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Sugarcane is among the most important global crops and a key bioenergy source.
Sugarcane production is restricted by limited levels of available soil potassium (K+). The
ability of plants to respond to stressors can be regulated by a range of microRNAs
(miRNAs). However, there have been few studies regarding the roles of miRNAs in the
regulation of sugarcane responses to K+-deficiency. To understand how these non-
coding RNAs may influence sugarcane responses to low-K+ stress, we conducted
expression profiling of miRNAs in sugarcane roots under low-K+ conditions via high-
throughput sequencing. This approach led to the identification of 324 and 42 known
and novel miRNAs, respectively, of which 36 were found to be differentially expressed
miRNAs (DEMs) under low-K+ conditions. These results also suggested that miR156-
x/z and miR171-x are involved in these responses as potential regulators of lateral root
formation and the ethylene signaling pathway, respectively. A total of 705 putative targets
of these DEMs were further identified through bioinformatics predictions and degradome
analyses, and GO and KEGG enrichment analyses revealed these target mRNAs to be
enriched for catalytic activity, binding functions, metabolic processes, plant hormone
signal transduction, and mitogen-activated protein kinase (MAPK) signaling. In summary,
these data provide an overview of the roles of miRNAs in the regulation of sugarcane
response to low-K+ conditions.

Keywords: sugarcane, microRNA, low-potassium stress, target genes, high-throughput sequencing

INTRODUCTION

Potassium is a key nutrient essential for the growth and development of plants (Maathuis, 2009),
with potassium ions (K+) being present at high levels within cells wherein they regulate osmotic
pressure and control the activation of key enzymes including those associated with photosynthesis
(Clarkson and Hanson, 1980), protein synthesis, stomatal closure (Chérel and Gaillard, 2019),
osmoregulation, phloem transport (Patrick et al., 2001), and a range of other processes (Leigh and
Wyn Jones, 1984). K+ is crucial for sucrose loading into the phloem (Deeken et al., 2002), and
K+-deficient sugarcane plants exhibit significantly impaired photosynthate exposure from leaves
relative to that observed in K+-sufficient plants (Hermans et al., 2006; Hawkesford, 2012). K+ has
also been highlighted as a key determinant of grapevine (Vitis vinifera) growth, yields, and resultant
wine quality (Mpelasoka et al., 2003). K+ also regulates the ability of plants to tolerate a range
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of abiotic stressors directly and indirectly (Zörb et al., 2014; Du
et al., 2019), including drought, salinity (Anschütz et al., 2014;
Shabala and Pottosin, 2014), and many others (Cakmak, 2005;
Li et al., 2011). High levels of K+ are conducive to appropriate
osmotic adjustments under low soil water potential conditions
by means of increasing cellular osmolyte concentration (Grzebisz
et al., 2013) and limiting stomatal water loss (Peiter, 2011).

The roots are the primary source of K+ uptake in plants
(Liu et al., 2020), but only a small proportion of the potassium
present within the soil is in the form of available K+, and
as such, K+ deficiency has become a major global threat to
sustainable agricultural planting efforts (Römheld and Kirkby,
2010; Wang and Wu, 2015; Ye Z. et al., 2020). It is therefore
vital that the genetics and regulation of plant low-K+ stress
responses be studied in detail to facilitate the development of
more K+-efficient crop cultivars.

MicroRNAs (miRNAs) are small RNA molecules (20–24 nt)
that lack coding potential and that are expressed across plant
species wherein they can facilitate the post-transcriptional
downregulation of target genes. In so doing, miRNAs can
function as important regulators of diverse physiological
processes including abiotic stressor responses (Jeong and Green,
2013; Zhang, 2015). In Arabidopsis, for example, miR393 is
robustly upregulated under cold, drought, NaCl, and ABA
treatment conditions, whereas these same four treatments
suppressed miR389a1 expression (Sunkar and Zhu, 2004). There
is also evidence that miR292 is upregulated under dehydration
conditions in a range of plants including Medicago truncatula
(Wang et al., 2011), common bean (Phaseolus vulgaris) (Arenas-
Huertero et al., 2009), and rice (Oryza sativa) (Zhao et al., 2007).
Many miRNAs exhibit stressor-specific expression profiles, such
as miR319, which is induced in response to cold stress but is
unaffected by exposure to NaCl or ABA (Sunkar and Zhu, 2004).

Certain miRNAs have been shown to be responsive to nutrient
deprivation (Paul et al., 2015), modulating N-deficiency (Liang
et al., 2012; Sinha et al., 2015), phosphate (Pi)-deficiency (Kuo
and Chiou, 2011; Du et al., 2018; Bao et al., 2019), magnesium-
deficiency (Liang et al., 2017), and K+-deficiency responses (Zeng
et al., 2019; Ye Z. et al., 2020). When Pi levels are low, for
example, miR399 undergoes upregulation mediated by the MYB
family transcription factor PHR1, whereupon the miR399 target
gene PHO2 is downregulated, facilitating enhanced Pi uptake
and translocation in Arabidopsis (Fujii et al., 2005; Aung et al.,
2006). Argonaute1 (AGO1) is an RNA splicing mediator that is
suppressed by miR-168 (Qi et al., 2005; Xian et al., 2014). When
exposed to low-K+ stress, tomato (Solanum lycopersicum) plants
exhibit the upregulation of SlmiR-168a and corresponding AGO1
downregulation that alters miRNA responses and bolsters K+
deficiency tolerance (Liu et al., 2020).

Sugarcane (Saccharum officinarum L.) is an economically
important crop that is harvested for consumption and as a major
source of sugar and bioenergy (Nonato et al., 2001). Available K+
levels, however, can severely limit sugar production (Zeng et al.,
2015). The advent of novel sequencing technologies has led to an
increasingly detailed understanding of plant molecular biology
(Varshney et al., 2009; Edwards and Batley, 2010), and such
plant transcriptomic sequencing offers an invaluable opportunity

to understand the molecular basis for gene expression patterns
in specific agricultural contexts (Wang et al., 2009). Prior
transcriptomic analyses of K+-deficient sugarcane plants have
been conducted (Zeng et al., 2015; Feng et al., 2020), but how
miRNAs regulate responses to K+ deficiency remains unclear.
Conducting analyses of the specific miRNA-mediated regulatory
mechanisms associated with low-K+ stress may provide valuable
opportunities to advance the sugarcane industry. To that end,
we herein chose Yuetang 55 (YT 55, also named as YT 99-
66), a low-K+ tolerance sugarcane cultivar (Huang et al., 2013),
and conducted a small RNA sequencing analysis of sugarcane
roots following low-K+ exposure, after which candidate miRNA
regulators of low-K+ responses were identified, and functional
analyses of the targets of these miRNAs were conducted to better
understand how sugarcane plants respond to K+ deficiency.

MATERIALS AND METHODS

Plant Materials and Treatment
The Yuetang 55 (YT55) sugarcane cultivar used in these
analyses was obtained from the Guangdong sugarcane Genetic
Improvement Engineering Center, Institute of Bioengineering,
Guangdong Academy of Sciences (Guangzhou, China), and the
new plant variety (Yueshentang 2009001) was provided by the
Department of Agriculture and Rural Affairs of Guangdong
Province. All YT55 plants were cut into single bud setts that
were sterilized using 5% carbendazim and germinated in quartz.
Hydroponic culture techniques were then used to grow seedlings
at 30◦C under natural light in a greenhouse. Seedlings were
cultured using modified Magnavaca’s solution (Zeng et al., 2015),
which was replaced weekly. Following a 2-week period, all plants
that had 8–10 adventitious roots were transferred to a low-K+
nutrient solution containing 0.1 mM KCl. Root samples from
three replicate plants were then isolated after 0, 6, 12, 24, 48, and
72 h, and were snap-frozen with liquid nitrogen prior to storage
at –80◦C.

Small RNA Sequencing
Trizol (Invitrogen, CA, United States) was used to extract total
RNA from triplicate root samples, after which an RNA Nano 6000
Assay Kit and an Agilent Bioanalyzer 2100 instrument (Agilent
Technologies, CA, United States) were used based on provided
directions to quantify RNA levels. Small RNAs (18–30 nt) were
then enriched via polyacrylamide gel electrophoresis (PAGE) and
collected. Following 3′ and 5′ end adaptor ligation, small RNAs
were reverse transcribed via PCR amplification, and those PCR
products between 140 and 160 bp in size were enriched to yield
a cDNA library. After quality assessment, these libraries were
sequenced using an Illumina HiSeq 2000 instrument.

Data Processing and Analysis
Raw RNA-seq data were cleaned prior to downstream analysis
by removing reads containing low-quality bases, 5′-adapters
and poly-A tails, and reads <18 nt long or that lacked a 3′
adapter and small RNA sequence fragments. Cleaned read data
have been deposited into the National Center for Biotechnology
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Information (NCBI) Sequence Read Archive (SRA) database
(accession number: PRJNA687913).

Cleaned reads were aligned to small RNAs in the GeneBank
database (Release 209.01), Rfam database (Release 14.32), and the
reference transcriptome (a novel YT55 PacBio transcriptome,
accession number: PRJNA688942). After this, we removed
sequences corresponding to snoRNAs (including rRNA, scRNA,
snoRNA, snRNA, and tRNA), as well as those that may have been
fragments generated via mRNA degradation or that mapped to
repeated sequences. Known miRNAs were those that were found
to be conserved across species, while the miRDeep2 software
was used to identify novel miRNA candidates based upon their
genomic positions and hairpin structures.

Differentially Expressed microRNA
Identification
All miRNA expression levels were assessed in the format of
transcripts per million (TPM) using the formula: TPM = Actual
miRNA counts/Total counts of clean tags × 106. Those miRNAs
that exhibited similar patterns of expression were clustered with
the Short Time-series Expression Miner (STEM) software, with a
P < 0.05 as the threshold for significance.

Differentially expressed miRNAs were identified with the
edgeR package3 based upon normalized read counts in different
samples. Those miRNAs with a fold change (FC) ≥ 2 and
P-value < 0.05 were considered to be DEMs.

Target mRNA Prediction and Functional
Analysis
In this study, the target genes of identified miRNAs were
predicted via both in silico and degradome sequencing, using
the single-molecule long-read transcriptome of YT55 as a
reference transcriptome. Target prediction was performed using
the Patmatch software (Version 1.24). To verify these potential
target mRNAs, one degradome library was constructed from
T24 roots of YT55 plants, and the sequencing and miRNA
target analyses were carried out as per methods detailed by
Ye Y. et al. (2020). The YT55 Pacbio transcriptome was used
as a reference for miRNA target cleavage site validation. The
cleaned degradome sequencing data have been deposited into
the NCBI SRA database together with the miRNA transcriptome
sequencing data (accession number: PRJNA687913). Functional
categorization and miRNA target gene pathway enrichment
analyses were conducted using the GO and KEGG databases in
order to identify key metabolic and signal transduction pathways
associated with these differentially expressed genes (DEGs).

qPCR-Based Validation of microRNAs
RNAiso Plus (TaKaRa) was used to isolate total RNA from
root samples based on provided instructions, after which qPCR
and stem-loop qPCR were used to validate miRNA and target

1https://www.ncbi.nlm.nih.gov/
2https://www.sanger.ac.uk/tool/rfam/
3http://bioconductor.org
4https://www.arabidopsis.org/cgi-bin/patmatch/nph-patmatch.pl

gene expression patterns using approaches previously detailed
by Varkonyi-Gasic et al. (2007) and Zhang N. et al. (2018).
Primers used for this analysis are compiled in Supplementary
Table 13. An ABI 7500 Fast Real-Time PCR instrument
was used for all analyses, with β-tubulin (Zeng et al., 2015)
serving as normalization controls for relative expression analyses.
The 2−11CT approach was used to quantify relative gene
expression levels.

Accession Numbers
Clean sugarcane YT55 miRNA transcriptome and degradome
sequencing data, as well as PacBio full-length transcriptome
sequencing data from the present study are available in the
NCBI Sequence Read Archive with the accession numbers
PRJNA687913 and PRJNA688942, respectively.

RESULTS

Small RNA Sequencing of Sugarcane
Roots
We began by conducting the high-throughput sequencing of
miRNAs identified in sugarcane roots exposed to low-K+ levels
(0.1 mM K+) for 0, 6, 12, 24, 48, and 72 h (termed samples
CK, T6, T12, T24, T48, and T72, respectively). A total of three
biological replicates were prepared per sample condition, and
these six respective samples yielded average raw read counts of
19,167,487, 24,564,586, 23,304,763, 17,754,932, 16,822,809, and
16,808,881, respectively. Following the removal of low-quality
reads and those that were under 18 nt or over 30 nt in length,
average clean read numbers obtained from these samples were
12,773,238, 11,484,108, 11,170,478, 11,474,947, 13,020,623, and
12,289,477, respectively. Statistical data pertaining to these 18
libraries are compiled in Supplementary Table 1.

Clean reads were aligned to small RNAs included in the
Rfam and Genebank databases using the Bowtie tools, after
which all ribosomal RNA (rRNA), transfer RNA (tRNA), small
nuclear RNA (snRNA), and small nucleolar RNA (snoRNA)
were removed, as were other non-coding RNA (ncRNA). For
further details regarding the miRNA identification process, see
Supplementary Table 1.

Known and Novel microRNA
Identification and Analyses
The identification of known and novel miRNAs within our
sequencing data was conducted using the Yuetang55 (YT55)
sugarcane cultivar PacBio full-length transcriptome dataset as
a reference source, enabling us to map 20,883,828 total reads
successfully. This led to the identification of 324 known
miRNAs (Supplementary Table 2) following the mapping
of these cleaned reads to the miRbase database, as well as
42 putative novel miRNAs which were predicted based on
the architectural features corresponding to unannotated small
RNA (sRNA) tags (Supplementary Table 3). Of the 324
known miRNAs, 265 were detected in all 18 root samples
(Figure 1A and Supplementary Table 4), while 28 of the novel
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FIGURE 1 | The distribution of miRNAs in six sugarcane root samples. (A) The distribution of the known miRNAs. (B) The distribution of the novel miRNAs. CK, T6,
T12, T24, T48, and T72 correspond to 0, 6, 12, 24, 48, and 72 h after low-K+ treatment, respectively.

miRNAs were present across all libraries (Figure 1B and
Supplementary Table 5).

Approximately 82% of these miRNAs were in the 21–
24 nt size range, with 21 nt being the most common
length (69.69%) (Figure 2). The most abundant nucleotide
among the putative miRNAs identified herein was 5′-uridine
(Supplementary Figure 1 and Supplementary Table 6).

Identification of microRNAs That Were
Differentially Expressed Under
Low-Potassium Conditions
Differentially expressed miRNAs (DEMs) that exhibited
expression pattern changes upon low-K+ treatment were next

FIGURE 2 | Statistics corresponding to identified miRNAs with different sizes
in sugarcane roots.

identified. A total of 36 DEMs were defined via this approach
(Figure 3 and Supplementary Table 7).

A Short Time-series Expression Miner (STEM) cluster
analysis was performed to assess the temporal dynamics of
miRNA expression following exposure to low-K+ conditions,
resulting in all DEMs being grouped into 13 clusters (Figure 4,
Supplementary Figure 1, Supplementary Table 8). Those
miRNAs in clusters 17 and 19 were induced by low-K+ treatment,
whereas those in clusters 0 and 2 were inhibited under these
conditions. The miRNAs in cluster 19 exhibited time-dependent
increases in expression under low-K+ conditions, whereas the
opposite trend was observed for miRNAs in cluster 0. Other
clusters did not exhibit consistent trends in expression patterns
over time following exposure to low K+ levels. As such, we infer
that miRNAs in different clusters play distinct roles in regulating
sugarcane root responses to K+ deficiency.

FIGURE 3 | Statistics corresponding to miRNAs differentially expressed
between two samples. CK, T6, T12, T24, T48, and T72 correspond to 0, 6,
12, 24, 48, and 72 h after low-K+ treatment, respectively.
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FIGURE 4 | Significant expression trend profiles (with the cut-off criteria of p ≤ 0.05) for DEMs in sugarcane roots after low-K+ treatment. The x-axis represents time
after low-K+ treatment, from 0 to 72 h. The y-axis corresponds to log2 fold changes in miRNA expression.

Identification and Functional Enrichment
Analysis of Differentially Expressed
miRNA Putative Target Genes
To better understand the functional importance of these DEMs,
we predicted and verified their corresponding target genes based
upon the YT55 reference transcriptomic dataset. A total of
18,314,716 raw reads representing 7,825,545 unique raw reads
were generated from the degradome sample. After removing the
reads lacking adaptors and short reads (<15 nt after removing 3′
adaptors), 7,787,991 unique reads (99.52% of all unique reads)
were successfully mapped to 19,621 unigenes (96.71% of all
20,288 reference transcripts). The 6,573 miRNA cleavage sites
were represented as target plots (T-plots) corresponding to 51,
35, 2,078, 800, and 3,609 miRNA-target pairs in categories 0, 1,
2, 3, and 4, respectively (Supplementary Table 9), including 705
genes targeted by 36 DEMs (Supplementary Table 10). Among
the target genes of DEMs, PB.7532.1 and PB.7964.1, two targets
of miR1848-z, were identified as putative voltage-gated potassium
channel subunit beta genes likely to be directly involved in the
absorption and transport of K+.

GO and KEGG enrichment analyses of all DEMs were
then used to classify the roles of these putative target genes
under low-K+ conditions. GO analyses revealed these DEM
targets to be associated with diverse biological processes,
cellular components, and molecular functions (Figure 5 and
Supplementary Table 11). The majority of these targets
were associated with metabolic, cellular, and single-organism
biological processes, binding functions, catalytic activity, and
with cell and organelle compartments.

KEGG pathway analyses revealed these predicted DEM
targets to be associated with 15 significantly enriched pathways
(p < 0.05). The majority of these targets were associated with
metabolism, genetic information processing, environmental
information processing, and cellular processes. Targets
associated with metabolism pathways were enriched in the
global and overview maps, carbohydrate metabolism, and
amino acid metabolism. Moreover, lipid metabolism was
also enriched (Figure 6 and Supplementary Table 12). The

plant hormone and mitogen-activated protein kinase (MAPK)
signal transduction pathways involved in plant responses to
environmental changes were also significantly enriched for these
target genes (Supplementary Table 12).

Validation of Differentially Expressed
miRNAs Associated With Sugarcane
Responses to Low-K+ Conditions
We observed the significant differential expression of 36 DEMs
in roots in response to low-K+ treatment over time relative to
control samples (S0, Figure 7A). Regulatory targets for these
DEMswere identified based upon the abundance of mature
miRNAs. To validate our small RNA sequencing results, we
performed stem-loop qPCR to evaluate the expression patterns of
8 of these 36 DEMs with high count rates (Figure 7B), revealing
results largely consistent with those from our sequencing
analyses. For example, miR397-x exhibited peak expression levels
at 72 h following low-K+ treatment, with a secondary peak at
12 h. Similarly, miR528 was expressed at the lowest levels during
the early stage of treatment and maximally expressed at 72 h.
However, there were some differences between stem-loop RT-
qPCR and sequencing results. In accordance with the sequencing
results, an expression peak corresponding to miR7741-y and
miR1848-z was evident at 12 h after exposure to low-K+
conditions, although a second expression peak corresponding to
these two DEMs was observed at 72 h via stem-loop RT-qPCR.
These differential miRNA expression patterns may suggest that
they play distinct time-dependent roles in controlling sugarcane
root low-K+ stress responses.

DISCUSSION

Levels of K+ are one of the primary determinants of plant
growth, development, and stress responses such that they are
generally maintained at a stable concentration within plant
cells (White, 2013; Demidchik, 2014; Zörb et al., 2014; Shabala,
2017). Soil deficient in available K+, however, has become
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FIGURE 5 | Gene ontology (GO) analysis of the predicted targets of differentially expressed miRNAs and most abundant biological process (red), cellular component
(green), and molecular function (blue) GO terms.

an increasingly serious threat to global agricultural production
efforts (Römheld and Kirkby, 2010; Wang and Wu, 2015;
Liu et al., 2020). In plants, low-K+ stress was reported to
impair photosynthesis (Trankner et al., 2018), growth (Hafsi
et al., 2017), and tolerance to saline conditions (Hafsi et al.,
2017). K+ deficiency can also increase JA concentrations (Cao
et al., 2006; Armengaud et al., 2010), in addition to altering
hormone signaling pathways including the gibberellin (GA),
auxin, and abscisic acid (ABA) pathways (Hetherington, 2018).
These changes likely coincide with altered miRNA expression.
Prior research efforts have clarified those miRNAs that govern
responses to low-K+ stress in tomatoes (Liu et al., 2020),
foxtail millet (Cao et al., 2019), barley (Zeng et al., 2019;
Ye Z. et al., 2020), and wheat (Thornburg et al., 2020).
Sugarcane is not only a sweet tropical fruit but also a critical
crop for sugar and bioenergy production efforts, in addition
to being a “K+-favoring” crop such that low K+ levels will
impair sugar accumulation, crop yield, and stress responses
in affected plants (Nonato et al., 2001). Previous studies have
clarified the physiological and biochemical processes (Zeng et al.,
2019), comparative transcriptomic changes (Zeng et al., 2015),
and high-affinity K+ transporters (HAKs) (Feng et al., 2020)
associated with sugarcane responses to low-K+ stress. How
miRNAs influence these responses, however, remains to be
clarified, and transcriptomic analyses of changes in sugarcane
miRNA expression profiles under low-K+ stress conditions may

aid in the breeding of sugarcane cultivars able to tolerate
K+ deficiency.

To detect miRNAs involved in sugarcane responses to K+
deficiency, we collected sugarcane root samples at a range of time
points and conducted a transcriptomic analysis of the miRNAs
identified therein. A length analysis revealed the majority of
miRNAs in these samples to be 21 nt long, followed by 20 and
24 nt. In Arabidopsis (Jatan et al., 2020), hot pepper (Capsicum
annuum) (Hwang et al., 2013), and trifoliate orange (Citrus
trifoliata) (Song et al., 2010), most miRNAs have been reported to
be 24 nt in length, whereas in sugarcane these miRNAs have been
reported to be 21 nt (Ferreira et al., 2012) or 24 nt long (Li et al.,
2017). Overall, the abundance of miRNAs of different lengths was
attributed to differences in underlying physiological conditions.

Modern sugarcane cultivars are interspecific hybrids, with
only 10–15% of their chromosomal content being derived from
S. spontaneum (Zhang J. et al., 2018). As such, rather than
utilizing the S. spontaneum genome as a reference source for
miRNA identification, we instead utilized PacBio full-length
transcriptomic data, leading to the detection of 324 and 43
known and novel miRNAs in our sugarcane root samples,
respectively. Of these, 36 miRNAs were found to be differentially
expressed as a function of time following low-K+ treatment
(Figure 2). More DEMs were downregulated than upregulated
at all time points following low-K+ exposure other than 6 h.
To better understand the temporal dynamics of such DEM
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FIGURE 6 | Low-K+ treatment-responsive differentially expressed miRNAs in terpenoid biosynthesis-related KEGG pathways.

expression, a time-series analysis that grouped these miRNAs into
13 clusters was performed (Figure 4, Supplementary Figure 2,
Supplementary Table 8). The miRNAs in clusters 0 and 19 were
opposites of one another with respect to their expression patterns,
as were those in clusters 1 and 18. This suggests that these
miRNAs may play divergent roles in regulating low-K+ stress
responses. A target analysis revealed that the targets of miRNAs
in cluster 19 may be involved in plant responses to oxidative
stress, including targets such as PB.10073.1 (Fujibe et al., 2006),
PB.2586.1 (Overmyer et al., 2000), and PB.11689.1 (identified
as peroxidase 5), which were identified as respective targets of
miR408-y, miR528-x, and miR397-z. In addition, several targets

of miRNAs in cluster 0 were associated with plant hormone
pathways, including PB.5129.1 (Wang et al., 2000; Uraji et al.,
2012) and PB.797.2 (Feng et al., 2003), both of which were targets
of miR156-z (Figure 4 and Supplementary Tables 8, 10).

Comparative analyses of DEM expression patterns revealed
some differences between sequencing and stem-loop RT-qPCR
results. Certain DEMs including miR397-x, miR7720-x, miR528-
x, miR156-z/x, and miR5054-z exhibited similar expression
patterns in these two datasets but with expression peaks
appearing at different points. However, the relative expression
of miR7741-y and miR1848-z in the T48 and T72 samples
analyzed by stem-loop RT-qPCR differed from that observed in
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FIGURE 7 | Validation of 8 differentially expressed miRNAs (DEMs) in sugarcane roots under low-K+ treatment by stem-loop RT-qPCR. (A) Heatmap of the relative
expression levels of all 36 DEMs. (B) Relative expression levels of 8 DEMs detected by stem-loop RT-qPCR.

the heatmap. This difference may be due to the differences in the
algorithms employed by these two methods (Zou et al., 2020).

From a functional perspective, miRNAs can suppress target
gene expression via RNA-induced silencing complex (RISC)-
mediated translational repression and mRNA degradation
(Bartel, 2004; He and Hannon, 2004; Jatan et al., 2020). In
total, 705 putative targets of these 36 DEMs were identified. GO
analyses suggested that these DEMs were involved in a range
of sugarcane responses to low-K+ stress, and these results were
consistent with differentially expressed genes (DEGs) previously
reported by Zeng et al. (2015), with the exception of the
“single-organism process” GO term being significantly enriched
specifically in the present study. Identified genes associated
with metabolic processes may also critically regulate low-K+

stress responses. Interestingly, targets of miR5054-z (PB.750.2,
PB.58.1, PB.1452.1, PB.6875.1, and PB.1935.1), novel-m0021-
5p (PB.13335.2), and miR7767-x (PB.4032.1) were identified
as aquaporins, tonoplast intrinsic proteins (TIPs), and plasma
membrane intrinsic proteins (PIPs), which are involved in water
transport and the utilization of various physiological substrates
(Weig et al., 1997; Ma et al., 2004; Groszmann et al., 2017;
Supplementary Tables 8, 10). Aquaporins are also likely involved
in plant responses to low-K+ stress.

Herein, we utilized the KEGG database to map the biological
pathways associated with these target genes. Most of the target
genes were enriched in amino acid, carbohydrate, and lipid
metabolism pathways, highlighting the importance of these
major nutrients in plant responses to low-K+ stress. The
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results also revealed 21 total targets associated with signal
transduction pathways. Of these, 14 were associated with the
MAPK signaling pathway and 10 were associated with plant
hormone signaling (Supplementary Table 12). Plant hormones
are essential regulators of plant responses to a range of stressors.
Under low-K+ conditions, signaling pathways associated with
phytohormones, reactive oxygen species (ROS) production, and
Ca2+ can be activated (Kim et al., 2010; Wang et al., 2018).
Ethylene, for example, has previously been shown to induce
ROS generation and to thereby control plant low-K+ stress
responses by modulating early signal transduction activity (Kim
et al., 2010). Therefore, we speculated that the changes in the
ROS, Ca2+, MAPK, and phytohormone signaling pathways in
sugarcane plants under low-K+ stress can result in changes in
DEM expression. The MAPK pathway signaling is conserved in
both plants and animals, and can be activated under a range
of stress conditions, in addition to being engaged by secondary
messengers including Ca2+ and ROS (Jalmi and Sinha, 2015).
Such MAPK signaling is closely associated with responses to
pathogens (Gong et al., 2019), temperature stress, heavy metals,
wounding (Zhou et al., 2009), and drought (Smekalova et al.,
2014). Few studies have specifically explored the role of MAPK
signaling in the context of nutrient stress, suggesting that this is
a valuable avenue for future research. Herein, we found miR397
to be upregulated under low-K+ conditions. This miRNA has
previously been linked to the regulation of plant tolerance to
salinity and drought stress via the regulation of laccase expression
(Cho et al., 2014; Gupta et al., 2014). In order to ensure normal
enzymatic functionality, it is essential that plants maintain a
high cytosolic K+-to-Na+ ratio (Shabala and Cuin, 2008). Patel
et al. (2019) determined that miR397 is upregulated in banana
leaves and roots under copper deficiency conditions and is
downregulated following treatment with NaCl. Copper ions serve
as important enzyme cofactors (Ravet and Pilon, 2013), and
the overexpression of this miRNA in bananas failed to interfere
with Cu deficiency or NaCl stress tolerance (Patel et al., 2019).
Furthermore, miR156 (Liu et al., 2008; Jerome et al., 2020) and
miR171 (Hwang et al., 2011), which have previously been linked
to plant abiotic stress responses, were also differentially expressed
in response to low-K+ treatment (Supplementary Table 6). This
suggests that many different miRNAs may play important roles
in controlling growth and tolerance for different biotic stressors.

Na+/K+ homeostasis in the cytosol is crucial for plant growth
(Almeida et al., 2017). High salinity always leads to the K+
deficiency in plants (Nieves-Cordones et al., 2014; Zhang et al.,
2019), and such K+ deficiency also increases the deleterious
effects of salt stress (Hafsi et al., 2017). In this study, we found that
there are overlapping points in plant responses to low-K+ and
salt stress. Much like DEMs in sugarcane associated with low-K+
conditions, targets of DEMs under salt stress were predicted to
be involved in catalytic activity (Figure 5; De Paola et al., 2012).
MAPK signaling was reported to be involved in plant response
to salt stress. Expression of AtMPK1, AtMPK2, and AtMKK3 was
induced by salt stress, and the overexpression of AtMKK3 can
enhance the salinity tolerance of Arabidopsis (Hwa and Yang,
2008). The KEGG pathway analysis in this study revealed that
14 targets of DEMs were enriched in MAPK signal transduction

pathways (Supplementary Table 12). In conclusion, plant genes
are involved in MAPK signal transduction pathways, and
responses to oxidative stress may be co-regulated under both
conditions of K+ deficiency and Na+ application. The miR156
family is conserved in plants (Aung et al., 2015) and plays critical
roles in various biological processes, including developmental
regulation and responses to stressors (Jerome et al., 2020).
Overexpression of miR156 results in a delay of phase transition
and flowering (Fu et al., 2012; Shikata et al., 2012), as well as
an increase in biomass (Gao et al., 2016). Expression of miR156
can be induced by drought stress (Bertolini et al., 2013), and
overexpression of miR156 was found to enhance plant tolerance
to salt and drought stress (Cui et al., 2014). In this study, we found
that the expression of miR156-z/x in sugarcane was induced by
low-K+ stress. miR156 was reported to be involved in plant root
development and branching (Xie et al., 2012; Yu et al., 2015).
Plants overexpressing miR156 also exhibited more lateral roots,
with this likely being attributable to increased K+ uptake by
plants as a consequence of the upregulation of miR156 and an
increase in lateral roots under K+ deficient conditions.

MiR171 is also involved in plant responses to low-K+
stress. Expression of miR171 in wheat (Triticum aestivum L.)
was significantly upregulated by low-K+ treatment for 4 days
(Thornburg et al., 2020). After a 7-day low-K+ treatment period,
the expression of miR171 was lower in low-K+ tolerant Tibetan
wild barley (Hordeum vulgare L.) cultivar XZ153 relative to the
sensitive ZD9 cultivar. miR171 targets and downregulates the
expression of methylthioribose kinase 1 (MTK), which is one
of the key enzymes involved in the ethylene (ET) biosynthesis
process (Ye Z. et al., 2020). As a crucial phytohormone and
signaling molecule in the context of plant responses to low-
K+ stress, ET production must be appropriately regulated (Jung
et al., 2009). Results in this study revealed that the expression
of miR171 in sugarcane root was initially decreased by the
low-K+ treatment, after which it increased from 48 to 72 h.
Overall, we speculate that the downregulation of miR171 during
the early stages of low-K+ treatment may facilitate signaling
through the ET pathway such that upregulating miR171 is
essential for maintaining the normal growth of plants under
low-K+ conditions.

Owing to the lack of a high-quality reference genome,
the Pacbio full-length transcriptome results were used as a
reference in this study. However, missing information pertaining
to intergenic regions hampered the underlying data analyses,
particularly with respect to novel miRNA identification and
target prediction. In addition, all of our results were obtained
based on transcriptomic data and remain to be experimentally
verified. Overall, more research must be done to investigate the
regulatory mechanisms whereby miRNAs control plant responses
to low-K+ stress.

miRNAs involved in sugarcane responses to low-K+ stress
were identified through a comprehensive analysis of patterns of
miRNA expression in sugarcane roots exposed to low-K+ stress
conditions. We found that both miR156-z/x and miR171-x may
play crucial roles in these responses by, respectively, inducing
more lateral root formation and by regulating ethylene synthesis.
GO and KEGG-based annotation and functional enrichment

Frontiers in Plant Science | www.frontiersin.org 9 January 2022 | Volume 12 | Article 750805

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-750805 December 23, 2021 Time: 14:1 # 10

Zhang et al. Sugarcane Response to Low-Potassium Stress

analysis suggested that the predicted miRNA targets participate
in many pathways. Notably, both MAPK signaling and plant
hormone signal transduction serve as critical regulators of
plant low-K+ stress responses. Future analyses, however, will
be necessary to confirm and expand upon these findings. The
miRNAs identified herein and associated functional analyses
highlight a new direction for the investigation of plant responses
to low-K+ stress and the breeding of low-K+ tolerant crops.
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