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Hazelnut has gained economic value in China in recent years, but its large-scale
planting and research started later than other countries. Conducting basic research
on hazelnut trees requires studying their related microorganisms. Here, we used high-
throughput DNA sequencing to quantify the fungal communities in the root endospheres
and rhizosphere soil of four hazelnut species. Fungal diversity in the rhizosphere soil
was significantly higher than that in the root endospheres. Rhizosphere soil had more
Mortierellomycota, and the fungal community compositions differed among the four
hazelnut species. The root endospheres, especially those of the Ping’ou (Corylus
heterophylla × Corylus avellana) trees, contained more ectomycorrhizal fungi. The co-
occurrence networks in the rhizosphere soil were more sophisticated and stable than
those in the root endospheres, even when the root endospheres had higher modularity,
because the structural differentiation of the root endospheres differed from that of the
rhizosphere soil. Two-factor correlation network analysis and linear regression analysis
showed that the total organic carbon was the main environmental factor affecting
the fungal communities. Our study revealed the community compositions, functional
predictions, and co-occurrence network structural characteristics of fungi in hazelnut
root endospheres and rhizosphere soil. We also examined the potential keystone
taxa, and analyzed the environmental factors of the dominant fungal community
compositions. This study provides guidance for the growth of hazelnut and the
management of hazelnut garden, and provides an insight for future development of
fungal inoculants to be used in hazelnut root.

Keywords: hazelnut, fungal community, co-occurrence network, roots, surrounding soil

INTRODUCTION

Hazelnut trees are one of four nut trees in the worldwide that provide nuts with high nutritional
and economic value. Turkey is a major producer of hazelnuts, its hazelnuts are mainly Corylus
avellana. China’s hazelnut industry started in the early 1980s, with the cross-breeding of Corylus
heterophylla and C. avellana, and new varieties were cultivated until the early 21st century. In 2016,
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the planting area of C. heterophylla × C. avellana reached
over 50,000 ha and continues to increase rapidly (Wang, 2018;
Wang et al., 2018). China is an important origin of Corylus,
with eight native species which are widely distributed in 22
provinces (municipalities and autonomous regions) in northeast,
north, northwest and southwest China, with C. heterophylla
and Corylus kweichowensis being the most widely distributed
(Zhang et al., 2005).

Fungi are an indispensable part of the microbial system
and played an important role in ecosystems (Van der Wal
et al., 2013; Ning et al., 2020). The research on rhizosphere
microorganisms is one of the frontier and hot spots in plant
science research in recent years. Studies have shown that
rhizosphere microbial community played a significant role in
determining the growth and health of plants in soil-plant system
(Liu et al., 2019). In the soil, the root system of plants is
not only an organ for fixing plants and absorbing water and
nutrients, but also a place for microorganisms to gather, inhabit
and multiply. These root microorganisms accompany the whole
growth cycle of plants, and help them to absorb nutrients, resist
diseases, and adapt to stress environment (Oldroyd et al., 2011;
Bulgarelli et al., 2013; Santhanam et al., 2015; Mbodj et al.,
2018). In addition, rhizosphere microorganisms can compete
with host plants for nutrients in soil, or attack plants as
pathogenic microorganisms (Berendsen et al., 2012). Endophytic
microorganisms can colonize plant species without causing any
diseases (Petrini, 1991). Previous studies have explored the
community composition of rhizosphere microorganisms and
root endophytes in Mussaenda kwangtungensis, Cacti, bean, and
poplar, which provided a way to understand the relationship
between soil and plants (Fonseca-García et al., 2016; Beckers
et al., 2017; Qian et al., 2019; da Silva et al., 2020). Exploring
the relationship between plants and the microorganisms in their
environment can increase the understanding and utilization
of these microorganisms, which is helpful to improve the
productivity and economic value of plants (Waller et al., 2005).
Previous studies on hazelnut microorganisms mainly focused on
using ectomycorrhiza to promote hazelnut growth (Román et al.,
2006; Wedén et al., 2009; Santelices and Palfner, 2010; Benucci
et al., 2012), however, there are few reports on the composition of
microbial community and the relationship of root endospheres
and rhizosphere microorganisms in hazelnut species. The study
on fungi in root endospheres and rhizosphere soil is helpful
to understand the interaction between rhizosphere fungi and
plants, and to screen potential growth-promoting fungi which are
beneficial to plant growth.

Proulx et al. (2005) first put forth the idea of co-occurrence
and networks in ecology, and these terms are widely used in
soil and plant microbial ecology. Although network analysis
has some problems (Faust and Raes, 2012), it is important for
revealing interactions among microbial community members,
the symbiotic modes of microorganisms in plants and soil,
and the responses of microbial communities to environmental
changes that cannot be determined by conventional microbial
community analysis (Barberán et al., 2012; de Vries et al., 2018;
Fan et al., 2018; Banerjee et al., 2019; Qian et al., 2019; Tu et al.,
2020). Studies have shown that the disturbance of protective

microorganisms in rhizosphere can promote the occurrence of
diseases, stable and complex microbial community plays an
important role in plants under drought and other stresses (Lee
et al., 2020; Gargouri et al., 2021). The network of a healthy tree
may need to be stable to maintain protective effects. Additionally,
microbial networks exhibit modularity, an important ecological
concept. Network modularity refers to the degree to which
species interactions are organized into modules. Modularity can
reflect the heterogeneity of habits and the selective mechanisms
of differentiation (Olesen et al., 2007). Deng et al. (2012) used
several methods to define modules and submodules within a large
module and considered that the greedy modularity optimization
approach better identified the submodular structure of molecular
ecological networks in microbial communities. Module hubs
and connectors are keystone taxa in a network, which are
highly related taxonomic groups according the greedy modularity
optimization approach. Keystone species play a unique and key
role in the microbial community. Their removal will change the
structure and function of the microbial community, and then
affect the ecology of its ecosystem (Bardgett and Van Der Putten,
2014; Fierer, 2017; Banerjee et al., 2018).

Here, we studied the compositions of fungal community, and
revealed the differences of fungal functions between the root
endospheres and rhizosphere soil of four hazelnut tree species.
We also evaluated the stability of the fungal co-occurrence
network and explored the potential keystone taxa in the root
endospheres and rhizosphere soil. Finally, we explored the
dominant environmental factors influencing fungal community
formation. This study may provide theoretical guidance for
hazelnut growth, managing hazelnut garden, and provides an
insight for future development of fungal inoculants to be used
in hazelnut root.

MATERIALS AND METHODS

Study Area and Sampling
The study area was located in the experimental station of Yanqing
District, Beijing, China. The annual average temperature is 8◦C
and daylight lasts 2800 h annually. According to a wet-sieving
fractionation method first described by Cambardella and Elliott
(1993), the macroaggregates (>0.25 mm), free microaggregates
(0.25–0.053 mm) and non-aggregated silt + clay fractions
(<0.053 mm) were obtained. The percentages of macroaggregates
(>0.25 mm) free microaggregates (0.25–0.053 mm) and non-
aggregated silt + clay fractions (<0.053 mm) were 28.04, 26.75,
and 45.21%. C. heterophylla (PZ), C. kweichowensis (CZ), Corylus
avellane (OZ), and C. heterophylla×C. avellane (ZJ) were planted
in 2014 in the same growth state, then managed in the same way
every year. Row spacing for each tree was 1.5 m × 2 m. Three
randomly arranged plots of 10 m × 10 m were constructed for
each species in April of 2019. We used sterile gloves for sampling.
The roots of Corylus are relatively developed, so in order to
keep the original living state of microorganisms in the roots and
rhizosphere soil, we took back the roots and the surrounding soil
together. When sampling, we used shovels and scissors treated
with 70% ethanol. Soil and roots of six trees in four directions
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were taken from each plot. To avoid cross infection, spades and
scissors were disinfected before sampling in each direction. The
soil and roots of the six trees obtained were taken as a repetition,
and three such samples were taken for each species. After all
samples were refrigerated and transported to the laboratory as
soon as possible, the soil attached to the root was shaken off,
and the remaining soil that remained closely attached to the
root was called rhizosphere soil (Fan et al., 2018). The shaken
soil was screened using a 2-mm sieve to determine the physical
and chemical properties of the soil, and the root samples were
placed into 50 mL sterile tube, and 10 mm phosphate buffered
saline (PBS) buffer (130 mM NaCl, 7 mM Na2HPO4, 3 mM
NaH2PO4, and pH 7.4), shake washing twice, taking out the roots,
putting them into a 50 mL sterile tube, adding 10 mM PBS,
washing for 10 min by ultrasonic wave (160W, 30/30 s), finally
collecting the buffer solution of three times, centrifuging 13,000 g
for 10 min, and collecting the precipitate. The washed roots were
washed with sterile water, then soaked in 70% ethanol for 2 min,
then soaked in 2.5% NaClO for 5 min, then transferred to 70%
sterile ethanol for 30 s, and finally the roots were washed with
sterile water for three times. To verify the effectiveness of surface
disinfection, roots were placed in a Petri dish containing maltose
(MEA, 2%) and cultured in the dark at 25◦C for 48 h to check the
appearance of colonies.

Soil Physicochemical Properties
The soil pH was measured by pH meter (Mettler-Toledo, S40
SevenMultiTM, Greifensee, Switzerland) with a 2.5:1 ratio of
water to soil (Qian et al., 2015). The soil water content (SWC) was
determined as described by the Institute of Soil Science Chinese
Academy of Sciences (1978). The total organic carbon (TOC)
content was determined via the K2CrO4 oxidation method,
the total nitrogen (TN) content was measured by the Kjeldahl
method, and the total phosphorus (TP) content was measured
via the NaOH alkali fusion-atomic absorption method. Available
phosphorus (AP) was determined using the Olsen method,
and available potassium (AK) was measured using a flame
photometer after NH4OAc extraction (Qian et al., 2014).

DNA Extraction and Sequencing
Microbial DNA was extracted from the samples using
the E.Z.N.A. R© Soil DNA Kit (Omega Bio-tek, Norcross,
GA, United States) per the manufacturer’s instructions.
The ITS sequence was amplified with the primers ITS1F
(5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R (5′-
GCTGCGTTCTTCATCGATGC-3′) (Bulgarelli et al., 2015).
PCRs were performed in triplicate in 20-µL reactions containing
4 µL of 5 × FastPfu Buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL
each primer (5 µM), 0.4 µL FastPfu Polymerase, and 10 ng
template DNA. The amplification process consisted of an initial
denaturation at 95◦C for 2 min, followed by 25 cycles at 95◦C
for 30 s, 55◦C for 30 s, and 72◦C for 30 s, and a final extension
at 72◦C for 5 min. Amplicons were extracted from 2% agarose
gels and purified using the AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, United States) according
to the manufacturer’s instructions and were quantified using
QuantiFluorTM-ST (Promega, United States). The NEXTflexTM

Rapid DNA-Seq Kit (Bioo Scientific, United States) was used
to build the database. The steps of building the database are
divided into four steps: (1) linker linking; (2) using magnetic
beads to screen and remove the linker self-connected fragments;
(3) enriching the library template by PCR amplification; and
(4) recovering PCR products by magnetic beads to obtain a
final library. Sequencing was carried out by using Miseq PE300
platform of Illumina Company. The fastp software (version
0.20.01) was used for quality control of the original sequencing
sequence, and the FLASH software (version 1.2.72) was used for
splicing. According to the similarity of 97%, UPARSE (version
7.13) was used to check chimera sequences. The taxonomy
of each operational taxonomic unit (OTU) representative
sequence was analyzed by RDP Classifier version 2.2 against
the ITS database (unite 8.0) using confidence threshold of 0.7.
Rarefaction was used to calculate diversity indices of data.
All sequence data were deposited in the NCBI Sequence Read
Archive (SRA) database under accession number SRP323811 and
BioProject ID PRJNA737048.

Statistical Analyses
Homogenization is carried out according to the minimum
number of sample sequences to keep the number of all sample
sequences consistent. Statistical analyses of the OTU richness,
Shannon diversity, evenness, and good’s coverage indexes were
performed in Mothur (version 1.30.1). To assess the significance
of the differences in fungal diversity in the root endospheres and
rhizosphere soil, Wilcoxon rank-sum test, and Kruskal-Wallis H
test were performed using the “stats” package in R (version 3.3.1)
to conduct two groups of difference tests (Figures 2C, D) and
multiple groups of difference tests (Supplementary Figure 2),
respectively. Principal co-ordinates analysis based on Bray–
Curtis-faith distance algorithm was used to analyze the difference
of fungal composition between root endospheres and rhizosphere
soil. Adonis analysis was performed using the “vegan” package in
R (version 3.3.1) to analyze the explanatory degree of different
grouping factors to the differences of samples, and substitution
test was used to analyze the statistical significance of the division.
Fungal community functions were classified and analyzed using
FUNGuild.4 The fungi in the analysis were the species that
belong to a single guild (Zhou et al., 2020). Trophic mode
were divided into three types: pathotroph, symbiotroph, and
saprotroph. To reduce complexity, only abundant OTUs with
total read proportions >0.005% were used in the OTU table (He
et al., 2017), and the co-occurrence networks were made by Gephi
(version 0.9.25). The greedy modular optimization method was
used to detect modules (Deng et al., 2012). Node attributes of
the topology were divided into four types based on their within-
module (Zi) and among-module (Pi) connectivity values: module
hubs (center point of the module, nodes with high connectivity
inside the module, Zi > 2.5 and Pi < 0.62), connectors

1https://github.com/OpenGene/fastp
2http://www.cbcb.umd.edu/software/flash
3http://drive5.com/uparse/
4http://www.funguild.org/
5https://gephi.org/users/download/
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FIGURE 1 | Fungal composition of the rhizosphere soil (T) and root endospheres (G) of hazelnut species: relative abundances of soil fungal community structure at
the phyla (A) and class (B) levels; Venn diagram of core OTUs among each of hazelnut species (C–E).

(connecting nodes, nodes with high connectivity between two
modules, Zi < 2.5 and Pi > 0.62), network connectors (network
center points, nodes with high connectivity in the whole network,
Zi > 2.5 and Pi > 0.62) and Peripherals (peripheral nodes, nodes
without high connectivity within and between modules, Zi < 2.5
and Pi < 0.62). Module hubs, connectors and network connectors
were classified as key nodes (Guimerà and Amaral, 2005; Olesen
et al., 2007; Deng et al., 2012).

RESULTS

Fungal Community Diversity,
Compositions, and Function
The dominant fungal phyla in the root endospheres were
Ascomycota (77.55%) and Basidiomycota (22.17%), and the
dominant fungal phyla in the rhizosphere soil were Ascomycota
(61.08%), Basidiomycota (22.24%), and Mortierellomycota
(15.02%). The dominant fungi in the root endospheres
were Pezizomycetes (32.81%), Agaricomycetes (18.95%),
and Dothideomycetes (17.63%), and the dominant fungi
in the rhizosphere soil were Sordariomycetes (43.42%),

Tremellomycetes (15.24%), and Mortierellomycetes (14.99%)
(Figure 1A). The percentages of Agaricomycetes in the PZ
and CZ root endospheres were 26.15 and 37.86%, respectively.
Dothideomycetes (55.11%) was the most abundant in the
OZ root endospheres, and Pezizomycetes (75.99%) was the
most abundant in the ZJ root endospheres (Figure 1B). Tuber
content in roots of all hazelnut species were higher than that
in rhizosphere soil (Supplementary Figure 1). All samples
contained 47 common OTUs, and the rhizosphere of each
hazelnut species contained significantly more fungal OTUs than
did the root endospheres (Figures 1C,D). The common OTUs of
root endospheres and rhizosphere soil were 190 for PZ, 153 for
CZ, 144 for OZ, and 148 for ZJ (Figure 1E). The Shannon and
richness indexes showed that the fungal diversity in each sample
was significantly higher in the rhizosphere soil than in the root
endospheres. The coverage indexes for all samples exceeded 99%
(Supplementary Table 1).

Principal co-ordinates analysis (PCoA) showed that fungi in
the root endospheres and rhizosphere soil could be significantly
separated at the phylum and class levels, and that PC1 and PC2
could explain 92.07 and 60.85% of the differences, respectively
(Figures 2A,B). Wilcoxon rank-sum tests showed that the
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FIGURE 2 | Principal co-ordinates analysis of the rhizosphere soil (T) and root endospheres (G) at the phyla level (A) and class level (B); extended error bar plot
showing the fifteen most abundant phyla and classes that had significant differences between root endospheres and rhizosphere soil (C,D). Positive differences in
mean relative abundance indicate phyla or classes overrepresented on the root endospheres (G), while negative differences indicate phyla or classes greater
abundance in the rhizosphere soil (T). *P < 0.05; **P < 0.01; ***P < 0.001.

relative content of fungi in the top 15 phyla of soil in rhizosphere
was higher than that in root endospheres except ascomycetes.
Mortierellomycota, unclassified_k_Fungi, Rozellomycota,
Zoopagomycota, Chytridiomycota, Olpidiomycota, and
Blastocladiomycota levels in the rhizosphere soil were
significantly higher than those in the root endospheres. At the
class level, Pezizomycetes was significantly higher than in their
rhizosphere soil, whereas Sordariomycetes, Tremellomycetes,
Mortierellomycetes, Eurotiomycetes, unclassified_k_Fungi,
unclassified_p_Rozellomycota, unclassified_p_Ascomycota,
Zoopagomycetes, and unclassified_p_Chytridiomycota were
significantly higher in the rhizosphere soil than in the root
endospheres. However, the root endospheres and rhizosphere
soil did not significantly differ between each hazelnut species
in phylum and class levels (Supplementary Figure 2). Adonis
analysis showed that the explanatory degree of the plant
compartments group (root endospheres and rhizosphere soil)
factor to the sample difference is 0.212 (phylum) and 0.407
(class), and the explanatory degree of the species group (four
hazelnut species) factor to the sample difference is 0.523

(phylum) and 0.710 (class). P-value were all less than 0.05, which
showed that the test is highly reliable (Supplementary Figure 3).
Although R2 of the species group was smaller than that of the
compartments group, but the species group was more significant
according to the P-value (0.008 and 0.024), so the difference
between groups was more significant (Supplementary Figure 3).
The trophic modes included symbiotrophs (lichen, endophytes,
and ectomycorrhiza), saprotrophs (wood saprotrophs, undefined
saprotrophs, leaf saprotrophs, and dung saprotrophs) and
pathotrophs (plant pathogens, fungal parasites, and animal
pathogens) (Figure 3 and Supplementary Table 2). The
prediction results of the fungal functional guild revealed that
ectomycorrhiza were the main symbiotrophs. Ectomycorrhizal
abundances were significantly higher in the PZ and ZJ root
endospheres than in the rhizosphere soil.

Network Analysis of Fungal Communities
We constructed correlation networks of the fungal communities
in the root endospheres and rhizosphere soil and obtained
two networks of 460 and 184 points connected by 8091 and
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FIGURE 3 | Functional features of fungal communities in four hazelnut species in the rhizosphere soil (T) and root endospheres (G). Different letters (a,b) indicate the
significance level at P < 0.05, “ns” indicates no significance (P > 0.05).

1629 edges, respectively (Figures 4A,B and Supplementary
Table 3). The rhizosphere soil contained more nodes
and edges than the root endospheres. The networks of
the root endospheres and their rhizosphere soil showed
more positive correlations than negative correlations,
at 1.93 and 7.44 times higher, respectively. Compared
with the network structure of the root endospheres,
the network structure in the rhizosphere soil was more
connected (connectivity) and less modular (modularity)
(Supplementary Table 3).

Modular analysis revealed 122 connectors and three
module hubs in the rhizosphere soil and 49 connectors
and one module hub in the root endospheres. The root
endospheres and rhizosphere soil contained nine common
connector OTUs. The module hubs in the rhizosphere soil
were OTU1819, OTU2475 (Chloridium) and OTU3920
(Acaulium); the module hub in the root endospheres was
OTU1769 (unclassified_f__Melanommataceae) (Supplementary
Tables 4, 5). The fungal functions of the connectors and module

hubs were mainly symbiotrophic and saprotrophic. No network
hubs were detected in the two networks (Pi > 0.62, Zi > 2.5;
Figures 4C,D and Supplementary Tables 4, 5).

Relationships Among Soil Properties and
Fungal Communities
At the OTU level, the correlation network between fungal
OTUs and environmental factors (Figure 5 and Supplementary
Table 7) in the rhizosphere soil surrounding the roots was more
complex than that of the root endospheres, consisting of 189 and
71 OTUs, respectively (Supplementary Tables 7–10). Among
the fungal OTUs in the rhizosphere soil surrounding the roots,
Ascomycota and unclassified_k_Fungi accounted for the highest
proportions, at 76.53 and 8.67%, respectively. Ascomycota and
Basidiomycota accounted for 62.82 and 25.64%, respectively, of
the fungal OTUs in the root endospheres. TN and TOC were
the soil properties with the highest degrees in the two networks.
Linear regression results showed that the Shannon diversity index
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FIGURE 4 | Networks of fungal communities in the rhizosphere soil (A) and root endospheres (B). Node color represents fungal phylum of the OTUs. Node size is
proportional to degree connections of the OTUs. Red edges indicate positive relationships, and green edges indicate negative relationships. Zi-Pi plots showing
distribution of OTUs based on their topological roles in the rhizosphere soil (C) and root endospheres (D) networks. Threshold values of Zi and Pi for categorizing
OTUs were 2.5 and 0.62, respectively.

of the fungi in the root endospheres and rhizosphere soil had
a significant positive linear relationship with TOC (P = 0.0153,
P = 0.0163, respectively) and a non-significant negative linear
relationship with TN.

DISCUSSION

Our results showed that fungal diversity and community
compositions differed between hazelnut tree root endospheres
and rhizosphere soil (Figures 1, 2). Similar results have been
found for the microbial compositions of poplar trees, Mussaenda
kwangtungensis and rice (Beckers et al., 2017; Edwards et al.,
2018; Qian et al., 2019). This may be because root exudates,
mucus produced by the root cap and detached root cells provide
suitable niches for the microbial communities around roots
(Buée et al., 2009). Ascomycota and Basidiomycota were the
dominant fungal phyla in the root endospheres and rhizosphere
soil, which was consistent with previous reports (Ma et al., 2013;

da Silva et al., 2020; Hou et al., 2020). Ascomycota is the most
abundant phylum in the rhizosphere community (Qian et al.,
2019; Gargouri et al., 2021), the dominant phylum in the soil of
larch plantation, and the main decomposer in many ecosystems
(Wang et al., 2013, 2016; Zhou et al., 2016). Basidiomycota
can produce lignin-modifying enzymes and is considered a
decomposer under natural conditions (Blackwood et al., 2007).
Mortierellomycota, formerly classified as Zygomycota, is an
indicator of rhizosphere soil (Anslan et al., 2018; Geml, 2018),
which was confirmed by the results of the current study. Function
prediction results (Supplementary Table 2) showed that the
main functions of Mortierellomycetes were symbiotrophic and
saprotrophic (Cannon and Kirk, 2007). At the class and genus
level, PZ and CZ root endospheres contained high proportions
of Agaricomycetes, and the function prediction results showed
that most Agaricomycetes were ectomycorrhizal fungi and other
symbiotic fungi, which were consistent with the results of
previous studies that showed that many Agaricomycetes were
more ectomycorrhiza (Chen et al., 2006; Zeng and Mallik, 2006;
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FIGURE 5 | Two-factor correlation network between soil properties and fungi OTUs (A: the rhizosphere soil, B: the root endospheres). Node color represents fungal
phylum of the OTU. Node size is proportional to degree connections of the OTU. Red edges indicate positive relationships, and green edges indicate negative
relationships. The linear regression analysis of environmental factors was based on the results of principal coordinates analysis (C–F). X and Y axes are the Shannon
diversity of fungi and the environmental factor, and R2 is the determination coefficient, representing the proportion of variation explained by regression line.

Kersten and Cullen, 2013). The dominant fungal classes in
the ZJ root endospheres was Pezizomycetes, whose fungal
functions were predicted to be symbiotrophic and saprotrophic
(Supplementary Table 2). Among these, the dominant species
were Tuber, which are edible fungi with important nutritional
and economic value. Previous studies have shown that Tuber
can improve the rooting rate and root lengths of hazelnut trees
(Román et al., 2006; Wedén et al., 2009; Santelices and Palfner,
2010; Benucci et al., 2012). These Tuber characteristics provide
guidance for improving the survival rates of hazelnut seedlings
and the economic output of hazelnut orchards. FUNGuild
prediction results (Figure 3) revealed more symbiotic fungi
(mainly ectomycorrhizal fungi) and fewer pathogenic fungi in
the root endospheres than in the rhizosphere soil, possibly
because most fungi in the root endospheres were beneficial
microorganisms recruited by plants from the rhizosphere soil
through the interface between the roots and soil. Most of
these fungi live in healthy plant tissues or organs and do
not cause the host plants to show disease symptoms (Petrini,
1991; Liu et al., 2021; Song et al., 2021; Yin et al., 2021).
The Venn diagram and intergroup difference test (Figures 1C–
E, 2C,D) revealed that fungi in the root endospheres came
mostly from the rhizosphere soil, supporting the conclusion
that induction factors of roots can attract fungi to colonize the

roots (Edwards et al., 2015). There were many ectomycorrhizal
fungi in ZJ, which can be considered as isolation materials
for further development of ectomycorrhizal fungi suitable for
hazelnut growth and development.

Co-occurrence analysis enables understanding the
interactions between plant fungal communities (Shi et al.,
2016; Xue et al., 2018; Gargouri et al., 2021; Hernandez et al.,
2021). This study revealed that root endospheres and rhizosphere
soil have different fungal co-occurrence network structures,
which can be explained by their different microenvironments.
The network in the rhizosphere soil had more nodes and
edges, higher community diversity, higher connectivity, and
a more complex network structure. These characteristics are
thought of as the representation of complex and stable network
structure (Hernandez et al., 2021). High modularity was also
an indicator of the network structural stability. However, in
this study, the modularity of the root endospheres was higher
than that of rhizosphere soil, and the clustering coefficient
of the root endospheres network was higher than that of the
rhizosphere soil, possibly owing to the higher differentiation
degree of the root tissues (cortex and vascular tissue) compared
with that of the rhizosphere soil. This structure separates
microorganisms into different structures and may thereby reduce
fungal community diversity and microorganismal interactions,
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which explains why the network structure of the roots is
relatively simple (Qian et al., 2019). Low modularity indicated
that cross-module association between taxa may be more
common. If environmental disturbances affected the microbes
in the rhizosphere soil, the disturbances that affected the taxa
in one module would likely spread to other modules. Relatively
more associations were noted among taxa in different modules
in the rhizosphere soil (Hernandez et al., 2021). Strikingly,
most of the relationships between the fungal communities
in the root endospheres and rhizosphere soil were positive,
indicating that most fungi had similar guilds or niches and were
mutually beneficial rather than competitive (Deng et al., 2016;
Feng et al., 2017).

Many microbial studies have focused on identifying modules
in networks because modules play important roles in ecology
and evolutionary biology (Olesen et al., 2007; Deng et al.,
2012; Shi et al., 2016; He et al., 2017; Fan et al., 2018).
We found many connectors and a few module hubs in
hazelnut tree root endospheres and rhizosphere soil. Studies
have shown that OTUs that are divided into module hubs
and connectors may function as keystone taxa. Compared with
other OTUs, these OTUs play important roles in network
structure, and disappearance of these keystone taxa may
cause modules and networks to be disassembled (Paine, 1995;
Power et al., 1996; Faust and Raes, 2012). In this study, the
rhizosphere soil contained more module hubs and connectors,
indicating that the network structure of the rhizosphere soil
was more stable than that of the root endospheres. Shared
OTUs with unique or multiple functions coexist in diverse
habitats and have highly complex and powerful communication
capabilities. Additionally, some low-abundance groups play
disproportionate roles in regulating ecological functions in
different habitats, thus revealing the key role that some rare
species play in an ecosystem (Deng et al., 2016; Yang et al.,
2016; Feng et al., 2017; Zhang et al., 2018). Therefore, the
nine connecting OTUs are keystone fungal taxa, and their
overlapping root endospheres and rhizosphere soil should
be evaluated in future studies. OTU1770, from the genus
Tuber, provided some hypotheses for the development and
use of hazelnut seedlings and hazelnut garden management.
Ascomycota was the dominant phylum in the root endospheres
and rhizosphere soil.

Fungal function prediction analysis (Supplementary Table 2)
revealed more saprophytic fungi in the soil than in the root
endospheres, likely because the soil contained more litter.
Additionally, the network in the rhizosphere soil contained
more pathogenic OTUs than the root endospheres. In addition
to recruitment of beneficial microorganisms by plants, plant
root structures may hinder the invasion of pathogenic fungi.
Compared with the networks of the rhizosphere soil the root
endospheres had more phyla containing ectomycorrhizal fungi.
Ectomycorrhizal fungi play important roles in acquiring and
transferring nitrogen, phosphorus, and potassium (Brandes et al.,
1998; Jentschke et al., 2001), as indicated by the positive
correlation between most OTUs in the network and nitrogen,
phosphorus, and potassium indicators. TOC was significantly
positively correlated with the Shannon indexes of fungi in

the root endospheres and the rhizosphere soil. TN had more
degrees but was not significantly correlated with the Shannon
index of the fungi, thus supporting the conclusion that soil
microorganisms were mainly limited by carbon rather than
by nitrogen (Ekblad and Nordgren, 2002; Soong et al., 2020).
Orchard use of soils can deplete their soil organic matter
content, which has adverse effects on plant growth and yield.
Studies have proved that the application of hazelnut husks by
using biological techniques can improve the organic matter
content, soil enzyme activity, and microbial biomass in hazelnut
garden (Irmak, 2019). It was confirmed that living mulching
treatment of hazelnut orchard could increase soil organic matter
content and microbial diversity (Ma et al., 2021), and similar
conclusions were reached in apple orchard and crop field in
previous studies (Chen et al., 2014; Qian et al., 2015; Schmidt
et al., 2019). Therefore, applying mulch containing organic
matter to the soil surface can be a management measure of
hazelnut garden.

This study revealed significant differences in the fungal
community compositions and co-occurrence networks
in hazelnut tree root endospheres and the rhizosphere
soil. However, fungal community compositions in the leaf
endospheres, phyllospheres, and stems of hazelnut trees and
their relationships are also important and will be studied
in our future work. In summary, our research revealed that
keystone taxa in the fungal communities of root endospheres
and rhizosphere soil can be developed and used as beneficial
microbial communities, thus helping improve the survival rates
of hazelnut seedlings and the economic income from hazelnut
orchards, providing theoretical guidance for managing hazelnut
orchards, and providing an insight for future development of
fungal inoculants to be used in hazelnut root.
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