant LACs
analysed in Figure 5, we found potentially analogous C-terminal
blocker tails in AtLAC8, 9, three predicted P. patens LACs
and in several Brachypodium distachyon LACs (Supplementary
Figure 1). Altogether, our understanding of LAC activity in plants
and their regulation via proteolysis, complex formation, and/or
allosteric interactions still remains incomplete.

Laccase Reaction Mechanism
Laccase activity relies on four copper atoms for substrate
oxidation and for O2 reduction. Two of these copper atoms form
a binuclear T3 copper centre which is similar but not identical to
the one found in PPOs (Jones and Solomon, 2015). LACs possess
in addition a type 1 copper atom (T1) and a type 2 copper atom
(T2) (Table 1 and Figure 2). Because the S–Cu bond between
T1 copper and a coordinating cysteine residue leads to strong
absorption at∼600 nm (Rodgers et al., 2010), LACs are also called
blue-copper oxidases or enzymes (Hoegger et al., 2006). LACs
possess one site for the one-electron substrate oxidation at the
T1 copper (Solomon et al., 1996) and another for O2 reduction
close to the trinuclear copper cluster (1 Cu in T2 + 2 Cu in T3)
resulting in an overall E◦ for LACs of 0.4–0.8 V (Xu, 1997; Xu
et al., 1998, 1999; Durão et al., 2006). The E◦ of T1, controlling
the speed of electron abstraction from the substrate, represents
the main limiting factor for both reaction speed and substrate
specificity (Xu et al., 1996; Tadesse et al., 2008). The most
influential residue on LAC E◦ is the axial residue at the T1 copper,
which can either be coordinating (Met) or non-coordinating
(Leu, Ile, and Phe) (Xu et al., 1999; Durão et al., 2006). The axial
residue is responsible for roughly half (∼200 mV) of the observed
natural variation in LAC E◦, which is complemented by several

second coordination sphere effects (Hadt et al., 2012). When the
axial residue is methionine, it reduces the E◦ by coordinating
the T1 together with the two histidines and one cysteine that are
universally conserved, stabilising the oxidised intermediate form
of the LAC (Ghosh et al., 2009). These low E◦ LACs are found
primarily in bryophytes, insects, and bacteria. Previous reports
using primary structure sequence alignment concluded that plant
LACs also presented an axial methionine (Jones and Solomon,
2015; Mate and Alcalde, 2015). This is not however a general
feature, and our systematic analysis of plant LACs revealed that
143 out of 194 LACs presented a non-coordinating leucine in the
axial position of the T1 centre. Overall, paralogs with an axial
leucine are likely to have high E◦ and are potentially involved
in phenylpropanoid metabolism such as lignification. In contrast,
LACs with an axial methionine and accordingly lower E◦, such as
ADE/LAC and AtLAC15, have been implicated in the oxidation
of other phenolic substrates such as flavonoids.

Laccase Substrate Specificity
Laccases can oxidise various o- and p-mono- and diphenols,
but also accept a broad range of other small phenolic
and non-phenolic substrates such as phenolic heterocycles
(phenothiazine), amines (aniline, diaminofluorene) and amides
(syringamide) (Jeon and Chang, 2013; Reiss et al., 2013). Unlike
other phenoloxidases, LACs are highly stable in time and
temperature (Bourquelot and Bertrand, 1896; Hildén et al., 2009)
and generally exhibit high optimal reaction temperatures (Figure
6A). The optimal pH of LACs is substrate specific, due to
pH-dependent changes of substrate E◦, easing the oxidation of
phenolic substrates at higher pH compared to non-phenolic
substrates which are pH independent (Rodgers et al., 2010).
Because increasing pH concomitantly increases inhibition of
the T2/T3 centre by OH−, the LAC activity profiles toward
phenolic substrates are generally biphasic (Xu, 1997, 2001).
Fungal LACs have however been reported to be more sensitive
to these pH changes than the plant LAC from R. vernicifera
(Nakamura, 1958). At lower pH, fungal LACs use a conserved
aspartate residue around position 206 (Asp206) to deprotonate
phenolic substrates (Madzak et al., 2006; Tadesse et al., 2008).
Replacement of the Asp206 with an Asn leads to an increase
of the optimal pH for phenolic substrates by almost two units
but also significantly decreases its oxidation efficiency (Madzak
et al., 2006; Mate et al., 2013). Primary sequence alignments
show that this Asp is replaced with an Asn in most plant and
bacterial LACs (Madzak et al., 2006). Both the presence of Asn
and higher theoretical isoelectric points (Figure 6B) suggested
that bacterial (Rosado et al., 2012; Martins et al., 2015) and
plant LACs (Dwivedi et al., 2011) best operate in neutral to
basic pH, in contrast to the acidic pH optimum for fungal LACs
(Baldrian, 2006). To evaluate this assumption, we performed a
meta-analysis of published enzymatic activity on both phenolic
(SGZ and DMP) and non-phenolic synthetic substrates (ABTS).
The comparison of enzymatic parameters between kingdoms is
complicated as only a handful of plant LACs have been isolated
and characterised (Bao et al., 1993; Ranocha et al., 1999; Telke
et al., 2011; Jaiswal et al., 2014, 2015; Fang et al., 2015; Koutaniemi
et al., 2015). Moreover, heterologous expression of plant LACs
in bacteria or P. pastoris is possible (Wang X. et al., 2020)
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FIGURE 6 | Bibliometric analysis of LAC enzymatic parameters.
(A) Temperature optimum of LACs activity from fungi, prokaryota and plants.
(B) Isoelectric points of LACs from the three kingdoms. Note that most of the
isoelectric point data represent calculated values rather than experimental
ones. (C) Km values of LACs from the three kingdoms for the classical
non-phenolic substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic
acid) (ABTS) and two common phenolic substrates (DMP,
2,6-dimethoxyphenol; SGZ, syringaldazine). (D) Optimal pH for the oxidation
of ABTS, DMP and SGZ. (E) Schematic representation of LAC mediated
oxidation of ABTS, DMP and SGZ.

but often problematic. Heterologous expression has resulted
in inactive enzymes (Sato et al., 2001) or enzymes displaying
unexpected in vitro substrate preferences differing from whole
plant functional studies (He et al., 2019). Overall, LAC activity
for these different substrates was similar between kingdoms and
showed a large variability within kingdoms (Figure 6C). Only
bacterial LACs with phenolic substrates (SGZ and DMP) followed
the assumption of higher pH optima (Figure 6D). In contrast,
plant LACs presented an optimal pH similar to fungal LACs
and the overall LAC activity independently of the kingdom
depended more on the structure of the substrate used than the pH
(Figures 6D,E). This observation implies that LACs can oxidise
different substrates at different pH depending on their chemical
structure. In addition, LAC activity can also be indirect, using
small redox-shuttle mediators, to oxidise substrates that either
have prohibitively high E◦ or do not fit their binding pockets.
Altogether, the high E◦ and the capacity for indirect oxidation
potentially enables LACs to oxidise a wide range of substrates.

Roles of Laccases
Laccases from all kingdoms are primarily involved in the
metabolism of phenolic polymers. In plants, LACs oxidise

lignin monomers to form lignin (Freudenberg et al., 1952).
In wood-rotting fungi and bacteria, LACs have the opposite
function of breaking down lignin (Ander and Eriksson, 1976;
Bourbonnais and Paice, 1990; Majumdar et al., 2014). Other
fungal, bacterial, and insect LACs are involved in the formation
of polyphenolic pigments such as melanin, thus acting directly
downstream of PPOs (Clutterbuck, 1972; Martins et al., 2002;
Arakane et al., 2005). LACs produced by phloem sucking insects
have been suggested to polymerise and inactivate defence-
associated plant phenolics (Hattori et al., 2005). In plants,
the functional importance of LACs in lignin biosynthesis was
shown by genetic modulation studies in Arabidopsis (Berthet
et al., 2011; Zhao et al., 2013, 2015; Schuetz et al., 2014; Wang
et al., 2014), Brachypodium (Wang et al., 2015a), and Populus
(Ranocha et al., 2002; Lu et al., 2013) (Table 2). Synergistic
action of several LAC paralogs is necessary to control lignin
amount and composition. In contrast to the Arabidopsis lac11
single mutant with no visible defects and the lac4/17 double
mutant with only minor growth alterations in continuous light
conditions (Berthet et al., 2011), the lac4/17/11 triple mutant is
dwarfed, completely sterile and forms no lignin in its vascular
tissues (Zhao et al., 2013). Beside lignification, specific LAC
paralogs oxidise other phenylpropanoids to form stereo-specific
(neo)lignans together with dirigent proteins in the Arabidopsis
seed coat (Yonekura-Sakakibara et al., 2020). AtLAC15 and
litchi ADE/LAC oxidise flavonoids, showing potential overlap
in function with PPOs (Pourcel et al., 2005; Fang et al.,
2015). Similar to lignin metabolism in which different LACs
either polymerise or break down the polymer, specific LAC
paralogs are associated to either the anabolic or catabolic
oxidation of flavonoids: AtLAC15 polymerises flavonoids into
proanthocyanidin (Pourcel et al., 2005), whereas litchi ADE/LAC
degrades anthocyanins (Fang et al., 2015). Altogether, their
importance for vascular cell wall lignification makes LACs
essential for plant growth, while other paralogs play additional
roles in diverse aspects of other phenolic metabolism. However,
the molecular mechanisms underlying their synergistic functions,
distinct substrate specificity and anabolic/catabolic activities
is still unclear.

Modelling the Structural Differences
Between Laccase Paralogs
To evaluate how the overall protein structure and its
substrate binding pocket topology related to the different
roles/activity of specific LAC paralogs in plants, we built
3D protein homology models. Using the recently published
AlphaFold 2 algorithm (Jumper et al., 2021), we computed
3D models for all 17 A. thaliana LAC paralogs as well
as five paralogs from other plant species previously
functionally characterised (Figure 7). The AlphaFold 2
models were consistently of considerably better quality
(as estimated by discrete optimised protein energy, or
DOPE; Shen and Sali, 2006) than those computed using
traditional single template modelling based on the crystal
structure of the only crystallised plant laccase ZmLAC3
(Xie et al., 2020; Supplementary Figure 3). The high
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quality of these models allowed us to precisely measure the
substrate binding pocket volume, compactness or pocket
shape (the pocket volume relative to the protein surface
forming the pocket), mouth area (the steric limitation
of the entrance to reach the binding pocket), and depth
(distance to the protein surface of the two histidines—
451 and 519 in ZmLAC3—coordinating the T1 copper)
for each paralog.

To validate the reliability of our modelling approach for
such precise measurements, we generated 3D models for the
wild-type and multiple point-mutants of the fungal LAC IIIb
from Trametes versicolor. The structure of the wild-type enzyme
had been solved by X-ray crystallography (Bertrand et al.,
2002; PDB: 1KYA) and revealed that the binding pocket is
gated by multiple phenylalanines. Galli et al. (2011) generated
multiple Phe to Ala point-mutants in these residues and
showed that this enabled bulkier substrates to be oxidised
more efficiently. This observation suggested that the Phe to
Ala replacements increased the size of the binding pocket
and/or of the binding pocket mouth (Galli et al., 2011).
Indeed, our modelling analysis showed that replacements F162A,
F265A, F332A, and F162A/F332A increased entrance area,
confirming the structural consequences of these mutations
(Figure 7E). In contrast, the replacement of F337, which
is involved in electron transport but not pocket formation
(Galli et al., 2011), had no effect on binding pocket topology
(Figure 7E). Having validated our modelling approach, we used
it to characterise the binding pockets of the multiple plant
LAC paralogs. The plant LAC binding pockets were delimited
by regions that were highly variable in both sequence and
structure, exhibiting no conserved gating residues (Figure 7).
However, in paralogs with larger binding pockets, bulky
residues such as Phe, Tyr, and Pro (Pro265 and Phe352 in
ChLAC8, Pro276 and Phe362 in AtLAC12; Figures 7B,D and
Supplementary Video 1) fulfilled a structural role similar to
the ones of the Phe gating the entrance of the T. versicolor
LAC (Figure 7E). These residues delineated a binding pocket
mouth relatively far away from the T1 copper-coordinating
histidine (roughly 11Å in ChLAC8 and AtLAC12), likely
restricting the access to specific substrates that can fully enter
the binding pocket to reach the active site. In contrast, in
paralogs with smaller binding pockets, these bulky residues
are replaced with smaller ones and/or oriented away from
the binding pocket (Glu161 and Asn438 in ADE/LAC, Ala159
and Ile268 in AtLAC15, Figures 7A,C and Supplementary
Video 1). This placed the entrance of the pocket closer
to the active site (∼6Å in AtLAC15, ∼7Å in ADE/LAC),
facilitating access to the active site. Altogether the different
combinations of binding pocket size, mouth area, and pocket
shape suggest that the different modelled LAC paralogs are
likely adapted to specifically oxidise different substrates. LACs
with smaller and more exposed pockets could oxidise single
groups/tails/sidechains of bulkier substrates, whereas LACs with
larger binding pockets would require smaller or more specific
substrates to enter the pocket.

When considering the substrate stabilisation and its
deprotonation, previous assumptions based on 2D sequence

alignments predicted higher optimal reaction pH for plant
LACs. The analyses of the 3D models of plant LACs showed
that, similar to the structure of ZmLAC3 (Xie et al., 2020),
the residue analogous to the fungal Asp206 in plants is in
position 449 (Glu449) and filled by a Glu in 157 paralogs or
by an Asp in 21 paralogs of the 194 plant LACs analysed
(Supplementary Movie 1). Both Glu and Asp residues in
this position facilitate phenolic deprotonation similarly to
the Asp206 of fungal LACs (Madzak et al., 2006). Among
the 3D-modelled paralogs, the prediction for a higher pH
optimum only holds for ADE/LAC (with a glutamine),
AtLAC14 (with an asparagine) and AtLAC15 (with a
glycine). In contrast to previous prediction, our analysis
suggested that both the oxidative capacity and pH optimum
of plant LACs are generally similar to their fungal homologs
except for a few paralogs with higher pH optimum. Our
analysis further corroborated the empirical measurements
(Figure 6) showing similar pH optima between purified
plant and fungal LACs. These results highlight the universal
importance of key conserved residues for deprotonating
phenolic substrates.

Hierarchical clustering of all the different LAC paralogs
based on binding pocket topology resulted in five clusters
which showed considerable overlap with previously published
functional similarities (Figure 7E). The cluster with LAC
paralogs known to oxidise flavonoids had the smallest
binding pockets with moderate (AtLAC15) to minimal
(ADE/LAC) compactness and pocket mouth areas (Figure 7E).
Another cluster grouped paralogs pivotal for vascular
lignification (AtLAC4 and AtLAC11) as well as CoLAC1
shown to preferentially oxidise lignin hydroxyphenyl (H)
residue precursors of lignin (Hiraide et al., 2021). This
group presented intermediate sized binding pockets of
generally low compactness gated by mostly small mouth
area (Figure 7E). In contrast, LAC paralogs shown to alter
lignin G residue accumulation in loss/gain-of-function
experiments (AtLAC17, MsLAC1, and CoLAC3; Table 2)
were grouped by intermediate sized binding pockets of
intermediate compactness gated by variable sized mouth
area (Figure 7E). AtLAC5, 8, and 12 formed a cluster with
the larger pockets of intermediate compactness and gating,
whereas AtLAC9 and ChLAC8 constituted the group with
the largest pocket and moderate to high compactness and
mouth areas (Figure 7E). In line with the observations
previously made on the crystal structure of ZmLAC3 (Xie
et al., 2020), all analysed plant LAC protein structures exhibited
much deeper binding pockets of lower compactness than
fungal LACs (Figure 7E). This observation suggested that
plant LACs might be less efficient in the oxidation of bulky
substrates such as large lignin polymers. Lastly, our results
showed that little correlation linked LAC function/activity
to their phylogenetic relationship. The clustering according
to binding pocket topology differed drastically from that
based on sequence homology (Supplementary Figure 4) but
better reflected LAC function/activity. This approach might
thus be the more reliable approach to predict functional
similarities in LACs.
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FIGURE 7 | Structural analysis of modelled LAC binding pockets. (A–D) AlphaFold2 structural predictions of AtLAC15, AtLAC12, ADE/LAC, and ChLAC8. The
binding pocket volume detected with CASTp is shown in yellow, the copper atoms in brown and the histidines coordinating the T1 copper in blue. (E) Hierarchical
clustering of LACs based on the topology of their substrate binding pockets. Pockets were characterised using binding pocket volume, mouth area (the surface area
of the yellow pocket volume that is not obscured behind the semi-transparent protein surface) and compactness (pocket volume relative to pocket forming protein
surface area), as well as the distance from the protein surface of the two T1 coordinating histidines at the bottom of the pocket (451 and 519 in ZmLAC3). The
results for the binding pocket from the crystal structure of ZmLAC3 are indicated by a dashed line. The quality of each individual model is colour coded, where values
below –1.2 indicate native-like models. Trametes versicolor LacIIIb (PDB identifier 1KYA) was included for validation, showing expected increases in binding pocket
size and mouth area in the targeted mutagenesis LacIIIb versions F265A, F332A, F162A, and F162A/F332A but not in F337A. PDB, crystal structure from the
protein database; AF2, AlphaFold 2 model.
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COMMON FEATURES OF
PHENOLOXIDASES

Critical Comparison of Phenoloxidases
The biological requirement for so many different and diverse
phenoloxidases in plants remains unclear. However, their
increasing paralog numbers suggest pivotal roles in plant
development and/or stress response, especially for PRXs and
LACs. The extreme diversity of phenoloxidases and their
functional roles can partly be explained by differences in
localisation and activation. Their regulation can be separated
into constitutive or inducible phenoloxidases which will
act at specific subcellular sites in distinct cell types during
development and/or stress response. The distinction between
constitutive and inducible phenoloxidases, generally defined
at the transcriptional level, provides long-term and short-
term responses respectively. When considering lignin
formation for example, the function(s) of phenoloxidases
will either be constitutive during growth (formation of
vascular tissues—Zhao et al., 2013), inducible for growth
under constraints (altered by gravity in reaction wood—
Hiraide et al., 2021) or induced during biotic stress response
(bacterial infection in leaves—Lee et al., 2019). We can
subcategorise constitutive phenoloxidases into “in action”
or “in waiting,” as phenoloxidases can be regulated by
proteolytic activation and/or substrate availability. An
example of phenoloxidases “in waiting” are PPOs in
apple fruits, which only become active when the tissue is
ruptured. Phenoloxidases that are constitutively “in action”
include cell wall resident LACs in the vasculature, which
continuously lignify the cell wall long after the cell itself
has died (Pesquet et al., 2013, 2019; Ménard et al., 2021).
Another aspect behind the diversity of phenoloxidases is their
capacity to synergistically act in the same reaction cascade
by sequential action or complex formation (Barros et al.,
2015). Sequential action of different groups of phenoloxidases
occurs in melanin formation, where initial oxidation of
amino acids by PPOs is followed by the polymerisation of
the intermediates by LACs. On the other hand, the functional
roles of potential heteromeric protein complexes, especially
in LACs, are still completely unclear. Altogether, the various
complementary modes of action of phenoloxidases call for
future extensive functional studies to investigate the genetic
and physical interactions of phenoloxidases at the cellular and
subcellular levels.

Direct and Indirect Oxidation
Mechanisms
The identity of the biological substrates oxidised by plant
phenoloxidases and the factors determining the direction of
the oxidative reaction (polymerising or depolymerising) in
the metabolism of phenolic polymers remain open questions.
Most if not all phenoloxidases can use indirect reaction via
radical redox shuttle mediators. In lignolytic fungal PRXs,
MnPs activity is mediated by the oxidation of Mn2+ to
Mn3+ to cleave lignin (Wariishi et al., 1991), whereas

LiPs use a veratryl alcohol mediator (Harvey et al., 1986;
Akamatsu et al., 1990). VPs are called versatile for their
capacity to oxidise substrates both directly and through Mn2+

mediators (Gómez-Toribio et al., 2001). The presence and
identity of mediators has also been suggested to determine
the direction of the oxidative reaction (Jeon and Chang,
2013; Hilgers et al., 2018). Some fungal LAC paralogs that
polymerise phenolic moieties into lignin-like structures in
the absence of mediators will instead break-down polymers
in the presence of mediators (Bourbonnais et al., 1995;
Shleev et al., 2006; Maijala et al., 2012; Munk et al., 2015).
The mediators involved in lignin depolymerisation in vivo
are still unknown and candidates include (i) small lignin-
related monomeric phenolics such as vanillin, ferulic acid
or syringylic compounds (Lahtinen et al., 2009; Cañas and
Camarero, 2010), (ii) Mn2+ (Schlosser and Höffer, 2002),
and/or (iii) secreted hydroquinones (Wei et al., 2010). The
presence of these mediators however cannot be the only
factor determining the direction of the oxidative reaction
because many predicted mediators are present during plant
cell wall lignification and even incorporated into lignin
(Barros et al., 2015). In fact, easily oxidised compounds
such as coniferyl alcohol, p-coumarate (Takahama et al.,
1996; Ralph et al., 2004) or Mn2+/Mn3+ (Önnerud et al.,
2002) can be used as intermediate to transfer the radical
charge to growing lignin polymers, oligomers and/or bulky
monomers. Altogether, it appears that both substrate specificity
and the direction of oxidising reaction are defined by a
combination of protein structure, binding pocket anatomy,
mediator availability, and other not yet determined reaction
conditions or interactions.

Limitation of Phenoloxidase Activity by
Co-substrate Availability
Every phenoloxidase requires a specific co-substrate to oxidise
phenolic compounds, H2O2 for PRX and O2 for PPOs and
LACs. Local control of O2 and H2O2 concentrations therefore
represents an essential aspect regulating the in situ activity
of phenoloxidases. Although present in high concentrations in
the atmosphere, O2 concentration in plant tissues generally
decreases with increasing distance from the epidermis (Spicer
and Holbrook, 2005) and lignified tissues such as wood
mostly remain in a state of hypoxia (Sorz and Hietz, 2006;
Gansert and Blossfeld, 2008). To increase aeration, O2 not
only diffuses inward from the air through the bark (Sorz
and Hietz, 2006), but is also transported throughout the
plant by the xylem sap (Gansert, 2003). However, even in
aqueous solutions in equilibrium with the atmosphere, the
dissolved O2 concentration is only roughly equivalent to the
fungal LAC Km toward O2 (Xu, 2001; Zumarraga et al.,
2008). This suggests that in conditions of phenolic substrate
excess, LAC activity in planta is limited by O2 just like LAC
activity in vitro in aqueous solutions (Ortner et al., 2015).
To fuel PRX activity, H2O2 production directly depends on
the activity of plasma membrane localised NAPDH oxidases,
also called respiratory burst oxidase homolog (RBOH), which
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TABLE 3 | Xylem sap and cell wall pH in different plant species.

Species Xylem sap pH Cell wall pH References

Acer pseudoplatanus 6.9 6.2 Essiamah, 1980; Taylor and Davies, 1985

Arabidopsis thaliana 6 5.5 Bibikova et al., 1998; Martinière et al., 2018

Betula pendula 7.5 5.5 Taylor and Davies, 1985; Sauter and Ambrosius, 1986

Brassica napus 7.4 6 Husted and Schjoerring, 1995; Gloser et al., 2016

Helianthus annuus 7.2 5.3 Jia and Davies, 2007; Gloser et al., 2016

Phaseolus coccineus 6.6 5.9 Starrach and Mayer, 1989; Gloser et al., 2016

Pisum sativum 6.2 6 Jacobs and Ray, 1976; Gloser et al., 2016

release superoxide O2
·− that is then dismutated by superoxide

dismutase (SOD) to form H2O2 (Podgórska et al., 2017). Both
the dismutation reaction by SOD to form H2O2 and its breaking
down by catalase release O2, and both SOD and catalase
activity have been detected in the cell wall (Podgórska et al.,
2017). Interestingly, H2O2 production in plants is enhanced
in condition of hypoxia (Vergara et al., 2012). Generation
and transport of reactive oxygen species, and the associated
O2 produced by their dismutation and breakdown, might
therefore be an underestimated regulator of not only PRX, but
also LAC activity.

Impact of pH on Phenoloxidase Activity
and Phenolic Compound Oxidation
Our metadata analysis revealed differences between optimal pH
and substrate type for phenoloxidases (Figure 6D), suggesting
that local pH represents an essential factor which controls
the activity of phenoloxidases. Local pH also directly affects
the E◦ of phenolic substrates and facilitates their oxidation at
higher pH. Some phenolic compounds, such as L-DOPA or
pyrogallol, even auto-oxidise and polymerise non-enzymatically
at neutral and higher pH (Gao et al., 1998; Eslami et al., 2012).
This potential regulation of phenoloxidase activity and phenol
oxidation by pH is of particular interest when considering that
tracheary elements, the water conducting cells of vascular plants,
accumulate their lignin post-mortem (Pesquet et al., 2013, 2019;
Barros et al., 2015; Ménard et al., 2021) once their cell wall
is exposed to xylem sap. Available data shows that the pH of
the xylem sap is consistently 1 to 2 units higher than that of
the cell wall in living cells (Table 3). Additionally, xylem sap
pH is highly regulated with developmental state in each organ,
time of the day and season (Alves et al., 2004; Aubrey et al.,
2011) as well as in response to environmental stress conditions
such as water availability (Wilkinson and Davies, 1997; Gloser
et al., 2016; Pagliarani et al., 2019). The tight regulation of
pH at the level of every cell, if not in every cell wall layer,
undergoing phenolic oxidation might represent an additional
mechanism to control phenoloxidase activity in development and
stress response.

CONCLUSION

Phenoloxidases include multiple unrelated and very diverse
enzymes responsible of oxidising phenolics. From a mechanistic

perspective, phenoloxidases could show relatively little substrate
specificity due to indirect oxidation mechanisms using mediators
and long-range electron transfer. LACs and class III PRXs have
been suggested to act redundantly in the oxidative polymerisation
of the earth’s most abundant phenolic polymer, lignin (Boerjan
et al., 2003; Ralph et al., 2004). This assumption, based on the
low substrate specificity of these different phenoloxidases when
oxidising small phenolics in vitro, is effectively supported by
the multitude of “non-canonical” constituents incorporated in
lignin such as flavonoids (Lan et al., 2015) and hydroxystilbenes
(del Río et al., 2017). However, these observations rarely
differentiate between the cell walls of different cell types, as well
as between their different cell wall layers, which exhibit drastically
distinct monomeric composition, amount and structure of
lignin (Terashima and Fukushima, 1988; Terashima et al.,
2012; Blaschek et al., 2020a,b; Mottiar et al., 2020; Yamamoto
et al., 2020). As cell wall lignification is a cell-cell cooperative
process (Pesquet et al., 2013; Smith et al., 2013) mediated
by the release of mobile lignin monomers in the apoplast,
lignin formation in the specific cell wall layers of each cell
type will require a directing force to control their distinct
amount and composition, such as using different combinations
of phenoloxidases. Whether the potential non-redundant roles
of phenoloxidases are due to intrinsic differences in monomer
specificity, sequential action, or distinct requirements in the
catalytic environment still remains unclear. In addition, the
phenoloxidases glycosylation state, nature of mediators, cell
wall micro-environments, and protein interactions have all been
shown to affect activity, specificity, and even reaction direction
(anabolic vs. catabolic). Altogether, we are only beginning
to understand the diverse roles played by phenoloxidases.
Further research, focusing on comprehensive in situ functional
characterisation of these phenoloxidases, will be necessary to
clarify their precise roles and regulation.

METHODS

Evolution of Phenoloxidase Gene
Families
The numbers of paralogs (Table 1 and Figure 3) are
taken from the bibliography or, in the case of PRXs, from
PeroxiBase (Savelli et al., 2019). The time since divergence from
A. thaliana for each species was taken from the timetree project
(Kumar et al., 2017).
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Structure and Sequence Conservation in
Phenoloxidases
One plant phenoloxidase with resolved crystal structure
was chosen per group to visualise secondary structure and
coordinating residues (Figure 2). Sequence conservation
was estimated based on a multiple sequence alignment
of all full-length paralogs from P. patens (formerly named
Physcomitrella patens), Selaginella moellendorffii, B. distachyon,
and P. trichocarpa.

Laccase Phylogeny
Laccase sequences were identified by protein blast against
all 17 A. thaliana LACs in P. trichocarpa, Zostera marina,
B. distachyon, Amborella trichocarpa, S. moellendorffii,
P. patens, M. polymorpha, C. braunii, V. carteri, C.
reinhardtii (NCBI), Picea abies1 (Sundell et al., 2015),
and A. filiculoides2 (Li et al., 2018). Sequences that were
duplicates, incomplete, or missing core copper binding
motifs (McCaig et al., 2005) were removed, and Signal
peptides and extensive gaps were trimmed. The non-LAC
sequences that remained after this filtering (exclusively
ascorbate oxidases) were included as an outgroup. An
appropriate amino acid replacement model (WAG with
empirical frequencies and a proportion of invariant sites)
was selected with ModelTest-NG v0.1.5 (Darriba et al.,
2020). MrBayes v3.2.2 (Ronquist et al., 2012) was run on
CIPRES3 (disabled BEAGLE) for one million generations to
compute the phylogenetic tree (for the log-likelihood plot
of chain convergence; see Supplementary Figure 2). The
tree was visualised in R v4.0.4 using the “treeio” v1.14.3
(Wang L.-G. et al., 2020) and “ggtree” v2.4.1 (Yu et al., 2017)
packages.

Laccase Homology Modelling
Laccase homology models were built using AlphaFold 2 with
amber relaxation (Jumper et al., 2021) based on MMseqs2
multiple sequence alignments (Mirdita et al., 2019). Signal
peptides of the modelled sequences were removed using SignalP
v4.1 (Petersen et al., 2011). The single template models in
Supplementary Figure 4 were built using Modeller v10.1
(Webb and Sali, 2016), based on the crystal structure of
the maize laccase ZmLAC3 (PDB: 6klg; Xie et al., 2020),
including the 4 copper ions as rigid bodies. A total of 30
single-template models were built per paralog (5 individual
models with 5 loop-refinement iterations each). Model quality
was assessed using modeller’s normalised DOPE score (Shen
and Sali, 2006). For each model, the distances of the T1
copper coordinating histidines from the protein surface were
estimated using DEPTH v2.0.0 (Tan et al., 2013). Binding
pockets were characterised using CASTp (Tian et al., 2018)
with a probe radius of 1.4 Å. The correct binding pocket
for each paralog was identified as the pocket formed by the

1congenie.org
2https://fernbase.org/
3www.phylo.org

highest number of residues aligning to the pocket-forming
residues of ZmLAC3. Pocket compactness was calculated as
π

1
3 (6V)

2
3

A , where V is the volume of the binding pocket and
A is the protein surface area forming the pocket. Modelled
protein structures were visualised in UCSF ChimeraX v1.2.5
(Pettersen et al., 2021). The models were clustered based
on the medians for each parameter using average linkage
clustering in R v4.0.4. The correlations between the parameters
used for clustering were moderate at most (Supplementary
Figure 5). To compare the structure-based clustering with
sequence homology, a bayesian phylogenetic tree was generated
from the modelled sequences using the same approach as
described in the previous paragraph. The two dendrograms were
then compared using the “dendextend” package v1.14.0 (Galili,
2015) in R v4.0.4.
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its distance to the T1 copper, the binding pocket volume is shown in yellow.
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