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The properties of plant rhizosphere are dynamic and heterogeneous, serving as different
habitat filters for or against certain microorganisms. Herein, we studied the spatial
distribution of bacterial communities in the rhizosphere of pepper plants treated with
a disease-suppressive or non-suppressive soil. The bacterial richness was significantly
(p < 0.05) higher in plants treated with the disease-suppressive soil than in those
treated with the non-suppressive soil. Bacterial richness and evenness greatly differed
between root parts, with decrease from the upper taproot to the upper fibrous root,
the lower taproot, and the lower fibrous root. As expected, the bacterial community
in the rhizosphere differed between suppressive and non-suppressive soil. However,
the spatial variation (36%) of the bacterial community in the rhizosphere was much
greater than that explained by soils (10%). Taxa such as subgroups of Acidobacteria,
Nitrosospira, and Nitrospira were known to be selectively enriched in the upper taproot.
In vitro Bacillus antagonists against Phytophthora capsici were also preferentially
colonized in the taproot, while the genera such as Clostridium, Rhizobium, Azotobacter,
Hydrogenophaga, and Magnetospirillum were enriched in the lower taproot or fibrous
root. In conclusion, the spatial distribution of bacterial taxa and antagonists in the
rhizosphere of pepper sheds light on our understanding of microbial ecology in
the rhizosphere.

Keywords: spatial distribution, microbial community, rhizosphere, pepper blight, disease- suppressive soil

INTRODUCTION

The abundance and diversity of microorganisms that inhabit the rhizosphere of plants play key roles
in maintaining plant nutrients and health (Berg and Smalla, 2009; Mendes et al., 2011, 2013; Faria
et al., 2020; Yu et al., 2020). Rhizospheric microbiomes may increase crop nutrients acquisition
and resistance to environmental stresses (Ahkami et al., 2017), thus decreasing the excessive use of
chemical fertilizers or pesticides. Mechanisms governing the assembly of microbial communities in
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the rhizosphere are the foundation for building beneficial
rhizospheric microbiomes (Bai et al., 2015; Heijden and
Hartmann, 2016; Gu et al., 2020; Trivedi et al., 2020). Progress in
high-throughput sequencing and its application in metagenomics
have advanced our understanding of microbial ecology in the
rhizosphere. Several biotic and abiotic factors, such as plant
species and development (Bell et al., 2015; Ma et al., 2019),
soil animals (Jiang et al., 2017), viruses (Pratama et al., 2020),
inoculation of microbial consortia (Zhang et al., 2019), invasion
of pathogens (Yin et al., 2021), land use (Wang C. et al., 2021),
fertilization (Ding et al., 2020), and tillage (Li et al., 2021), may
cause changes in the composition and functions of microbial
communities inhabiting the rhizosphere. Shifts in the microbial
community may increase the resistance of plants to diseases, such
as the common scab of potato (Shi et al., 2019) and pepper blight
(Li et al., 2019; Zhang et al., 2019). In addition, the interactions
among rhizospheric microorganisms may also influence the
recruitment of beneficial plant microorganisms (Tao et al., 2020).

So far, the microbiome in the rhizosphere of plants has
been studied using the whole root system (Barillot et al.,
2013). However, the properties of the rhizosphere are very
likely dynamic and heterogeneous (Vetterlein et al., 2020).
For example, root systems are continuously differentiating and
changing during the growth of plants (Hodge, 2006; Gruber
et al., 2013). In addition, at finer scales, the soils vary greatly
with respect to their redox potential (Smith et al., 2021), pH
(Blossfeld et al., 2011), and availability of different nutrients
or enzyme activities (Koop-Jakobsen and Wenzhöfer, 2015;
Kuzyakov and Razavi, 2019). These factors affect the structures
of soil microbial communities (Nunan, 2017). Microbial niches
in the rhizosphere may serve as different habitat filters for
or against certain other microorganisms. Thus, responses of
the microbiome in the rhizosphere to different factors might
be a “sum up” of the changes in these microbial niches.
The characteristics of microbial niches are likely to be shaped
synergistically by plant root exudates, by the physicochemical
properties surrounding the root, or by the feedbacks of the
microorganisms. Root exudates initiate and mediate the activities
of microorganisms and their interactions with plants (Berg
and Smalla, 2009). Taproot and fibrous roots differ greatly in
terms of the release of root exudates, and most root exudates
are released from the fibrous roots or root hairs (Trivedi
et al., 2020). Physicochemical and biological gradients along
the soil profile also differ in common; therefore, the vertical
surroundings of taproots or fibrous roots might differ greatly.
Thus, we hypothesize that the composition of the bacterial
community recruited in the rhizosphere would depend on the
combination of root type and its vertical surroundings and
that habitat filter is a major driver of rhizosphere communities
at a finer scale.

In this study, the spatial distribution of bacterial communities
recruited from the disease-suppressive or non-suppressive soil
was explored in the rhizosphere of pepper plants. We focused
on two main questions: (1) What is the spatial distribution of
the bacterial community and the antagonists in the rhizosphere
of peppers plants? (2) To which level such spatial distributions
might be influenced by different soil microbiomes?

MATERIALS AND METHODS

Long-Term Greenhouse and Bioassay
Experiments
Soil samples were collected from a long-term greenhouse
experiment conducted at the Quzhou Experimental Station (36◦
52′ N, 115◦ 01′ E), Hebei, China. That experiment contains
organic and conventional farming systems, which followed the
same scheme of crop rotation, tillage, and irrigation. Details
of the experiment have been described previously (Han et al.,
2017; Ding et al., 2019). Plant diseases such as late blight
and powdery mildew on tomato (Solanum lycopersicum L.) or
cucumber (Cucumis sativus L.) are less severe in the organic
farming system than in the conventional farming systems
(Yang et al., 2009a,b). In the climate chamber experiment, an
incidence of pepper blight was 41% lower in the soil from the
organic farming system than that from the conventional farming
system, possibly due to the enhanced Bacillus antagonists in the
rhizosphere (Li et al., 2019). Long-term organic farming likely
increased the suppressive power of the soil toward plant diseases;
henceforth, the soils samples from the organic and conventional
farming systems are referred to as disease-suppressive and non-
suppressive soils, respectively.

For each system, 75 cores (2 cm) of soil from the top layer
(1–20 cm) were collected, mixed thoroughly, and passed through
2-mm mesh and stored at 4◦C. The bioassay was performed as
follows: after surface sterilization, “Cayenne” pepper (Capsicum
annuum) seeds (Zhong liang xin) were germinated at 30◦C
in the dark, and after germination, the seeds were set at the
seedling point suggested on the PhytoTC seed germination
pouch (18 cm × 12.5 cm) and soaked in a mixture of 10 g of
disease-suppressive or non-suppressive soil and 20 mL sterilized
Hoagland solution. The seedlings were grown for 28 days in
a growth chamber (Hangzhou Lvbo Instrument Co., Ltd., LB-
1000D-LED) at 30◦C, 70% relative humidity, and under a 12-
h light (15,000 lx) period. Fresh standard Hoagland solution
(20 ml) was re-added in the pouch. Each treatment consisted of
four replicates, and each replicates contained two plants. The root
system adhering to the seed germination paper was dissected into
four different parts (e.g., upper taproot, upper fibrous root, lower
taproot, and lower fibrous root), and the roots were carefully
taken from the pouch. Different parts of root were vortexed
vigorously in a 0.85% NaCl solution for 5 min (King et al., 2021).
The pellet for DNA extraction was collected by a centrifugation
(Eppendorf 5804R) at 6,000g for 5 min. All these samples were
stored at−20◦C prior to bacterial isolation or DNA extraction.

Total Community DNA Extraction and
Amplification, Purification, and
Sequencing of 16S rRNA
Total community DNA was extracted using the FastDNA
Spin Kit from the soil samples according to the instruction
of the manufacturer. Amplification of 16S rRNA fragments
was performed using the universal primers 515F (5′-GTGC
CAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACVSG
GGTATCTAAT-3′) with a 12-bp barcode at the 5′ end of each
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primer (Lauber et al., 2009). Gene library preparation and
the PCR reactions followed a previously reported method
(Souza et al., 2021). The amplified PCR product were quantified
and mixed at equal molar for gel purification. Sequencing was
performed on the Illumina NovaSeq PE250 platform according to
the protocol of the manufacturer. All sequences were submitted
to the NCBI SRA (PRJNA750233).

Bioinformatics Analysis
Analysis of 16S rRNA sequences was performed as previously
described (Ding et al., 2019; Chen et al., 2021). High-quality
sequences without a technical region (barcode or primers)
were used for the following analysis. Chimera sequences
were removed jointly by a local BLASTN analysis using the
SILVA database (version 138) and ChimeraSlayer analysis.
Operational taxonomic unit (OTU) assignment and classification
of representative sequences for each OTU were performed using
the vsearch software (VSEARCH: a versatile open-source tool
for metagenomics) (Rognes et al., 2016) and RDP Classifier
(version 2.13) (Wang et al., 2007), respectively. OTUs affiliated
to chloroplasts were removed. Statistical comparison, multiple
comparison, and plotting were performed using the R software
(version 3.6) with different add-On packages. The alpha-
diversity index (Chao1 and Pielous’ evenness) was calculated
by resampling, for 100 times, of an equal number of reads
from each sample. This method helped reduce the biases
caused by different read numbers. The unweighted pair group
method with arithmetic mean (UPGMA) cluster, based on Bray–
Curtis distance, was used to analyze the bacterial beta-diversity.
Variations in the bacterial community explained by different
parts of the root or soil were analyzed using the R add-On
package “Vegan” (Zhang et al., 2016). Discriminative taxa were
identified by multiple comparisons using a negative binomial
model (Hothorn et al., 2008). Bacterial genera that were positively
correlated with each other (Spearman’s rank coefficient > 0.6 and
p < 0.01) were subjected to co-occurrence network analysis using
the Gephi software (version 0.91). In vitro antagonists against
Phytophthora capsici isolated from a previous study using the
same soil (Li et al., 2019) were used to estimate their spatial
distribution pattern in the rhizosphere. Subsequences of the 16S
rRNA gene between 515F and 806R of each antagonist were
extracted, and the unique phylotype was extracted using the
software Vsearch. These unique phylotypes were mapped against
the 16S rRNA sequence library with a minimum identity of 99%
using a standalone BLASTN analysis. All tools mentioned above
were implemented in a galaxy instance1.

RESULTS

Spatial Variation in the Rhizospheric
Bacterial Community Was Greater Than
the Effect of Different Soils
Bacterial communities in different parts of the root systems were
analyzed by Illumina sequencing of the 16S rRNA gene fragments.

1www.freebioinfo.org

A total of 13,404,282 sequences were acquired and 146,369
sequences affiliated with chloroplasts were removed for further
analysis. The remaining sequences were grouped into 69,622
OTUs. The most abundant phyla were Proteobacteria (44.8%),
Firmicutes (15.3%), Verrucomicrobia (6.8%), Acidobacteria
(6.2%), Bacteroidetes (5.3%), and Planctomycetes (4.9%)
(Figure 1A). The relative abundance of Proteobacteria was
lower in the upper taproot than in the other parts of the root
for both soil types (Figure 1A and Supplementary Table 1).
For both soil types, bacterial richness and evenness in the
rhizosphere decreased from the upper taproot to the upper
fibrous root, the lower taproot, and the lower fibrous root
(Figures 1B,C). A significant difference between the upper
taproot and the lower fibrous root was observed for bacterial
evenness in both soil treatments and for richness only in the
non-suppressive soils (Figures 1B,C). The bacterial richness was
significantly (p < 0.05) higher in plants treated with the diseases-
suppressive soil than in those treated with the non-suppressive
soil (Figure 1B). The bacterial evenness was comparable between
the suppressive and non-suppressive soils (Figures 1B,C and
Supplementary Table 2). UPGMA cluster analysis indicated that
bacterial communities mainly differed between the upper and
lower parts of roots (Figure 1D). Variation partition analysis
revealed that spatial variation (38.0%) was much greater than
that explained by different soils (9.0%) (Figure 1E).

Discriminative Taxa Between Different
Parts of Roots in the Two Soils
Multiple comparisons were performed to identify the dominant
(relative abundance of one sample > 0.5%) taxa with contrasting
spatial distribution in the rhizosphere of pepper (Figure 2).
Most discriminative genera could be assigned to six groups
according to their response patterns (Figure 2). The genera in
group 1 were commonly enriched in the upper taproot of the
plant, and the majority were affiliated with Acidobacteria (e.g.,
Gp16, Gp3, and Gp6), Planctomycetes (e.g., Pirellula, Gemmata,
and Gimesia), Chloroflexi (e.g., Litorilinea and Sphaerobacter),
and Proteobacteria (e.g., Steroidobacter and Sphingobium)
(Figure 2). In addition, few genera, such as Clostridium
sensu stricto, Armatimonadetes gp5, Gemmatimonas, and
Parcubacteria_genera_incertae_sedis, which included members
were also commonly enriched in the taproots (Figure 2). Genera
(e.g., Azotobacter, Hydrogenophaga, Pseudoxanthomonas,
Rhizobium, Clostridium IlI, Sporomusa, Clostridium XIVa, and
Leptonema) in the group 2 commonly decreased in the taproots
(Figure 2). The other four groups consisted of genera specifically
enriched (groups 3 and 6) or decreased (groups 4 and 5) in
the taproot treated with disease-suppressive or non-suppressive
soil (Figure 2). Among them, relatively abundant genera such
as Anaeroarcus, Acidovorax, and Magnetospirillum, which are
known to contain anaerobes, were also lowest in the taproot
of pepper treated with disease-suppressive or non-suppressive
soil (Figure 2).

Co-occurrence Network
A total of 91 genera that were positively correlated with each
other were subjected to co-occurrence network analysis
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FIGURE 1 | Bacterial diversity in the rhizosphere of the upper (U) or lower (D) part of the taproot (T) or fibrous (F) roots treated by the disease-suppressive (S) or
non-suppressive soil (C). Relative abundance of dominant phyla (A), Chao1 richness (B), Pielous’ evenness (C), UPGMA cluster (D), and variation explained by
different soils or different parts of roots (E). Significant differences in bacterial alpha-diversity among four parts of root under disease-suppressive or non-suppressive
soil are indicated by different letters.

(Figure 3). The majority of them were affiliated with
Proteobacteria (32 genera), Firmicutes (14 genera), Bacteroidetes
(10 genera), Acidobacteria (8 genera), Planctomycetes (7 genera),
and Verrucomicrobia (5 genera). These co-occurring genera
formed six hubs, including two enriched hubs (modules 3 and 5
in green and cyan, respectively) and one decreased hub (module
1 in purple), in the taproot of pepper (Figure 3A). Correlation
analysis further revealed that modules 3 and 5 were positively
correlated with each other (Figure 3H), and both were negatively
correlated with module 1 (Figures 3I,J). Interestingly, all co-
occurring genera affiliated with Acidobacteria or Planctomycetes
were among module 3 or 5 (Figure 3A), suggesting that these
taxa might prefer the microbial niche in the taproot of pepper.
In addition, module 3 also contained nitrifying bacterial taxa,
such as Nitrosospira and Nitrospira (Figure 3A). Module 1
consisted of several bacterial genera adapted to anaerobic and
anoxic environments, such as Clostridium III or Clostridium

XIVa, Magnetospirillum, and Anaeroarcus (Figure 3A). No
clear spatial distribution pattern was observed for modules 0
and 4 (Figure 3A). Module 4 was significantly enriched in the
treatment with disease-suppressive soil in contrast to module 0
(Figures 3F,G).

Beneficial Bacteria Tend to Be Enriched
in the Upper Taproots
To estimate the spatial distribution of in vitro antagonists
against P. capsici along the rhizosphere of pepper, 24 unique
phylotypes acquired from a previous study using the same
soil microbiome were mapped against the 16S rRNA gene
fragment. A total of 19 phylotypes could be mapped to 132,713
sequences, accounting for 1.0% of the 16S rRNA gene fragments
acquired. Interestingly, the percentages of mapped sequences
varied between the different parts of the roots (Figure 4). Only
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FIGURE 2 | Genera with significantly different relative abundance in the rhizosphere of the upper (U) or lower (L) part of the taproot (T) or fibrous (F) roots treated by
the disease-suppressive (S) or non-suppressive soil (C). Significant difference is indicated by a different color. A box with two colors indicates no significant difference
from other treatment containing one of the two colors.

0.37 and 0.43% of sequences could be mapped for the upper
taproot of pepper treated by the disease-suppressive or non-
suppressive soil, respectively, in contrast to 1.7% for the fibrous
roots (Supplementary Figure 1). Among them, the phylotypes
similar to Beijerinckia fluminensis were most abundant and its
relative abundance tended to be higher in the taproot than in
the fibrous roots (Figure 4). Seven phylotypes were distributed
distinctly along the rhizosphere of pepper treated by the disease-
suppressive soil, in contrast to the two phylotypes in the non-
suppressive soil (Figure 4). Four out of these seven phylotypes
were similar to Beijerinckia tquilensis, Beijerinckia aerophilus,
Beijerinckia cereus, and Beijerinckia firmus, and their relative

abundance was highest in the taproot of pepper (Figure 4). In the
treatment with the non-suppressive soil, the phylotype similar to
Beijerinckia licheniformis was also more abundant in the taproot
of pepper (Figure 4).

DISCUSSION

Distinct Bacterial Communities Along
the Rhizosphere of Pepper
Previously, the rhizospheric microbiome has been frequently
studied by using the whole system, in which the heterogeneity
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FIGURE 3 | Co-occurrence network analysis of dominant bacteria (A), relative abundance of modules (B–G), and significantly correlated modules (H–J).

in the rhizosphere may be neglected. Herein, a distinct spatial
distribution of the bacterial community along the rhizosphere of
pepper was detected, indicating that niche differentiation within
the rhizosphere might also be considerable. Bacterial alpha-
diversity was frequently lower in the rhizosphere than in the
corresponding bulk soil, possibly because the plant root only
recruits a fraction of soil microorganisms into its rhizosphere
(Fierer, 2017; Zhou et al., 2020). Here, the lowest bacterial
richness and evenness were detected at the lower fibrous roots
in both treatments, suggesting that the selective pressure exerted
by plant roots might be strongest at the lower fibrous root of
pepper. Root exudates are the major driving forces of microbial
communities in the rhizosphere (Berg and Smalla, 2009; Turner
et al., 2013). Root hair or fibrous roots often release large
quantities of metabolites into the soil (Pandey et al., 2021).
Interestingly, the bacterial alpha-diversity in the upper part of
fibrous root tends to be higher than in the lower part. Compared
with the lower parts, oxygen might be more easily dissolved in the
upper parts, which may favor the decomposition of metabolites
released by fibrous roots. A slight increase in bacterial richness
in the rhizosphere of pepper treated by the disease-suppressive
soil agrees with the findings of a previous study (Li et al.,
2019). However, it is still premature to state that high bacterial
diversity in the rhizosphere may lead to increased resistance

to plant diseases, as several other physicochemical properties
may influence the assemblage of microbiome in the rhizosphere
(Schreiter et al., 2014; Wahdan et al., 2021).

The spatial variation of bacterial community composition
along the rhizosphere of pepper was much greater than that
explained by different soils, suggesting that the properties of
microbial niches in the rhizosphere might be largely determined
by the type of root (fibrous root or taproot) and the surroundings
at the microscale. This finding agrees with the fact that
microbial scale heterogeneity in the soil/rhizosphere, which
was largely disregarded, is important for understanding the
microbial ecology in soil (Nunan, 2017). Additionally, several
biotic/abiotic factors, such as nutrients and bulk density, which
could shift the microbial community in the rhizosphere, were
also able to change the topology of plant roots (Glimskär, 2000;
Wang et al., 2015; Tang et al., 2020). Thus, it is possible that
some changes in microbial communities in the rhizosphere
were attributed to alterations in the root system in the soil.
Additionally, bacterial communities in the rhizosphere of pepper
were significantly different between the disease-suppressive and
non-suppressive soils, which is in agreement with previous
studies. Our results suggest that such differences might be also
vary spatially along the rhizosphere and that the upper taproot
might be most influenced by the soil. Taken together, all these
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FIGURE 4 | Heatmap analysis of in vitro antagonist belonging to each phylotype in the rhizosphere of the upper (U) or lower (D) part of the taproot (T) or fibrous (F)
roots treated by the disease-suppressive (S) or non-suppressive soil (C). Those phylotypes with significantly different relative abundance at four parts of roots are
indicated by green or red triangle for the disease-suppressive or non-suppressive soil, respectively. The minus symbol indicates decreased relative abundance in the
suppressive soil. Phylotype that significantly differed at relative abundance in the rhizosphere of different root parts under suppressive or non-suppressive soil is
indicated by red or green triangle, respectively.

findings indicate that different roots and soil microbiomes might
synergistically shape the spatial distribution of microbiomes in
the rhizosphere of pepper.

Spatial Distribution of Bacterial Taxa
Along the Rhizosphere of Pepper and the
Implication on Microbial Ecology
Acidobacteria are abundant in soils and represent a significant
fraction of the soil bacterial community. Previously,
Acidobacteria were largely regarded as oligotrophy (Fierer
et al., 2007; Kielak et al., 2016), which may not outcompete in
the rhizosphere with excessive nutrients. Here, acidobacterial
subgroups 3, 4, 6, and 16 were more abundant in the rhizosphere
of the upper taproot. The prevalence of acidobacterial subgroups
was also detected in the rhizosphere of several other crops, such
as potatoes and leek (Rocha et al., 2013), soybean (Navarrete
et al., 2013), and tea (Wang M. et al., 2021), suggesting that
some Acidobacteria might also be competent in utilizing root
depositions. So far, only dozens of Acidobacteria have been
cultivated, which limits our understanding of their physiology
(Kalam et al., 2020). However, physiological and genomic

studies on cultivable acidobacterial have indicated that some
Acidobacteria can degrade xylan (Kielak et al., 2016), which is a
major polysaccharide in primary cell walls. However, it remains
to be elucidated whether the enrichment of acidobacterial
subgroups in the rhizosphere at the upper taproot is associated
with their ability to degrade polysaccharides. Interestingly, the
module enriched at the taproot also contains Nitrosospira and
Nitrospira, members that have the ability to live an aerobic
chemoautotrophic lifestyle by ammonia oxidation (Norton
et al., 2008; Lagostina et al., 2015; Kuypers et al., 2018). The
relative abundance of anaerobic genera such as Clostridium IlI,
Sporomusa, and Clostridium XIVa was enriched in the lower
taproot or fibrous roots, and these taxa were often prevalent in
anaerobic environments with abundant organic materials (Nevin
et al., 2011; Edwards et al., 2013; Ðapa et al., 2013). Genera
such as Rhizobium, Azotobacter, and Azospirillum were enriched
at the lower fibrous roots, which is in agreement with the fact
that nitrogen fixation occurs only under anaerobic conditions
(Hayat et al., 2010; Meena et al., 2017; Huang et al., 2021). Other
genera such as Hydrogenophaga and Magnetospirillum are also
known to adapt to anaerobic conditions by nitrate respiration
(Golby et al., 2012). In summary, these findings indicate that
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the availability of oxygen may also play an important role in the
spatial distribution of different taxa in the rhizosphere of pepper,
in addition to root exudates.

Preferential Colonization of Bacillus
Antagonists in the Upper Taproot of
Pepper
Competition for microbial niches has been proposed as a
mechanism employed by beneficial microorganisms to fight
against phytopathogens (Götz et al., 2006). Previously, Bacillus
antagonists in the disease-suppressive soil used in this study
may contribute to the suppression of pepper light caused by
P. capsici (Li et al., 2019). In silicon analysis revealed that
four isolated Bacillus antagonists preferentially colonized the
taproot of pepper treated with disease-suppressive soils. This
result indicated that the upper taproot might be a hot spot
where the Bacillus antagonists interacted with the phytopathogen
P. capsici. This finding agrees with several other studies based on
green fluorescence protein-labeled antagonists, in which many
antagonists, including Bacillus, were preferentially colonized at
the lateral root junctions (Liu et al., 2006).

It is also worth noting that the spatial distribution of
the bacterial community was studied by dividing the roots
systems into four rough compartments, and the microbial
communities at finer scale have not been resolved. In addition,
the physicochemical conditions of the root pouch differed
from those in the soil. Thus, further analysis of the microbial
community at a finer scale may provide more details on
the spatial distribution of the bacterial community in the
rhizosphere. In conclusion, distinct spatial distribution of
bacterial community in the rhizosphere of pepper with
largely aerobic heterotrophic (including Bacillus antagonists
against P. capsici) and chemotrophic taxa at the upper root
and anaerobic taxa (including heterotrophic or diazotrophic,
nitrate respiration) at the lower taproot or fibrous roots was
found, thus highlighting the importance of root exudates

and the availability of oxygen for the reassembling of the
rhizosphere microbiome.
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