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Medicinal plants have a variety of values and are an important source of new drugs
and their lead compounds. They have played an important role in the treatment
of cancer, AIDS, COVID-19 and other major and unconquered diseases. However,
there are problems such as uneven quality and adulteration. Therefore, it is of great
significance to find comprehensive, efficient and modern technology for its identification
and evaluation to ensure quality and efficacy. In this study, deep learning, which is
superior to conventional identification techniques, was extended to the identification
of the part and region of the medicinal plant Paris polyphylla var. yunnanensis from
the perspective of spectroscopy. Two pattern recognition models, partial least squares
discriminant analysis (PLS-DA) and support vector machine (SVM), were established,
and the overall discrimination performance of the three types of models was compared.
In addition, we also compared the effects of different sample sizes on the discriminant
performance of the models for the first time to explore whether the three models
had sample size dependence. The results showed that the deep learning model had
absolute superiority in the identification of medicinal plant. It was almost unaffected
by factors such as data type and sample size. The overall identification ability was
significantly better than the PLS-DA and SVM models. This study verified the superiority
of the deep learning from examples, and provided a practical reference for related
research on other medicinal plants.

Keywords: deep learning, identification research, medicinal plant, Paris polyphylla var. yunnanensis, superiority
verification, ResNet

INTRODUCTION

Medicinal plants are a kind of highly exploitable plants with various values such as medicinal edible
ecology. Their research has become the latest source for the emergence of new drugs (Newman and
Cragg, 2015). The development potential of the international market for the utilization of medicinal
plants is huge, and countries all over the world generally attach importance to its research in order
to better transform and utilize medicinal plants, solve the problem of human survival resource
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shortage, and improve human health (Jamshidi-Kia et al., 2018).
Medicinal plants have a wide range of sources. Due to differences
in regional natural conditions, climatic conditions, flora and
natural resources, they present a unique distribution with
great differences in quantity and type (Deng et al., 2016).
Many factors have different degrees of influence on the quality
of medicinal plants. Therefore, the use of comprehensive,
efficient, and modern technical means to clarify the region
and part of medicinal plants has far-reaching significance for
quality and efficacy.

Traditional identification and evaluation techniques
for medicinal plants mainly include the technology of
DNA barcoding, macroscopic identification, microscopic
identification, chromatography, spectroscopy, etc. (Pang
et al., 2011; Pei et al., 2020; Liu et al., 2021). Among
them, spectroscopy has the advantages of simplicity,
speed, economy, and high throughput, which can fully
characterize the chemical information of samples with
complex mixed systems (Pasquini, 2018). The identification
research of medicinal plants mostly uses spectroscopy
combined with chemometrics. Among them, the partial
least square discriminant analysis (PLS-DA) and support
vector machine (SVM) have excellent performance, and
have been successfully applied to the identification and
evaluation of a variety of medicinal plants, including species
identification, origin identification, age identification, part
identification, adulteration identification, etc. (Liu et al.,
2020; Shen et al., 2020; Wang et al., 2020) Yang and Wang
(2018) compared the effects of PLS-DA and SVM on the
identification of P. polyphylla var. yunnanensis from different
regions based on infrared spectroscopy and ultraviolet
spectroscopy data. It is found that both models have higher
recognition performance, and the accuracy of SVM is higher
than that of PLS-DA.

In addition, two-dimensional correlation spectroscopy
(2DCOS) is also a powerful tool for identification evaluation.
This technology fully combines the advantages of computational
chemistry, statistics, spectroscopy and computer science to
increase the spectral resolution and enrich the information
carried by the spectrum by increasing the dimension (Noda,
1989, 1993). In recent years, reports on the research and
application of 2DCOS technology are increasing year by
year, covering drug metabolism, drug toxicology, drug
structure-activity relationship, traditional Chinese medicine,
etc. (Noda, 2004, 2014, 2016; Li et al., 2014). Based on
years of research, Sun et al. (2003) wrote a book called
“Atlas of Two-dimensional Correlation Infrared Spectroscopy
for Traditional Chinese Medicine Identification,” which
contains the 2DCOS spectra of more than 300 kinds of
traditional Chinese medicine, providing a reference for the
identification research of related traditional Chinese medicine.
However, the artificial identification and analysis of 2DCOS
spectra has limitations in time, technology, and experience.
Moreover, interdisciplinary research has become a current
hot spot and also the trend of future scientific research
field. Therefore, it is necessary to combine 2DCOS with
more modern, convenient and intelligent technical means

of other disciplines to realize the rapid identification of
medicinal plants.

Deep learning is the main research method used in the
development of artificial intelligence research at the present
stage, which has unique advantages in image classification
and object recognition (LeCun et al., 2015; Houssein et al.,
2021). Combining it with 2DCOS images for the identification
of medicinal plants can take advantage of the respective
advantages of the two technologies and greatly improve
the efficiency of identification and analysis. Deep learning
combined with 2DCOS seems to show superior performance
in many aspects than traditional spectroscopy combined with
chemometrics in identifying medicinal plants (Dong et al., 2020).
For example, deep learning can achieve good identification
without complex spectral preprocessing, and there is no need
to manually extract features in the modeling process, which
greatly improves efficiency and reduces various risks caused
by human factors (Grinblat et al., 2016). However, these
conclusions are all based on theories or the application of a
single method, and there has been no actual comparison and
discussion on them.

Paris polyphylla var. yunnanensis (PPY), as the original
plant of the precious Chinese medicine Paridis Rhizoma, is
a medicinal plant resource with a representative and global
influence (Cunningham et al., 2018). In the market, there
are more than 80 commonly used Chinese patent medicines
with Paridis Rhizoma as the main raw material, and 107
pharmaceutical companies are involved in the production,
which are distributed in 23 provinces of China. They have
significant clinical efficacy and economic value (Tao et al., 2020).
At present, domestic and foreign scholars have conducted a
lot of research on PPY, but the research on the resources
evaluation is still in a situation where there are results but
no conclusions, and they are all based on the traditional
medicinal rhizoma. Moreover, studying the above-ground parts
of PPY can promote the development and utilization of non-
medicinal parts, and improve economic benefits (Zhao et al.,
2021). Besides, there is currently no research on the use of
deep learning combined with 2DCOS to identify the parts
and regions of PPY.

In conclusion, taking PPY as an example, two pattern
recognition models of PLS-DA and SVM, and a deep learning
model of Residual neural network (ResNet) were established
in this study to explore and verify whether deep learning
combined with 2DCOS has advantages in the identification of
medicinal plant resources. In order to increase comparability
and credibility, we simultaneously identified and evaluated
PPY samples of different regions and parts. In addition, we
also compared the impact of different sample sizes on model
identification performance to explore whether the three models
are dependent on sample size. This research not only provided
a reasonable, standardized, fast and effective method for the
identification of regions and parts of PPY, but also verified the
superiority of the deep learning model in the identification of
medicinal plants and the response of the three models to sample
size. This is conducive to the development and utilization of
advanced deep learning models such as ResNet in other fields.
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FIGURE 1 | Location distribution of Paris polyphylla var. yunnanensis samples in western, central, northwest, southwest and southeast of Yunnan.

FIGURE 2 | Sample picture of the planting site, whole plant and rhizome of Paris polyphylla var. yunnanensis.

MATERIALS AND METHODS

Sample Information
A total of 772 individuals were collected in 12 sampling sites
in central, northwest, southeast, southwest and western Yunnan

(Figure 1). All samples were identified as Paris polyphylla
var. yunnanensis by Professor Hang Jin from the Institute of
Medicinal Plants, Yunnan Academy of Agricultural Sciences.
Some samples are shown in Figure 2. Afterward, all the samples
were cleaned and divided into four parts: rhizome, stem, leaf and
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FIGURE 3 | Averaged raw spectra of Paris polyphylla var. yunnanensis. (A) parts; (B) regions. The G, J, Y, and XG represent the rhizome (G), stem (J), leaf (Y) and
fibrous root (XG), respectively.

fibrous root. Then the samples were dried to a constant weight at
50◦C in an electric thermostatic drying oven. Next, the samples
were passed through a 100-mesh sieve. Finally, the fine powders
were stored in self-sealed bags and kept in a dry environment
away from light for subsequent analysis. The detailed information
of the samples is shown in Supplementary Table 1. There are
a total of 772 rhizomes, all of which were used for regions
identification analysis. Rhizome (G: 142), stem (J: 107), leaf (Y:
137), and fibrous root (XG: 107) from Dehong and Yuxi were
selected for identification of parts.

FT-MIR Spectra Acquisition
The Fourier transform mid-infrared spectra were collected by
a Fourier transform infrared spectrometer equipped with an
attenuated total reflection accessory (Perkin Elmer, Norwalk,
CT, United States). Sample powder (2 ± 0.2 mg) was placed
in the center of the metal ring (ZnSe crystal surface), and the
manometer knob was adjusted to a uniform progress bar of
131 ± 1 to form sample powder sheets with the same thickness.
The infrared spectrum scanning range was set to be 4,000–
550 cm−1 with a spectral resolution of 4 cm−1. Sixteen times
of scanning were carried out, and each sample was measured in
parallel for three times. Finally, the average spectrum was taken.
Before the sample scanning, the infrared spectrum of the blank
crystal surface is collected, and the interference of air and the
scattering spectrum of the crystal part was deducted. During the
spectrum measurement, keep the laboratory temperature at 25◦C
and the relative air humidity at 30%.

Data Processing and Exploratory
Analysis
Although the spectral data preprocessing and the characteristic
variable selection have been proved by previous studies to be
effective for optimizing identification model (Obaid et al., 2019),
the complex data preprocessing process will greatly reduce the

recognition efficiency. Moreover, the preprocessing methods and
characteristic variable selection methods used for different data
sets cannot be unified, which requires a lot of time and resource
costs to verify. Therefore, this study directly used original spectral
data for subsequent identification analysis without considering
data preprocessing and characteristic variable selection, so as to
fairly compare the recognition performance of the three types of
models and verify whether the ResNet model has advantages in
the identification research.

In addition, in order to explore the impact of sample size on
the recognition ability of the three types of models, we divided
the data sets of region and part into low sample size group (10%),
medium sample size group (50%), and high sample size group
(100%), and the percentage in parentheses is the proportion of
each group of samples (Supplementary Table 2). The Kennard-
stone algorithm was performed to divide the data of all groups
into training set (2/3) and test set (1/3), which was directly used
to build PLS-DA and SVM models. The data for establishing
the ResNet model is the 2DCOS images of all groups, and the
generation method is shown in the following section.

Exploratory analysis used the unsupervised analysis method
of t-distributed stochastic neighbor embedding (t-SNE) to
summarize the distribution of grouped samples in a multivariate
space. By identifying the distribution trend of samples, high-
dimensional data can be visualized as data points in two-
dimensional or three-dimensional graphs. The above process was
completed by MATLAB software.

Two-Dimensional Correlation
Spectroscopy Spectra Image Acquisition
The generalized two-dimensional correlation spectrum is an
effective method to improve spectral resolution and solve spectral
overlap by designing disturbance variables, which is obtained by
discrete generalized 2DCOS algorithm. Its dynamic spectrum is
expressed as S, and the expression is as follows, where v is variable
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FIGURE 4 | The synchronous, asynchronous and integrated 2DCOS images of parts. (A) rhizome; (B) stem; (C) leaf; (D) fibrous root. Asys images are i2DCOS
images.
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FIGURE 5 | The synchronous, asynchronous and integrated 2DCOS images of regions. (A) central; (B) northwest; (C) southeast; (D) southwest; (E) western. Asys
images are i2DCOS images.
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TABLE 1 | Parameters for PLS-DA models in parts and regions discrimination based on three levels of data sets.

Data Model LVs R2 Q2 RMSEE RMSECV RMSEP Accuracy (%)

Training set Test set

Parts PLS-DA-L 1 0.198 0.159 0.374135 0.37687 0.295164 51.52 55.56

PLS-DA-M 11 0.899 0.831 0.143237 0.167712 0.0758287 99.39 100

PLS-DA-H 11 0.918 0.887 0.120499 0.138129 0.0669199 99.39 100

Regions PLS-DA-L / / / / / / / /

PLS-DA-M 14 0.584 0.333 0.349237 0.441024 0.325103 87.92 88.46

PLS-DA-H 20 0.698 0.544 0.266242 0.351347 0.266231 95.34 92.22

and t is the external disturbance (Noda, 2018).

S (v) =



y(v, t1)

y(v, t2)

y(v, t3)

·

·

·

y(v, tm)


(1)

The synchronous spectral intensity 8(v1,v2) is equal to the
cross product of the dynamic spectral intensity at (v1, v2). The
asynchronous spectral intensity 9(v1,v2) is equal to the cross
product of the Hilbert-Noda matrix defined as Njk for the
dynamic spectral intensity at (v1, v2). Their expressions are as
follows:

8 (v1, v2) =
1

m− 1
S (v1)

T
· S (v2) (2)

9 (v1, v2) =
1

m− 1
S (v1)

T
· N · S (v2) (3)

Njk =


0 j = k

1
π(k−j) j 6= k (4)

The product of a pair of synchronous and asynchronous
correlation intensities can obtain the integrated two-dimensional
correlation intensity, which is expressed as I (v1, v2) (Chen et al.,
2018).

I(v1, v2) = [8(v1, v2)] · [9(v1, v2)]

=
1

(m− 1)2 [S(v1)
T
· S(v2)] · [S(v1)

T
· N · S(v2)] (5)

Spectral data matrix S(m × n) contains two spectra, the
first is the average FT-MIR of each class, and the second is
the ith FT-MIR spectra of each class. The synchronous 2DCOS
spectra, asynchronous 2DCOS spectra and integrative 2DCOS
(i2DCOS) spectra for the ith sample of each category can be
obtained by equation (2), (3) and (4). In order to reduce the
amount of calculation, save computer resources and speed up the
calculation efficiency, the fingerprint area of 1,750–550 cm−1 was

selected, and the synchronous 2DCOS, asynchronous 2DCOS
and i2DCOS spectral images were automatically generated by the
software Matlab2017b. The image size can be chosen according
to the processing power of the computer (32 × 32 pixel, 64 × 64
pixel and 128 × 128 pixel), and the generated 2DCOS images
were stored in JPEG image format with the size as 64 × 64 pixel
in the corresponding folder for building ResNet model. Using the
Kennard-stone algorithm, all datasets were divided into training
set (60%), test set (30%), and external validation set (10%). The
process of generating all types of 2DCOS spectra images is shown
in Supplementary Figure 1.

Partial Least Squares Discrimination
Analysis
Partial least squares discriminant analysis is a linear supervised
classification method established on the basis of the standard PLS
regression algorithm. It searches for the variable with the largest
covariance of the classification matrix Y from the variable matrix
X. Y is divided into two categories, where Y = 1 represents that
the sample belongs to a specific category, and Y = 0 represents
that the sample does not belong to a specific category. Finally,
the probability of each sample classified into each category is
obtained. In the calculation, the observed X matrix is transformed
into a set of several intermediate linear latent variables (LVs). The
first n LVs are selected according to the maximum eigenvalue
greater than 1. The statistical parameters of accuracy, model
fitting determination coefficient R2, Q2, root mean square error of
estimation (RMSEE), root mean square error of cross validation
(RMSECV), and root mean square error of prediction (RMSEP)
are used to evaluate the performance of the model. Permutation

TABLE 2 | The accuracy of SVM models for parts and regions identification based
on three levels of data sets.

Data Model Best c Best g Accuracy (%)

Training set Test set

Parts SVM-L 2,048.00 0.000043 72.73 100.00

SVM-M 181.02 0.00069 98.18 100.00

SVM-H 5.66 0.016 99.39 100.00

Regions SVM-L 1.00 0.10 0.00 46.15

SVM-M 11,585.24 0.00017 87.92 92.31

SVM-H 46,340.95 0.000031 94.17 97.28
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FIGURE 6 | The accuracy curves and cross-entropy cost function of ResNet models based on part data with different sample size. L, low sample size; M, medium
sample size; H, high sample size.

test was performed on the established model with a total of 50
iterations. And according to the R2-intercept and Q2-intercept
results, the fitting degree of the model was verified. The process
of establishing PLS-DA model was carried out on SIMCA-
P+14.1 software.

Support Vector Machine
Support vector machine is a supervised pattern recognition
method that can identify unknown samples and has the
ability to analyze the data with high collinearity and high
noise. The libsvm-3.20 toolbox developed by the Institute
of Industrial Engineering, National Taiwan University, Lin
Zhiren, etc., was used to establish SVM discriminant models to
identify the region and part of P. polyphylla var. yunnanensis.
The 1,789 data points of the original FT-MIR spectra were
used as the X variable, and the classification labels were
used as the Y variable. The training set was used to
establish discriminant models, and the text set was used to
externally verify the accuracy of models. The best kernel

functions c and g were obtained by cross validation of grid
search method. The SVM models were implemented using
Matlab software.

Residual Neural Network
In this study, a 12-layer ResNet was established with a weight
attenuation coefficient λ of 0.0001 and a learning rate of 0.01.
Supplementary Table 3 showed the ResNet network parameter
configuration. The model was completed by the anaconda
data processing hardware platform, and MXNet was selected
as the deep learning framework. The model contains two
kinds of residual block, namely the identity residual block
(Supplementary Figure 2) and the convolutional residual block
(Supplementary Figure 3). The block is selected according
to whether the dimensions of the input and output are
consistent. When the dimensions of the input and output
are the same, the identity residual block is used to build
the model. When the input and output dimensions are
inconsistent, we introduce the convolutional residual block with
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FIGURE 7 | The accuracy curves and cross-entropy cost function of ResNet models based on region data with different sample size. L, low sample size; M, medium
sample size; H, high sample size.

a convolution kernel size of 1 × 1 to match the dimensions
of the input and output. The model structure is shown in
Supplementary Figure 4, where the input data is synchronous
2DCOS, asynchronous 2DCOS and i2DCOS spectral images. The
identification flow chart of ResNet is shown in Supplementary
Figure 5. The training set is used to train the model. The
Stochastic Gradient Descent (SGD) method is used to find
the optimal parameters for minimizing the loss function value
to obtain the optimal model. The test set is used to verify
whether the performance of the final model is optimal. The
external validation set is used to verify the generalization
ability of the model.

RESULTS AND DISCUSSION

FT-MIR Spectra Analysis
Figure 3 shows the average FT-MIR spectra of four parts and five
regions of PPY. 3,350, 2,940, 1,645, 1,387, 1,069, 931, 581 cm−1

are the main characteristic absorption peaks of PPY samples.
The absorption peak of O-H stretching vibration is mainly

near 3,350 cm−1 (Pei et al., 2018). The absorbance intensity
around 2,940 cm−1 is related to the stretching vibration of C-H
absorption of lipids (Pei et al., 2019). The absorption peak at
1,645 cm−1 is assigned to the C = C and C = O stretching
vibration of steroid saponin and flavonoid (Wu et al., 2019). The
absorption peak near 1,387 cm−1 is -CH3 symmetrical bending
vibration (Yang et al., 2019). In the region of 1,300–550 cm−1,
the absorption peaks correspond to the stretching vibration peak
of C-O and the bending vibration of O-H, which belong to
substances such as sugars and saponins (Wu et al., 2018). It is
concluded that the main components in the plant of PPY are
flavonoids, starch and glycosides.

As shown in Figure 3A, the absorption peak intensity of
rhizome, stem, leaf and fibrous root is significantly different,
especially the absorption peak in the band of 4,000–1,200 cm−1.
On the whole, the order of absorption intensity of four parts
is Y > J > XG > G. It may imply that the distribution and
content of active components in different parts of PPY are
significantly different, and the components content of non-
medicinal parts (Y, J, and XG) may be higher than the medicinal
parts (G), which is nearly consistent with the research results
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TABLE 3 | The accuracy of ResNet models for parts and regions identification based on three levels of data sets.

Data Code Type Epoch Loss value Accuracy

Train (%) Test (%) External validation (%)

Parts Resnet-L Synchronous 29 0.091 100 100 100

Asynchronous 49 0.102 100 64 100

Asys 49 0.219 100 57 100

Resnet-M Synchronous 29 0.012 100 100 100

Asynchronous 45 0.021 100 88 87.5

Asys 49 0.021 100 96 100

Resnet-H Synchronous 29 0.009 100 100 100

Asynchronous 49 0.027 100 89 90

Asys 49 0.017 100 81 88

Regions Resnet-L Synchronous 29 0.114 100 100 100

Asynchronous 47 0.248 100 50 25

Asys 69 0.132 100 54 37.5

Resnet-M Synchronous 29 0.030 100 100 100

Asynchronous 49 0.088 100 62 56.4

Asys 69 0.045 100 61 66.7

Resnet-H Synchronous 27 0.009 100 100 100

Asynchronous 48 0.011 100 63 62.7

Asys 47 0.020 100 55 64

Note: The bold value are the optimal results of models under the certain data set.

of Feng et al. (2015). However, the differences of peak shape
and absorption intensity in different regions (Figure 3B) are
much lower than those in different parts, which indicates that the
differences within individuals may be greater than the differences
between individuals, and it’s easier to identify parts than regions.
Nonetheless, further modeling analysis and more studies are
needed to support this conclusion.

The Two-Dimensional Correlation
Spectroscopy Spectra Images
In this study, a total of 6,135 2DCOS images were drawn,
including synchronous 2DCOS, asynchronous 2DCOS and
i2DCOS images of PPY in different parts (Figure 4) and
different regions (Figure 5). The synchronous 2DCOS images
are symmetric along diagonals, and the correlation peaks may
appear on or off the diagonal. The correlation peak on the
diagonal line is called the auto peak, which is expressed as the
value of the auto-correlation function of spectral intensity change
(Huang et al., 2003). The peaks on both sides of the diagonal
are called cross peaks and represent synchronous changes of
spectral signals at different wavenumbers. The asynchronous
2DCOS images characterize the asynchronous characteristics of
the absorption intensity measured at two different wavenumbers.
It is anti-symmetric on both sides of the diagonal, and it
has only cross peaks and no automatic peaks (Noda, 1990).
The i2DCOS is defined as the product of the synchronous
and asynchronous two-dimensional correlation intensities. It

can provide correlation spectra with equal resolution, and its
characteristics are clearer than asynchronous 2DCOS (van der
Maaten and Hinton, 2008). By comparing the synchronous,
asynchronous and integrated 2DCOS, it is not difficult to see
that the colors and lines of the synchronous images are clearer
and richer, and it is easy to analyze the differences and intensity
changes of auto peaks and cross peaks between different samples.
However, asynchronous and integrated images are complex and
changeable, and cannot be distinguished by naked eyes. This may
be caused by the complex characteristics of traditional Chinese
medicine. In addition, the 2DCOS images of different parts has
more significant differences than that of different regions, which
is consistent with the results presented by the one-dimensional
spectral analysis.

In summary, synchronous 2DCOS has better performance of
visual recognition. Different parts are easier to distinguish than
different regions. Although 2DCOS overcame the shortcomings
of one-dimensional spectral peak overlap and improved its
apparent resolution, it was very difficult to recognize different
parts and regions by visual analysis alone, so we need to rely on
machine learning methods.

Exploratory Analysis of t-Distributed
Stochastic Neighbor Embedding
As a relatively novel non-parametric dimensionality reduction
technology, t-SNE can visualize high-dimensional data to obtain
the position of each data point on a two-dimensional or
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FIGURE 8 | Comparison of the overall identification performance of PLS-DA, SVM and ResNet models. (A) parts; (B) regions.

three-dimensional map. Its focus is to maintain the basic
structure of the data matrix to reveal outliers or similarities
and differences between groups of observed variables. As
shown in Supplementary Figure 6, t-SNE was used in this
study to conduct a preliminary visual evaluation of the
spectral data sets. The ellipses in the figure represented the
detailed trends of different types of samples. Supplementary
Figure 6A showed the distribution of FT-MIR data sets
of different parts, in which there were obvious outliers in
both fibrous roots and roots. But in general, most samples
could be clustered according to different category, and a
few samples were mixed together. Supplementary Figure 6B
showed the distribution of FT-MIR data sets of different
regions, which formed a sharp contrast with the data set
of different regions. The samples from the five regions were
almost completely blended together. The two-dimensional
visual results showed that the FT-MIR information of PPY
samples in different regions was relatively similar, and it
is not easy to distinguish. The results of these exploratory
data analysis were consistent with the results of spectrum
analysis, that is, the difference between different parts of PPY
was higher than that of different regions. Obviously, in the
process of data visualization, the vast majority of samples
cannot be classified according to their pre-identified labels of
different sources. Therefore, further in-depth modeling analysis
should be considered.

Discrimination Results of Partial Least
Squares-Discriminant Analysis Model
The PLS-DA models for the parts and regions of PPY based
on different sample size data sets were, respectively, established.
Table 1 lists all the model parameters and the results of
discrimination accuracy. From the table, we can clearly know
that the models of different parts, different regions and different
sample sizes have significant differences in the identification
ability and model performance. In addition, in order to assess
whether the PLS-DA model has an over-fitting problem, a
permutation test was performed on all models. Generally, if the
intercept of R2 is less than 0.4, there is no risk of over-fitting.

Supplementary Figure 7 shows the results of the permutation
test of five classification models (PLS-DA model cannot be
established based on the low sample size data of the region).
The results show that the R2 intercepts of the five models
are all less than 0.4, and there is no risk of over-fitting. The
confusion matrices of the established PLS-DA models based on
the data set of parts and regions are shown in Supplementary
Tables 4, 5, respectively.

First of all, from the models based on different
parts of the data set, we can see that the R2 and Q2

of the PLS-DA-L model are only 0.198 and 0.159,
respectively, which are both lower than 0.5, and the
recognition accuracy of the test set is only 55.56%.
Therefore, the model based on the low sample size
data set has poor performance and low discrimination
ability, and cannot realize the discrimination of different
parts of PPY. The PLS-DA-M and PLS-DA-H models
based on the data sets of parts have high R2 and Q2

values greater than 0.8 and low RMSEE, RMSECV
and RMSEP values. The accuracy of the test sets
of the two models is 100%, which has a very good
recognition performance.

Secondly, as shown in the table, the PLS-DA-L model based
on regions data cannot be fitted. This result may be related
to the amount of data being too small or the data is not
preprocessed. Although the PLS-DA-M model has a test set
accuracy rate of 88.46%, the model performance is poor with
low Q2 and high RMSEE, RMSECV, and RMSEP values. The
PLS-DA-H model is better than the low sample size model and
the medium sample size model in terms of model performance
and recognition accuracy, so that it can well identify PPY in
different regions.

Finally, from the perspective of sample size, whether it is PLS-
DA models based on part data or models based on region data,
the recognition performance is dependent on the sample size.
And it shows that the larger the sample size, the better the model
performance and the stronger the recognition ability. However,
with the increase of the sample size, the recognition efficiency
of the models will be greatly reduced. In addition, through
comparison, it can be concluded that the PLS-DA models based
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on part data is better than that based on region data, regardless of
model parameter results or recognition accuracy.

Discrimination Results of Support Vector
Machine Model
Support vector machine is a supervised classification tool.
It searches for the optimal separation hyperplane between
different data categories by maximizing the distance between
the classification hyperplane and various sample points.
SVM contains two parameters, c is used as a penalty
parameter, which can control the generalization ability of
the model and reduce the over-fitting phenomenon, and
the kernel function parameter g is related to the stability
of the model. Supplementary Figures 8, 9 are the optimal
separation hyperplane graph and classification result graph
of the SVM model based on parts and regions data,
respectively. The detailed results of the six SVM models
are shown in Table 2. Best c and Best g, respectively,
represent the best penalty parameter and kernel function
parameter of the model.

The accuracy difference between the training set and the
test set of the SVM-L model based on part data and region
data is more than 20%, while the accuracy of the training set
and the test set of the SVM-M and SVM-H models based on
part data and region data is less than 5%. This shows that
the reliability of the SVM models established with low sample
size data is poor. The SVM-M and SVM-H models based on
part data both have high identification accuracy and low Best c
value, so the model performance is good and have the ability to
identify different parts of PPY. However, although the SVM-M
and SVM-H models based on region data have high identification
accuracy, their Best c values are abnormally high, indicating
that the performance of the two models is poor and there may
be over-fitting, which can’t well identify the PPY in different
regions. The above results show that although a larger sample size
can improve the identification accuracy of the SVM model, the
establishment of a high-performance model cannot be achieved
for data that has not been preprocessed and has small differences
between different categories. In addition, as with the results of
the PLS-DA model, it is easier to identify the parts of PPY
than the regions.

In conclusion, although the SVM model has the advantage
of solving the problems of small sample, nonlinear and high-
dimensional data (Noble, 2006), the unpreprocessed small
sample data in this study is not applicable to the SVM
model, indicating that data preprocessing is very necessary to
improve the discrimination performance of traditional models
such as SVM. In addition, a larger sample size increases
the over-fitting risk of SVM model while improving the
recognition accuracy, which leads to poor model performance
and low reliability.

Discrimination Results of Residual
Neural Network Model
In this research, ResNet models based on 2DCOS images
(including synchronous, asynchronous and integrated images)

of FT-MIR were established. Figures 6, 7 are the results of 18
ResNet models based on the data sets of parts and regions,
respectively, showing the accuracy curves and cross-entropy
cost function curves. The accuracy curves, includes the training
set and the test set, were used to evaluate the discrimination
ability of the model. The closer its value is to 1, the stronger
the discrimination ability of the model. The cross-entropy loss
function was used to explain the convergence effect of the model.
The closer its value is to zero, the better the convergence effect of
the model. In addition, the external validation set was classified
using the models established above, and the classification result
of the external validation set of different parts and regions was
shown in the confusion matrix in Supplementary Figures 10, 11,
respectively. External validation is used to judge and evaluate
the pros and cons of the model to ensure the stability of the
established model. Table 3 summarized the result parameters of
all models, including accuracy (training set, test set and external
validation set), epoch, and loss value.

Comparing the models based on synchronous, asynchronous
and integrated 2DCOS images, we can get that the model of
synchronous 2DCOS images has the best discrimination effect,
and the accuracy of the training set, test set and external
verification set is 100%. The modeling results are consistent with
the results of image vision analysis, that is, the synchronized
2DCOS images have clearer characteristic peaks and can better
characterize different types of samples. Comparing the models
with low, medium and high sample sizes showed that the
ResNet model had no dependence on the sample size, and there
was no obvious rule between the identification accuracy and
the sample size. However, too small sample size will lead to
poor performance and over-fitting of model. This result can
be derived from the identification results of low sample size
models based on asynchronous and integrated 2DCOS images.
The difference of identification accuracy between the external
validation set and the test set was large, and the loss value
of models was significantly higher than that of the medium
sample size and high sample size models. In addition, the
accuracy curves of the training set and test set of the medium
sample size and high sample size models showed a consistent
upward trend, which also showed that these two types of models
had no risk of over-fitting and were robust. However, the
accuracy curve of the training set and the test set of the low
sample size model had a poor consistency in the upward trend,
even for the optimal model of synchronous 2DCOS images,
which indicated that the low sample size would reduce the
performance of the ResNet model. Finally, on the whole, the
recognition effect of the ResNet model based on the part data
set was better than that of the ResNet model based on the
region data set.

In summary, the recognition accuracy of the models based
on synchronous 2DCOS images is the best, which is almost not
affected by sample size, part, region and other factors, and is
most suitable for the identification of medicinal plants. However,
too small sample size does have a small negative impact on
the performance of the ResNet model. Therefore, it is worth
thinking about how to use an appropriate method to solve the
negative impact of low samples on model performance. This
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is conducive to solving the identifying problem of research
subjects with a small sample size. These research objects
have very limited data, and it is expensive or impossible to
obtain more data, such as scarce and precious animal and
plant resources.

Comparison Analysis of Models
Partial least squares discriminant analysis, SVM, and ResNet
models showed significant differences in their ability to identify
the parts and regions of the PPY, the responses to different
sample sizes, and the comprehensive performance of models.
As shown in Figure 8, we have made a visual comparison of
three type of models.

In terms of the identification ability of parts and regions,
the three types of models show consistent results, that is, the
identification ability of parts is better than that of regions,
which indicates that the difference of parts data of PPY is
greater than that of regions data. This result implies that the
difference in component within the sample may be greater
than that between samples. This causes us to think about the
resource evaluation and the effective development and utilization
of the non-medicinal parts of PPY. In addition to the evaluation
of the advantages and disadvantages of the medicinal parts
between individuals in different origins, the development and
utilization of non-medicinal parts within individuals is also very
worthy of attention.

From the perspective of different sample sizes, the three
models have different responses to low, medium, and high sample
size data. The PLS-DA model has a very significant sample size
dependence. As the sample size increases, the discrimination
ability and the performance of the model have been significantly
improved. It can be concluded that the overall performance of
the PLS-DA model is positively correlated with the sample size.
This result is confirmed by two types of models based on part
and region data, which greatly reduces the chance. There is a
certain correlation between the merits and demerits of SVM
model and the sample size, but not a complete positive or negative
correlation. The identification accuracy of the model increases
with the increase of the sample size, while the performance
of the model based on region data evaluated by parameters
will deteriorate with the increase of the sample size. It can
be concluded from this study that there are two important
factors affecting the overall performance of SVM model, one
is the quality of data itself, the other is the sample size. The
ResNet model based on the synchronous 2DCOS images has a
very perfect overall discrimination performance, both in terms
of the discrimination accuracy and the model parameters. It
is not limited by the sample size and is almost unaffected by
the data itself. Whether it is based on easy-to-identify part
data or region data with small differences, it can achieve 100%
recognition accuracy.

In summary, the PLS-DA model has the strongest dependence
on the sample size, followed by SVM, and the ResNet model based
on synchronized 2DCOS images has almost no dependence on
the sample size. In addition, the traditional pattern recognition
model is also affected by the quality of data itself. Therefore, the
ResNet model based on synchronized 2DCOS images occupies an

absolute advantage in the identification of medicinal plants. The
model is universal and does not require preprocessing or artificial
extraction of characteristic variables. It has good discrimination
accuracy regardless of the sample size or the quality of the data.

CONCLUSION

In this study, we used three kinds of models to identify the part
and region of PPY. PLS-DA and SVM are traditional pattern
recognition models, which have been widely used in the past
research. ResNet model is a representative dominant model in
deep learning. The effects of different types of data and different
sample sizes on the discrimination ability and performance of
the three models were discussed without any data preprocessing.
By comparing the ability of the traditional model and the deep
learning model for the identification of PPY, we found that the
identification performance of PLS-DA and SVM models was
easily affected by the data type, sample size and other factors,
and the overall identification ability of both models was not
as good as the ResNet model based on synchronous 2DCOS
images. Different from the previous single theory or single model
analysis, this study verified the superiority of deep learning model
in the identification research of medicinal plant resources from
the actual and multiple perspectives.
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