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Chloroplasts use light energy and a linear electron transport (LET) pathway for the coupled 
generation of NADPH and ATP. It is widely accepted that the production ratio of ATP to 
NADPH is usually less than required to fulfill the energetic needs of the chloroplast. Left 
uncorrected, this would quickly result in an over-reduction of the stromal pyridine nucleotide 
pool (i.e., high NADPH/NADP+ ratio) and under-energization of the stromal adenine 
nucleotide pool (i.e., low ATP/ADP ratio). These imbalances could cause metabolic 
bottlenecks, as well as increased generation of damaging reactive oxygen species. 
Chloroplast cyclic electron transport (CET) and the chloroplast malate valve could each 
act to prevent stromal over-reduction, albeit in distinct ways. CET avoids the NADPH 
production associated with LET, while the malate valve consumes the NADPH associated 
with LET. CET could operate by one of two different pathways, depending upon the 
chloroplast ATP demand. The NADH dehydrogenase-like pathway yields a higher ATP 
return per electron flux than the pathway involving PROTON GRADIENT REGULATION5 
(PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1). Similarly, the malate 
valve could couple with one of two different mitochondrial electron transport pathways, 
depending upon the cytosolic ATP demand. The cytochrome pathway yields a higher 
ATP return per electron flux than the alternative oxidase (AOX) pathway. In both Arabidopsis 
thaliana and Chlamydomonas reinhardtii, PGR5/PGRL1 pathway mutants have increased 
amounts of AOX, suggesting complementary roles for these two lesser-ATP yielding 
mechanisms of preventing stromal over-reduction. These two pathways may become 
most relevant under environmental stress conditions that lower the ATP demands for 
carbon fixation and carbohydrate export.

Keywords: ATP/NADPH, cyclic electron transport, energy and carbon balance, alternative oxidase, malate valve, 
mitochondrial electron transport, proton gradient regulation5/PGR5-like photosynthetic phenotype1, reactive 
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INTRODUCTION

Research over many years has established that chloroplasts 
and mitochondria act in a coordinated manner during 
photosynthesis (Krömer, 1995; Raghavendra and Padmasree, 
2003). For example, mitochondria oxidize the glycine associated 
with photorespiration and likely supply the bulk of the cytosolic 
ATP required for sucrose synthesis and export. More generally, 
optimal photosynthesis requires the maintenance of cellular 
energy and carbon balance (Paul and Foyer, 2001; Stitt et  al., 
2010; Kramer and Evans, 2011). Changes in the availability 
of light, CO2, and other environmental parameters can disrupt 
this balance. Hence, specific respiratory activities may aid in 
maintaining energy and carbon balance in the light, thereby 
directly optimizing photosynthesis. Early genetic studies in the 
green alga Chlamydomonas reinhardtii illustrated the complexity 
and potential plasticity of such organelle interactions (Lemaire 
et  al., 1988; Cardol et  al., 2009).

This review will briefly introduce the concepts of energy 
and carbon balance during C3 photosynthesis and then focus 
on two pathways of electron flow; cyclic electron transport 
(CET) in the chloroplast and alternative oxidase (AOX) respiration 
in the mitochondrion. The coordinated activity of these pathways 
may have a central role in maintaining energy and carbon 
balance during photosynthesis and in response to changing 
environmental conditions.

THE NEED TO MAINTAIN ENERGY AND 
CARBON BALANCE DURING 
PHOTOSYNTHESIS

During C3 photosynthesis in leaf mesophyll cells, a light-driven 
chloroplast electron transport chain (cETC) in the thylakoid 
membrane generates energy intermediates (ATP and NADPH) 
that are then utilized by a CO2-dependent carbon fixation 
process in the chloroplast stroma [the Calvin-Benson (CB) 
cycle] to produce triose phosphates (TP; Stitt et  al., 2010). 
Two major challenges for the chloroplast during this process 
are (1) to balance the overall rate of light-driven production 
of energy intermediates with their rate of consumption, principally 
by the CB cycle and (2) to match the production ratio of 
ATP to NADPH with its consumption ratio by chloroplast 
metabolism (Kramer and Evans, 2011). These two distinct 
aspects of energy balance are closely related. For example, if 
the production ratio of ATP to NADPH was too low to meet 
demand, then the shortfall of ATP would slow the CB cycle, 
the major consumer of energy intermediates in the chloroplast. 
This in turn would generate an additional imbalance between 
light energy absorption and use.

In linear electron transport (LET), photosystem II (PSII) 
uses light energy to extract electrons from water and pass 
these through the plastoquinone (PQ) pool, the cytochrome 
b6f (cyt b6f) complex, and plastocyanin to photosystem I  (PSI). 
PSI then uses additional light energy to pass the electrons 
through ferredoxin to reduce NADP+ to NADPH. During LET, 

the splitting of water and PQ oxidation by the cyt b6f complex 
each contributes to generating a trans-thylakoid proton gradient 
(ΔpH). The proton motive force (pmf) associated with this 
gradient is then used by the chloroplast ATP synthase (cATP 
synthase) to generate ATP from ADP and inorganic phosphate 
(Pi) by photophosphorylation. However, it is widely acknowledged 
that the production ratio of ATP to NADPH generated by 
LET is less than required by stromal metabolism (mainly carbon 
fixation and photorespiration), hence necessitating mechanism(s) 
to boost this ratio. Complicating this further, the ATP/NADPH 
balance required in the stroma to satisfy photorespiration is 
higher than needed to satisfy carbon fixation, meaning that 
the optimal ATP/NADPH production ratio will change if the 
ratio of Rubisco carboxylation to oxygenation changes 
(Backhausen and Scheibe, 1999; Noctor and Foyer, 2000; Foyer 
et  al., 2012; Walker et  al., 2016).

One means by which chloroplasts maintain energy balance 
during photosynthesis is to make use of additional secondary 
pathways of electron flow that support ΔpH generation, and 
hence net ATP synthesis, but not the net synthesis of NADPH. 
In C3 plants, potential additional pathways include the malate 
valve, the Mehler reaction, the plastid terminal oxidase, and 
two different pathways of CET around PSI. In the CET pathways, 
electrons in ferredoxin are cycled back through the PQ pool 
and cyt b6f complex (Heber and Walker, 1992; Johnson, 2011; 
Yamori and Shikanai, 2016). In the malate valve, stromal 
NADPH is consumed by the reduction of oxaloacetate (OAA) 
to malate, which is then exported to the cytosol in exchange 
for OAA (Selinski and Scheibe, 2018). As described later, this 
process has important links to mitochondrial respiration. In 
the Mehler reaction, an electron from PSI is transferred to 
oxygen generating superoxide, the controlled detoxification of 
which then consumes stromal NADPH (Asada, 2006). Finally, 
plastid terminal oxidase couples PQ oxidation with the reduction 
of oxygen to water (Nawrocki et  al., 2015). Another recently 
described pathway uses the stromal enzyme phosphoglycerate 
dehydrogenase to indirectly transfer electrons from the NADPH 
to NADH pool (Höhner et  al., 2021).

Another means by which chloroplasts maintain energy balance 
during photosynthesis is to use the thylakoid ΔpH buildup 
generated by electron flow (both LET and the secondary 
pathways) as a means to feedback-regulate LET. This provides 
photo-protection by preventing the over-reduction of cETC 
components. The two main ΔpH-dependent photo-protective 
processes are “non-photochemical quenching” (NPQ) 
mechanisms and “photosynthetic control.” NPQ mechanisms 
increase the fraction of absorbed light energy at PSII that is 
dissipated as heat rather than supporting photochemical PQ 
reduction (Wobbe et  al., 2016; Murchie and Ruban, 2020). 
This protects PSII from singlet oxygen-induced photo-damage 
and slows the rate of electron flow into the cETC. Photosynthetic 
control refers to when lumen acidification inhibits the rate of 
PQ oxidation by the cyt b6f complex, hence slowing the rate 
of electron flow toward PSI (Foyer et  al., 1990; Tikhonov, 
2013). This prevents the over-reduction of electron carriers 
on the PSI acceptor side, which can otherwise result in PSI 
photo-damage (Wobbe et  al., 2016).
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A third major challenge for the chloroplast during 
photosynthesis relates to carbon balance. Effective plant growth 
and development require a balance between source and sink 
activities (Fernie et al., 2020). If source leaf sucrose production 
in the light outpaces sucrose utilization by the sinks, then 
phloem transport will slow and source leaf sucrose concentration 
will rise. A buildup of cytosolic sugar phosphate precursors 
(at the expense of cytosolic Pi) will then slow the rate of 
sucrose synthesis, by still poorly understood feedback mechanisms 
(Baena-González and Lunn, 2020). The reduction of cytosolic 
Pi may then slow its exchange by the triose phosphate translocator 
for stromal TP’s. As sugar phosphates then accumulate in the 
chloroplast, stromal Pi will also decline. This may then limit 
cATP synthase activity and slow photosynthesis (Stitt et  al., 
2010; Morales et al., 2018; McClain and Sharkey, 2019). Persistent 
carbon imbalances can also reduce photosynthetic capacity 
through changes in gene expression (Paul and Foyer, 2001).

Continuing research aims to understand the extent to which 
each of the secondary pathways of electron flow contribute 
to the maintenance of energy balance. It seems possible that 
different pathways will prevail, depending upon their own 
unique biochemical and molecular characteristics, as well as 
the particular environmental conditions in which photosynthesis 
is operating (Backhausen et  al., 2000). In quantitative terms, 
CET and the malate valve (coupled with mitochondrial 
respiration) are likely to be  the most prominent pathways in 
C3 plants (Walker et  al., 2020). Hence, these pathways, and 
their potential interaction with one another to maintain energy 
balance, are the major subject of this review. The review will 
also briefly consider how these pathways may contribute to 
the maintenance of carbon balance during photosynthesis.

TWO DISTINCT PATHWAYS OF CET 
AROUND PHOTOSYSTEM I

CET around PSI acts to increase the ATP/NADPH production 
ratio of the cETC by avoiding the production of NADPH, 
while supporting the buildup of ΔpH for ATP synthesis. By 
balancing the ATP/NADPH ratio in the stroma, CET prevents 
metabolic bottlenecks that would otherwise slow the CB cycle. 
A balanced ATP/NADPH ratio allows high CB cycle activity 
and hence a high capacity to turn over the purine and adenine 
nucleotide pools. This ensures that the plant can take advantage 
of conditions when light and CO2 are abundant. In addition, 
while CET is not a net sink for electrons, it does contribute 
to photo-protection since the buildup of ΔpH can support 
increases in NPQ at PSII and photosynthetic control at cyt b6f.

There are two pathways of CET around PSI in C3 plants 
(Figure  1A). The major pathway involves the PROTON 
GRADIENT REGULATION5 (PGR5) and PGR5-LIKE 
PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) proteins 
(Munekage et  al., 2002; DalCorso et  al., 2008; Hertle et  al., 
2013; Rühle et  al., 2021). The phenotype of PGR5/PGRL1 
pathway mutants is an inability to engage NPQ due to insufficient 
buildup of ΔpH across the thylakoid membrane. However, the 
precise molecular function of these proteins in the pathway 

remains uncertain (Shikanai, 2020). A distinguishing feature 
of the PGR5/PGRL1 pathway is its inhibition by antimycin A 
(Munekage et al., 2002; Nishikawa et al., 2012; Sugimoto et al., 
2013; Rühle et  al., 2021). The second pathway of CET involves 
an NADH dehydrogenase-like complex (NDH; Joët et al., 2001; 
Shikanai, 2016; Strand et  al., 2017a; Schuller et  al., 2019). The 
NDH complex is composed of at least 29 subunits (Arabidopsis 
thaliana), forms a super-complex with PSI, and is proton-
pumping meaning that it is higher ATP yielding (per electron 
transported) than the PGR5/PGRL1 pathway. Double mutants 
lacking both CET pathways show severe photosynthetic and 
growth phenotypes, even under relatively optimal growth 
conditions, illustrating the essential role of CET in C3 plants 
(Munekage et  al., 2004).

While PGR5/PGRL1 is considered the main pathway of 
CET in C3 plants, there is evidence that both pathways contribute 
to CET and can at least partially compensate for each other’s 
activity (Joët et  al., 2001; Munekage et  al., 2004; Munné-Bosch 
et  al., 2005; Wang et  al., 2015; Nakano et  al., 2019). That said, 
there is accumulating evidence that the NDH pathway has 
added importance at lower irradiances, while the PGR5/PGRL1 
pathway has added importance at higher irradiances. Since 
the ratio of photorespiration to carbon fixation typically increases 
with irradiance, it exaggerates the shortfall of ATP relative to 
NADPH production by LET. Hence, while the lower capacity 
(but higher ATP yielding) NDH pathway may be  sufficient at 
low irradiance, the PGR5/PGRL1 pathway may need to make 
an additional contribution to CET when the ATP/NADPH 
imbalance is greater, such as at higher irradiance. Fisher et  al. 
(2019) showed that ATP inhibits both CET pathways, with 
the PGR5/PGRL1 pathway being 2–3 fold more sensitive to 
such downregulation (i.e., lower half-maximal inhibitory 
concentration for ATP). This suggests that a moderate shortfall 
of ATP relative to NADPH production by LET (such as at 
low irradiance) should first engage the NDH pathway, while 
a more severe ATP shortfall (such as at high irradiance) would 
additionally engage the PGR5/PGRL1 pathway. According to 
this logic, engagement of the PGR5/PGRL1 pathway should 
require a more severe over-reduction of the stroma than 
engagement of the NDH pathway.

Studies across multiple species suggest that the NDH pathway 
is most relevant at lower irradiances (Ueda et  al., 2012; Kou 
et  al., 2015; Martín et  al., 2015; Yamori et  al., 2015). NDH 
mutants in liverwort (Marchantia polymorpha) and rice (Oryza 
sativa) display higher excitation pressure specifically at low 
irradiance, and the rice mutant shows reduced carbon fixation 
and growth at low but not high irradiance (Ueda et  al., 2012; 
Yamori et al., 2015). It seems probable that, when photosynthesis 
is light-limited, the higher ATP-yielding NDH pathway of CET 
is best suited to balance the ATP/NADPH production ratio 
of the chloroplast. Studies have also compared the thylakoid 
proteome of low, medium, and high irradiance-grown plants. 
In both pea (Pisum sativum) and A. thaliana, the protein 
amounts of both CET pathways increased with growth irradiance 
(Albanese et  al., 2018; Flannery et  al., 2021). However, only 
PGR5/PGRL1 pathway components increased substantially in 
A. thaliana between medium and high irradiance. Evidence 
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is also emerging that the CET pathways are controlled, at 
least in part, by the thiol-based redox regulation systems of 
the chloroplast. These include the ferredoxin-thioredoxin 
reductase and NADPH-thioredoxin reductase C systems (Yoshida 
and Hisabori, 2016a). Accumulating data suggest that low light 
may preferentially activate the NDH pathway via NADPH-
thioredoxin reductase C, while high light may preferentially 
activate the PGR5/PGRL1 pathway via ferredoxin-thioredoxin 
reductase (Nikkanen and Rintamäki, 2019). Overall, multiple 
lines of evidence suggest that while both CET pathways may 
increase in activity with increasing irradiance, there may also 
be  a gradual shift in electron partitioning toward the PGR5/
PGRL1 path as irradiance increases.

Nonetheless, what is the advantage of having two CET 
pathways rather than, for example, just a higher capacity NDH 
pathway? As irradiance increases and/or the leaf concentration 
of CO2 for carbon fixation becomes more limiting, it is 
advantageous that electron flux through the cETC 

be  downregulated through engagement of NPQ and 
photosynthetic control. This is necessary to ensure a balance 
between the rate of light-driven production of energy 
intermediates and their rate of consumption. In the absence 
of such balance, acceptor-side limitations at both photosystems 
could generate damaging reactive oxygen species (ROS), such 
as singlet oxygen at PSII and superoxide at both photosystems 
(Wobbe et  al., 2016). The NDH pathway has a stoichiometry 
of 8H+/2e− (proton-pumping complex plus cyt b6f Q-cycle) 
while the PGR5/PGRL1 pathway has a stoichiometry of 4H+/2e− 
(Q-cycle only), meaning that the PGR5/PGRL1 pathway will 
be  less thermodynamically constrained by an increase in pmf. 
Hence, PGR5/PGRL1 may be  able to function at a higher 
range of ΔpH than the NDH pathway (Shikanai, 2016). This 
would allow enhanced engagement of the ΔpH-dependent 
controls over electron transport (NPQ and photosynthetic 
control), while at the same time continuing to use CET as a 
means to balance the ATP/NADPH ratio. The necessity for 

A

B

FIGURE 1 | (A) The photosynthetic electron transport chain in chloroplast thylakoid membrane. Linear electron transport (LET) involves both photosystems while 
cyclic electron transport (CET) involves only photosystem I (PSI). Both modes of electron transport contribute to the proton motive force used by chloroplast ATP 
synthase (cATP synthase) to generate ATP, while only LET contributes to NADPH production. ATP and NADPH support carbon fixation by the Calvin-Benson (CB) 
cycle. One pathway of CET involves the proton-pumping NADH dehydrogenase-like (NDH) complex, while the other pathway involves the proteins PROTON 
GRADIENT REGULATION5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1). The malate valve can transfer NADPH equivalents from the 
stroma to cytosol. (B) The respiratory electron transport chain in inner mitochondrial membrane (IMM). Complex I, a family of other internal and external alternative 
dehydrogenases (NDin and NDex, respectively), and Complex II oxidize reducing equivalents. Electrons partition between the cytochrome (cyt) pathway [involving 
Complex III, cyt c, and Complex IV (cyt c oxidase)] and alternative oxidase (AOX). The proton motive force generated by electron transport is used by the 
mitochondrial ATP synthase (Complex V) to generate ATP. The proton gradient can also be dissipated by uncoupling proteins (UCP). Electron flow from reducing 
equivalents to cyt c oxidase is more tightly coupled to the generation of proton motive force (2–3 sites of proton translocation) than is electron flow from reducing 
equivalents to AOX (0–1 sites of proton translocation). Fd, ferredoxin; IMS, intermembrane space; and PC, plastocyanin.
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both of these processes tends to increase with irradiance. 
Another important requirement to generate the higher ΔpH, 
besides using PGR5/PGRL1 to maintain proton influx to the 
lumen, will be  to reduce the conductivity of proton efflux 
back to the stroma through cATP synthase (Kanazawa et  al., 
2017; Takagi et  al., 2017). It is evident that cATP synthase 
conductivity does change in response to metabolic conditions. 
For example, low stromal Pi (perhaps indicative of sufficient 
energy intermediates) is hypothesized to reduce cATP synthase 
conductivity, thus allowing for a higher steady-state ΔpH at 
any given rate of ATP synthesis (Takizawa et al., 2008). Another 
likely player in managing ΔpH is thylakoid membrane-localized 
ion transporters. For example, K+/H+ antiporter activity at low 
irradiance acts to reduce ΔpH while maintaining pmf, in this 
way maximizing PSII light use efficiency (Correa Galvis et  al., 
2020). In summary, having two distinct CET pathways allows 
CET to achieve two somewhat competing goals regarding energy 
balance – the need to increase the production ratio of ATP 
to NADPH (requiring dissipation of ΔpH), and the need to 
enhance ΔpH-dependent controls over electron transport when 
there is an imbalance between the generation and utilization 
of energy intermediates.

The ability of CET to modulate both the ATP/NADPH 
production ratio and ΔpH-dependent photo-protective 
mechanisms may be  particularly challenged under conditions 
of rapidly fluctuating irradiance. Such conditions are common 
in nature, and the response of photosynthesis to such conditions 
is now being studied intensively (Kaiser et  al., 2018; Slattery 
et  al., 2018). Plants readily acclimate to different steady-state 
growth irradiances through changes in gene expression that 
alter the relative abundance of different components of the 
photosynthetic apparatus (Schöttler and Tóth, 2014). However, 
a continuously fluctuating irradiance will preclude such long-
term acclimations, and presumably place added pressure on 
short-term, readily reversible regulatory mechanisms, such as 
those involving changes in electron and proton flux. The 
challenge is that optimal photosynthesis under fluctuating 
irradiance requires maximizing light energy absorption and 
use at the lower irradiance, maximizing photo-protection at 
the higher irradiance, and having the ability to rapidly and 
reversibly transition between the two states. There is strong 
evidence that changes in CET play an important role here. 
For example, while A. thaliana pgr5 mutants can survive and 
grow at steady-state low or high irradiance, the mutation is 
seedling-lethal under fluctuating irradiance (Tikkanen et  al., 
2010; Suorsa et  al., 2012). This primarily relates to the ability 
of CET to rapidly protect PSI from photo-damage due to 
excess electrons. Under fluctuating irradiance, CET acted to 
both balance the ATP/NADPH ratio, hence maintaining electron 
sink capacity downstream of PSI, and engage photosynthetic 
control, hence slowing electron flow into PSI (Kono and 
Terashima, 2016; Yamamoto and Shikanai, 2019). Analysis of 
rice mutants indicated that both pathways of CET had a role 
in optimizing photosynthesis under fluctuating irradiance, with 
the lack of either pathway resulting in significant PSI photo-
damage (Yamori et al., 2016). Recent transcriptome and proteome 
analyses in A. thaliana indicate that both CET pathways increase 

in capacity in fluctuating irradiance (Schneider et  al., 2019; 
Niedermaier et  al., 2020).

Besides irradiance changes, other environmental factors also 
challenge chloroplast energy balance. Examples include changes 
in water status and temperature. Water deficit induces stomatal 
closure that, by restricting CO2 diffusion into the leaf, acts to 
slow Rubisco carboxylation and promote Rubisco oxygenation. 
Numerous studies suggest increased CET under such conditions, 
presumably to satisfy the increased ATP (relative to NADPH) 
demand of photorespiration relative to carbon fixation. Whether 
one or both CET pathways are important during water deficit 
remains unclear. This may depend on plant species, developmental 
stage, and other accompanying environmental factors (Horváth 
et  al., 2000; Golding and Johnson, 2003; Munné-Bosch et  al., 
2005; Long et  al., 2008; Kohzuma et  al., 2009; Lehtimäki et  al., 
2010; Zivcak et  al., 2013; Leverne and Krieger-Liszkay, 2021). 
The ratio between photorespiration and carbon fixation also 
increases with temperature. This is because increased temperature 
decreases the solubility of CO2 more than O2, as well as 
decreasing the specificity of Rubisco for CO2 relative to O2. 
Moderate heat stress (40–42°C) increased the rate of CET in 
both A. thaliana and tobacco (Nicotiana tabacum), and mutants 
in either CET pathway compromised photosynthesis under 
these conditions (Wang et  al., 2006; Zhang and Sharkey, 2009; 
Tan et  al., 2020). Besides contributing to energy balance, 
increased rates of CET at these high temperatures might 
be  necessary to compensate for higher rates of thylakoid 
membrane leakiness to protons. In tomato (Solanum 
lycopersicum), high temperature (40°C) induced the expression 
of genes encoding components of both CET pathways (Lu 
et  al., 2020). In cowpea (Vigna unguiculata), high temperature 
(45°C) substantially reduced carbon fixation while cETC activity 
was stimulated and dependent upon photorespiration and other 
unidentified electron sinks (Osei-Bonsu et  al., 2021).

Several studies have linked CET to cellular amounts of H2O2. 
In barley (Hordeum vulgare), treatment of leaves with exogenous 
H2O2 increased amounts of NDH transcript, protein, and activity 
(Casano et  al., 2001; Lascano et  al., 2003). In tomato, a light 
quality-dependent systemic induction of NDH activity and a 
chilling-induced increase in PGR5 gene expression were each 
dependent upon increases in H2O2 (Guo et  al., 2016; Fang 
et  al., 2019). In A. thaliana, several different photorespiration 
mutants, as well as several other mutants with defective expression 
of chloroplast proteins, all displayed both increased amounts 
of H2O2 and increased rates of CET (Strand et  al., 2017b; Li 
et  al., 2019). Another study clearly showed that H2O2 could 
rapidly increase the rate of CET in A. thaliana and that this 
activation was specific to the NDH pathway (Strand et  al., 
2015). The authors hypothesized that when energy imbalances 
cause high stromal NADPH, a lack of electron acceptor increases 
PSI-dependent superoxide production and conversion to H2O2. 
The increase in H2O2 then activates CET to correct the energy 
imbalance (Strand et  al., 2015). In summary, there is evidence 
that H2O2 can increase CET through both changes in gene 
expression and activation at the enzyme level. Current evidence 
suggests that the NDH pathway is most subject to such control 
by H2O2. This may provide some rationale why NDH mutants 
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show photosynthetic defects under stressful abiotic conditions 
known to generate oxidative stress (Shikanai, 2016). NDH 
mutants can also display higher amounts of H2O2 in the light 
(Wang et  al., 2006; Sirpiö et  al., 2009).

DISTINCT PATHWAYS OF 
MITOCHONDRIAL ELECTRON 
TRANSPORT TO OXYGEN

Malate valves function to shuttle reducing equivalents from 
one cell compartment to another by using isoforms of malate 
dehydrogenase (MDH) in different cell compartments to 
reversibly interconvert malate and OAA, and dicarboxylate 
transporters to move these metabolites between compartments 
(Taniguchi and Miyake, 2012; Selinski and Scheibe, 2018). To 
shuttle excess reducing equivalents from the stroma to cytosol 
during photosynthesis requires that the malate exported from 
the chloroplast be  oxidized back to OAA, for return to the 
chloroplast. This malate oxidation will generate NADH, the 
turnover of which may then depend upon the mitochondrial 
electron transport chain (mETC).

A defining feature of the plant mETC is the presence of 
two pathways of electron flow from the ubiquinone (UQ) pool 
to oxygen (Figure  1B). The cytochrome (cyt) pathway consists 
of Complex III, cyt c, and Complex IV (cyt c oxidase). At 
Complex’s III and IV, electron flow is coupled to proton 
translocation from matrix to intermembrane space. The resulting 
pmf across the inner mitochondrial membrane (IMM) is used 
by the mitochondrial ATP synthase (Complex V) to generate 
ATP by oxidative phosphorylation. The other pathway of electron 
flow from UQ to oxygen consists simply of an ubiquinol oxidase 
termed AOX. Electron flow from UQ to AOX is not coupled 
to proton translocation, providing a means to relax the coupling 
between electron transport and ATP generation (Vanlerberghe, 
2013; Del-Saz et  al., 2018; Selinski et  al., 2018a). In recent 
years, plants with increased and decreased expression of AOX 
have been used to examine the potential role of this pathway 
in supporting photosynthesis and growth (reviewed by 
Vanlerberghe et  al., 2020). For example, if AOX respiration is 
necessary to balance the ATP/NADPH ratio of the chloroplast 
and hence prevent a stromal ATP limitation, then knockout 
of AOX might be  expected to decrease the concentration of 
the ATP-dependent products of the CB cycle, ribulose 
1,5-bisphosphate, and TP. Indeed, these metabolites were lower 
in the A. thaliana aox1a mutant during photosynthesis, while 
the amount of a non-ATP-dependent metabolite 
(phosphoglycerate) was unchanged relative to wild type (WT; 
Gandin et  al., 2012). Interestingly, the mutant also contained 
higher amounts of the two metabolite activators of AOX1A, 
pyruvate, and OAA (see below).

Both modeling and experimental studies suggest that the 
mETC is a net sink for electrons derived from chloroplast 
metabolism in the light (Krömer, 1995; Buckley and Adams, 
2011; Cheung et  al., 2015; Shameer et  al., 2019; Yamada et  al., 
2020; Alber and Vanlerberghe, 2021). One abundant source 

of electrons is a carbon reaction in the photorespiration pathway. 
Conversion of glycine to serine by the mitochondrial glycine 
decarboxylase (GDC) generates NADH. However, this does 
not represent a net source of chloroplast-derived reductant 
delivered to the rest of the cell since NADH that is subsequently 
consumed in the peroxisome by the photorespiratory enzyme 
hydroxypyruvate reductase stoichiometrically matches the NADH 
produced by GDC. [One caveat here is that some serine 
generated during photosynthesis may exit the photorespiratory 
pathway, in which case the pathway would generate some net 
reductant (Ros et  al., 2014)]. On the other hand, stromal 
reductant that accumulates due to an imbalanced generation 
of ATP relative to NADPH by the cETC could represent a 
net source of chloroplast-derived reductant requiring oxidation 
by the mETC following export to the cytosol by the malate 
valve. That said, this potential source of reductant does still 
depend, in part, upon photorespiration. As discussed earlier, 
this is because photorespiratory metabolism in the chloroplast 
has a higher demand for ATP relative to NADPH than carbon 
fixation (Backhausen and Scheibe, 1999; Foyer et  al., 2012; 
Walker et  al., 2016). Hence, the chloroplast demand for ATP 
relative to NADPH increases as the ratio of oxygenation to 
carboxylation by Rubisco increases. This enhances the shortfall 
of ATP relative to NADPH generation by LET, hence increasing 
the amount of excess stromal NADPH.

The ATP produced by oxidative phosphorylation cannot 
readily enter the chloroplast in the light and therefore must 
primarily act to satisfy cytosolic ATP demand (Gardeström 
and Igamberdiev, 2016; Voon et  al., 2018). Hence, the mETC 
would primarily contribute to the ATP/NADPH balance of 
the chloroplast by turning over chloroplast-derived reductant 
via the malate valve, which would then allow continued 
chloroplast electron flow coupled with photophosphorylation 
to boost the stromal ATP supply. Presumably, either cyt c 
oxidase or AOX could act as the sink for excess chloroplast-
derived reductant, and which pathway prevails likely depends 
upon the cytosolic demand for ATP. When such ATP demand 
is low, the activity of Complex V and hence the dissipation 
of pmf across the IMM is slowed by a low amount of matrix 
ADP. Under these conditions, electron flow through the proton-
pumping Complex’s III and IV becomes thermodynamically 
constrained by the increase in pmf. Such “adenylate control” 
is a major regulator of electron flow through the cyt pathway 
(O’Leary et al., 2019). However, the non-proton-pumping AOX 
is not subject to this constraint, allowing much higher rates 
of electron flow to oxygen when ADP is limiting (Vanlerberghe 
et  al., 1995).

During photosynthesis, a major cytosolic demand for ATP 
is to support the biosynthesis of sucrose, and then the active 
transport of sucrose into the phloem, for delivery to sink 
tissues (Krömer et al., 1988; Hendrix and Grange, 1991; Krömer 
and Heldt, 1991; Bouma et al., 1995; Krömer, 1995; Gardeström 
and Igamberdiev, 2016). This demand in turn depends upon 
the activity of the CB cycle to provide the TP’s for sucrose 
biosynthesis. When carbon fixation rates are less (e.g., low 
irradiance, water stress), rates of sucrose synthesis and export 
will be  less. When carbon fixation rates are greater (e.g., high 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chadee et al. Chloroplast-Mitochondrion Metabolic Interactions

Frontiers in Plant Science | www.frontiersin.org 7 September 2021 | Volume 12 | Article 748204

irradiance, well-watered), rates of sucrose synthesis and export 
will be  greater. Hence, the choice of whether cyt c oxidase 
or AOX consumes excess chloroplast-derived reductant may 
depend, in part, on net rates of carbon fixation under different 
environmental conditions.

A key component of the chloroplast malate valve is an 
NADP-dependent MDH (NADP-MDH) in the stroma that 
couples NADPH oxidation with the reduction of OAA to malate 
(Taniguchi and Miyake, 2012). The malate produced then exits 
the chloroplast and is oxidized back to OAA in the cytosol 
or other cell compartment by NAD-dependent MDH isoforms, 
producing NADH. The activity of NADP-MDH is subject to 
tight thiol-based redox regulation to ensure that the valve is 
only active when the stromal NADPH/NADP+ ratio is high 
(Selinski and Scheibe, 2018). Interestingly, mitochondrial MDH 
(mMDH) is not redox-regulated but rather is regulated by 
adenylates acting as direct effectors of enzyme activity. In A. 
thaliana, mMDH1 activity (either malate oxidation or OAA 
reduction) is inhibited by an increase in the ATP/ADP ratio 
(Yoshida and Hisabori, 2016b). This result is consistent with 
earlier studies in mung bean (Asahi and Nishimura, 1973; 
Tobin and Givan, 1984). Hence, a high matrix ATP/ADP ratio 
could compromise the cell’s ability to manage the redox state 
of different NAD(P)H pools. For example, if mitochondrial 
OAA reduction to malate slows, it could compromise the 
shuttling from mitochondrion to peroxisome of reducing 
equivalents arising from photorespiratory glycine oxidation 
(Tomaz et  al., 2010; Lindén et  al., 2016; Lim et  al., 2020; 
Figure 2A). On the other hand, if mitochondrial malate oxidation 
to OAA slows, it could compromise the shuttling of reducing 
equivalents from the chloroplast to the mETC (Nunes-Nesi 
et al., 2005; Shameer et al., 2019; Zhao et al., 2020; Figure 2B). 
Hence, preventing either of these scenarios may in some cases 
depend upon a shift in the mETC from the cyt pathway to 
AOX in order to lower the ATP yield and hence ensure sufficient 
mMDH activity to manage the redox state of different  
NAD(P)H pools during photosynthesis.

Specific metabolites act as direct effectors of AOX activity, 
allowing for rapid and reversible changes in the partitioning 
of electrons between the cyt pathway and AOX in response 
to metabolic conditions within the mitochondrial matrix (Millar 
et al., 1993). Across plant species, pyruvate is a potent activator 
of multiple AOX isoforms (Millar et  al., 1993; Vanlerberghe 
et  al., 1995; Selinski et  al., 2018b). A comprehensive study of 
AOX effectors in A. thaliana has shown that the AOX1A 
isoform is activated by both pyruvate and OAA (Selinski et al., 
2018b). Pyruvate is the product of malate oxidation by 
NAD-dependent malic enzyme (NAD-ME), while OAA is the 
product of malate oxidation by mMDH. High matrix NADH 
favors NAD-ME over mMDH activity, since the equilibrium 
of the mMDH reaction strongly favors OAA reduction (Tobin 
et al., 1980). If malate is being imported into the mitochondrion 
as a means to shuttle reducing equivalents from the chloroplast 
to mETC, then mMDH activity is needed to generate the 
OAA for return to the chloroplast. AOX1A activation by OAA 
could be  important to ensure that NADH amounts remain 
low and favor malate oxidation by mMDH, even when ATP/

ADP ratios might otherwise constrain NADH oxidation by 
the cyt pathway (Selinski et  al., 2018b; Figure  2B). This may 
provide some rationale why other AOX isoforms not activated 
by OAA appear unable to compensate for AOX1A in optimizing 
photosynthesis (Strodtkötter et  al., 2009).

The stimulation of AOX activity by pyruvate and other 
metabolic activators first requires that the AOX dimer be present 
in its “reduced” form, where a regulatory disulfide bond between 
the two monomers is reduced to its component sulfhydryls 
(Umbach and Siedow, 1993; Vanlerberghe et  al., 1995). In 
isolated mitochondria, this reduction is initiated by the oxidation 
of specific tricarboxylic acid cycle intermediates, which 
presumably provides NADPH used by a mitochondrial 
thioredoxin system to catalyze the reduction (Vanlerberghe 
et  al., 1995; Gelhaye et  al., 2004). However, the physiological 
relevance of this oxidation and reduction for rapid and reversible 
changes in AOX activity remains uncertain since the reduced 
form of AOX is usually shown to dominate in vivo. This 
suggests that short-term biochemical control of AOX activity 
will depend primarily upon the concentration of metabolic 
effectors. However, in Alocasia odora, a shade species, there 
was a striking effect of growth irradiance on AOX redox status 
(Noguchi et al., 2005). While the total amount of AOX protein 
was similar between high irradiance-grown [photosynthetic 
photon flux density of 490 μmol m−2  s−1 (490 PPFD)] and low 
irradiance-grown (20 PPFD) plants, the AOX dimer was 
predominantly in its reduced active form in the former, but 
oxidized inactive form in the later. This might allow the low 
irradiance-grown plants to maintain the low respiration rate 
typical of shade plants, while also allowing for a rapid increase 
in AOX activity following sudden exposure to higher irradiance 
(Noguchi et  al., 2005).

Higher amounts of photorespiration (relative to carbon 
fixation) increases the chloroplast demand for ATP relative to 
NADPH, while at the same time reducing cytosolic ATP demand 
for sucrose synthesis and export, due to a relative slowing of 
carbon gain. Hence, as photorespiration increases, one might 
expect a shift toward more AOX respiration to oxidize excess 
reductant. In A. thaliana, the glycine to serine ratio gradually 
increases with increased temperature, presumably since higher 
temperatures promote photorespiration (Li et  al., 2020). In an 
aox1a mutant, the glycine to serine ratio was similar to WT 
at lower temperatures (4–12°C) but higher than WT at higher 
temperatures (23–35°C; Li et al., 2020). This suggests that GDC 
was inhibited in aox1a at higher temperatures, likely by high 
matrix NADH (Pascal et al., 1990; Bykova et al., 2014). Hence, 
as photorespiration becomes more active, AOX activity is 
necessary for redox balance, and the cyt pathway apparently 
cannot compensate for the lack of AOX, perhaps due to an 
insufficient demand for cytosolic ATP. Similarly, another study 
showed that photosynthesis in an A. thaliana aox1a mutant 
was only disrupted under photorespiratory conditions (Zhang 
et  al., 2017).

When the mETC is using AOX to facilitate electron movement 
from NADH to oxygen, only one site of proton translocation 
(Complex I) is active, hence lowering the ATP yield associated 
with electron flow. What happens if this ATP yield is still too 
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high to allow sufficient turnover of reductant by the 
mitochondrion during photosynthesis? In this case, two other 
mETC components could potentially further boost the capacity 
of the mitochondrion to act as electron sink. First, plant 
mitochondria contain a family of alternative NAD(P)H 
dehydrogenases that, unlike Complex I, are not proton-pumping 
(Rasmusson et  al., 2020; Figure  1B). Hence, if their activity 
was combined with AOX, electron flow from NAD(P)H to 
oxygen would involve no sites of proton translocation to support 
oxidative phosphorylation. Second, plant mitochondria have 
uncoupling proteins (UCPs) that are able to dissipate the proton 
gradient across the IMM, hence uncoupling electron transport 
from oxidative phosphorylation (Barreto et al., 2020; Figure 1B). 
In A. thaliana and other species, there is co-expression of the 
genes encoding AOX1A and the alternative dehydrogenase 
NDB2 (Clifton et  al., 2005; Yoshida and Noguchi, 2009; 
Wanniarachchi et  al., 2018; Sweetman et  al., 2020). NDB2 is 
the major external NADH dehydrogenase, meaning that it 
oxidizes NADH on the external (i.e., cytosolic) side of the 
IMM. An inter-dependence between NDB2 and AOX1A activities 
exists that could relate to redox poising of the UQ pool 
(Sweetman et  al., 2019). However, whether alternative 
dehydrogenases have a role in supporting photosynthesis remains 
unclear since there have been relatively few studies of plants 
with altered expression of these dehydrogenases (Sweetman 
et  al., 2019). More studies have examined the potential role 

of UCP’s during photosynthesis. GDC activity was restricted 
in an A. thaliana ucp1 mutant that, interestingly, was also 
deficient in AOX protein (Sweetlove et  al., 2006). Another 
interesting observation was that UCP1 overexpression in tobacco 
resulted in an increased abundance of transcripts encoding 
several major cETC components, but not mETC components 
(Laitz et al., 2015). In another study, inhibition of mitochondrial 
oxidative phosphorylation in the light with oligomycin resulted 
in a strong induction of both UCP and cATP synthase that 
was then able to maintain cETC activity and cell viability 
(Alber and Vanlerberghe, 2021). These studies suggest a 
connection between mitochondrial UCP’s and photosynthesis 
that deserves further study.

INTERACTION OF THE DIFFERENT 
CHLOROPLAST CET AND 
MITOCHONDRIAL ELECTRON 
TRANSPORT PATHWAYS

Evidence in the literature suggests that CET and the mETC 
may compensate for each other’s activity, perhaps signifying 
some complementarity of function. Following growth at low 
irradiance (40 PPFD), both pgr5 and crr2-2 (NDH) mutants 
of A. thaliana had a near 2-fold greater amount of AOX protein, 

A

B

FIGURE 2 | Malate valves may aid in managing the redox state of different NAD(P)H pools during photosynthesis. (A) Some reducing equivalents (NADH) 
generated during photorespiratory glycine oxidation in the mitochondrion may move to the peroxisome via a malate valve to support hydroxypyruvate (OH-pyruvate) 
reduction to glycerate (Tomaz et al., 2010; Lindén et al., 2016; Lim et al., 2020). This process requires oxaloacetic acid (OAA) reduction to malate by a mitochondrial 
malate dehydrogenase (mMDH), whose activity is subject to inhibition by ATP (see text for details). (B) Some reducing equivalents (NADPH) generated by linear 
electron transport (LET) in the chloroplast may move to the mitochondrion via a malate valve and be oxidized by the mitochondrial electron transport chain (mETC; 
Nunes-Nesi et al., 2005; Shameer et al., 2019; Zhao et al., 2020). This process requires malate oxidation to OAA by mMDH, whose activity is subject to inhibition by 
ATP. Activation of AOX by OAA may ensure that NADH and ATP amounts remain low enough to favor this malate oxidation (see text for details).
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compared to WT (Yoshida et  al., 2007). Following an 8 h high 
irradiance (320 PPFD) treatment of these plants, the AOX 
amount was now similar in WT and crr2-2, primarily due to 
an approximately 2-fold increase of AOX amount in the WT, 
with little change in crr2-2. On the other hand, the high 
irradiance treatment doubled the AOX amount in the pgr5 
mutant, such that these plants now maintained a much higher 
AOX amount than WT or crr2-2 plants (Yoshida et  al., 2007). 
These results suggest that both pathways of CET are consequential 
at low irradiance, with knockdown of either resulting in a 
compensatory increase in AOX amount. However, following 
the shift to high irradiance, only the loss of PGR5 required 
a further compensatory increase in AOX, suggesting that the 
NDH pathway was now less consequential than the PGR5/
PGRL1 pathway. Further, the increase of AOX in the WT 
plants in response to the irradiance shift suggests that both 
PGR5 and AOX are beneficial under these conditions. Like 
the CET pathways, AOX could provide a means to adjust the 
ATP/NADPH ratio of the chloroplast (by consuming chloroplast-
derived reductant) and/or bolster the ΔpH-dependent controls 
over cETC activity by promoting LET. Cyt c oxidase could 
equally fulfill these roles but only if its activity was not being 
constrained by rates of cytosolic ATP turnover, the demand 
for which may not increase, at least in the shorter-term, 
following transfer to higher irradiance. Another study found 
that a double mutant lacking both CET pathways not only 
had a 2-fold higher AOX protein content but also a significant 
decline in cyt c oxidase (subunit II) protein. This was evident 
even at a low growth irradiance (80 PPFD), indicating a 
fundamental shift in the composition of the respiratory chain 
(Florez-Sarasa et  al., 2016).

Other studies also imply complementary roles of the 
chloroplast PGR5/PGRL1 and mitochondrial AOX pathways. 
In C. reinhardtii, a pgrl1 mutant displayed normal photosynthesis 
and growth under a wide range of irradiance and CO2 
concentration. This was due in part to changes in respiration 
in the mutant, including increased amounts of AOX (Dang 
et al., 2014). However, growth of the mutant became compromised 
in fluctuating light, suggesting that respiration was unable to 
compensate for the lack of CET under those conditions. To 
our knowledge, it is unknown whether AOX respiration has 
a role in C3 plants under fluctuating light conditions, so this 
should be a priority for future study. Interestingly, photosynthetic 
performance was compromised under fluctuating light in plants 
with a mutated chloroplast NADP-MDH lacking redox regulation 
(Yokochi et  al., 2021). Further, the expression and protein 
amount of mitochondrial GDC and other photorespiratory 
enzymes increased in fluctuating light (Schneider et  al., 2019; 
Niedermaier et  al., 2020). This suggests that the high light 
phase of fluctuating light can result in leaf CO2 depletions 
that promote photorespiration, which could then necessitate 
an increased use of the malate valve and mitochondrial functions 
to balance the stromal ATP/NADPH ratio. During the high 
light phase of fluctuating light, increases in carbon fixation 
and sucrose synthesis likely lag behind increases in cETC 
activity. Hence, there would be  a transient increased demand 
on the mitochondrion to oxidize excess NADPH without a 

corresponding increase in ATP demand for sucrose synthesis. 
These conditions could necessitate the use of AOX as the 
mitochondrial electron sink.

Studies have also examined an A. thaliana aox1a/pgr5 double 
mutant (Yoshida et  al., 2011a; Jiang et  al., 2019). The double 
mutant grew much more poorly than either single mutant, 
particularly at early growth stages and higher growth irradiances 
(note that of the single mutants, only pgr5 showed compromised 
growth relative to WT; Yoshida et  al., 2011a). The growth 
phenotype of the double mutant may be  at least partly due 
to a reduced rate of carbon fixation at early growth stages 
(Jiang et  al., 2019). These studies emphasize that, even with 
a functional chloroplast NDH and mitochondrial cyt pathway 
in place, the lack of both lower-ATP yielding pathways (PGR5/
PGRL1 and AOX) can severely hinder plant performance relative 
to the lack of either one alone.

A potential consequence of having excess chloroplast reductant 
oxidized by the mETC is that it moves the burden of ROS 
generation from the cETC to the mETC (Zhao et  al., 2020). 
If only cyt c oxidase was present, then the extent to which 
turnover of chloroplast reductant generated mitochondrial ROS 
would depend upon the demand for mitochondrial-generated 
ATP, such as to support sucrose synthesis. Low ATP demand 
would increase the reduction state of mETC components, hence 
enhancing ROS generation (Møller, 2001). Instead, the presence 
of AOX will moderate the reduction state of mETC components 
when ATP demand is low. Hence, utilizing AOX, rather than 
the cyt pathway, to manage excess chloroplast reductant should 
be of particular importance when the demand for mitochondrial-
generated ATP is low. This would include conditions, such as 
water deficit, that slow CB cycle activity by restricting CO2 
supply. This has multiple potential impacts. First, it exaggerates 
the imbalance between energy generation in the thylakoids 
and energy use in the stroma. Second, it exaggerates the ATP/
NADPH imbalance in the chloroplast by promoting 
photorespiration. Third, since carbon fixation is restricted, it 
reduces the cytosolic ATP demand for sucrose synthesis and 
export. Indeed, some studies have shown that, under water 
deficit, oxidative damage can occur earlier in leaf mitochondria 
than chloroplasts (Bartoli et  al., 2004; Dahal and 
Vanlerberghe, 2017).

In tobacco experiencing water deficit, oxidative damage 
(protein carbonylation amount) was enhanced in AOX1A 
knockdowns in both the mitochondrion and chloroplast, 
suggesting that the AOX pathway was a necessary electron 
sink and acted to prevent ROS generation in both organelles 
(Dahal and Vanlerberghe, 2017). This occurred despite the 
knockdowns displaying higher rates of CET than WT under 
water deficit conditions (Dahal et  al., 2014; Dahal and 
Vanlerberghe, 2018a). The protein oxidative damage correlated 
closely with losses of PSII function in the chloroplast and cyt 
c oxidase function in the mitochondrion. On the other hand, 
AOX overexpression reduced oxidative damage and preserved 
the organelle functions relative to WT plants (Dahal and 
Vanlerberghe, 2017). Other studies also report increased rates 
of CET in the absence of AOX. In broad bean (Vicia faba), 
chemical inhibition of AOX decreased the ratio of PSII to PSI 
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operating efficiency, particularly at low measurement irradiance, 
suggestive of increased CET (Yoshida et  al., 2006). Similar 
results were seen in the A. thaliana aox1a mutant, but at high 
rather than low measurement irradiance (Yoshida et al., 2011a).

Rates of sucrose synthesis and export, and hence demand 
for cytosolic ATP, are expected to increase when plants are 
grown at elevated (i.e., above ambient) atmospheric concentrations 
of CO2 (ECO2; Paul and Foyer, 2001; Long et  al., 2004). These 
conditions should also suppress photorespiration, hence easing 
the ATP/NADPH imbalance associated with LET. Nonetheless, 
tobacco showed a preferential increase in AOX transcript and 
protein (relative to cyt c oxidase) under such conditions 
suggesting a role for AOX other than maintaining energy 
balance (Chadee and Vanlerberghe, 2020). Interestingly, the 
increase in AOX at ECO2 was accompanied by the increased 
expression of a sugar-responsive gene encoding a chloroplast 
glucose-6-phosphate/phosphate translocator (GPT; Chadee and 
Vanlerberghe, 2020). Further, tobacco AOX1A knockdowns 
grown at ECO2 had higher amounts of leaf starch and sucrose 
than WT plants (Dahal and Vanlerberghe, 2018b). These results 
suggest that, in some circumstances, leaf AOX respiration may 
provide a means to consume excess carbohydrate that accumulates 
due to an imbalance between photosynthetic activity and sink 
carbohydrate demand. Such carbon imbalances can result in 
both short-term bottlenecks in photosynthetic activity and 
long-term declines in photosynthetic capacity (Paul and Foyer, 
2001; Fabre et  al., 2019; McClain and Sharkey, 2019). Well-
watered tobacco plants grown at ECO2 displayed slightly lower 
rates of CET than plants grown at ambient CO2. Nonetheless, 
knockdown of AOX had no effect on the rate of CET in 
ambient-grown plants, but did increase the rate of CET in 
the plants grown at ECO2, compared to WT (Dahal and 
Vanlerberghe, 2018b). This suggests some compensatory function 
of CET in the AOX knockdowns suffering carbon imbalance. 
Increased GPT expression appears to be  a common response 
to growth at ECO2 across species (Li et  al., 2006; Leakey 
et  al., 2009; Chadee and Vanlerberghe, 2020). It presumably 
allows some flux of glucose-6-phosphate back into the chloroplast 
during photosynthesis, perhaps as part of a response to carbon 
imbalance. This flux could support additional starch synthesis 
(Dyson et  al., 2015) or potentially feed carbon back into the 
CB cycle via a glucose-6-phosphate shunt (Sharkey and Weise, 
2016; Preiser et  al., 2019; Weise et  al., 2019). This shunt can 
be  a dominating contributor to CO2 release in the light (Xu 
et  al., 2021) and consumes ATP (Sharkey and Weise, 2016). 
The increase in CET in the AOX1A knockdowns suffering 
carbon imbalance might be to compensate for ATP consumption 
by such shunt activity, but this hypothesis awaits further  
investigation.

Interestingly, at least three A. thaliana transcriptome studies 
have identified both AOX and GPT genes as among those 
that rapidly increase in expression following a shift to higher 
irradiance (Kleine et  al., 2007; Crisp et  al., 2017; Huang et  al., 
2019). In one study, AOX1A, AOX1C, AOX1D, and GPT2 were 
among a core set of 250 genes differentially regulated at all 
six time points (between 30 min and 72 h) after transfer from 
a growth irradiance of 60 PPFD to a treatment irradiance of 

1,200 PPFD (Huang et  al., 2019). At each time point, the 
AOX and GPT2 transcripts were increased in abundance, while 
most photosynthesis-related gene transcripts either declined or 
remained unchanged. The transcript of the alternative 
dehydrogenase NDB2 was also increased at most time points. 
Carbon fixation may have been inhibited during the 72 h high 
irradiance treatment, at least based on the clear suppression 
of growth compared to plants maintained at the low irradiance 
(Huang et  al., 2019). This perhaps leaves an open question of 
whether the AOX and GPT2 changes at high irradiance were 
occurring primarily in response to a carbon or energy imbalance.

PGR5/PGRL1-dependent CET is likely dependent upon 
additional protein components not yet identified. Nonetheless, 
the pathway likely depends upon far fewer protein components 
than NDH, which is the largest complex in the cETC. Similarly, 
the AOX pathway of electron flux from UQ to oxygen is 
simple in terms of protein composition relative to the cyt 
pathway components involved in electron flux from UQ to 
oxygen (Complex III + cyt c + Complex IV). The relatively simple 
composition of the PGR5/PGRL1 and AOX pathways may 
allow the plant to increase the capacity of these pathways 
relatively rapidly, and with relatively little investment of energy 
for biosynthesis. If this is the case, acclimation to acute 
environmental changes may preferentially rely upon rapid and 
low cost adjustment of PGR5/PGRL1 and AOX pathway 
capacities, while chronic environmental changes might rely 
preferentially upon slower and more costly adjustments in the 
NDH and cyt pathway capacities. For example, in A. thaliana, 
plants grown long term at high irradiance had higher amounts 
of cyt c oxidase subunit II protein than plants grown at low 
irradiance, while the amount of AOX protein was similar 
between the two growth conditions. On the other hand, plants 
shifted short term to higher irradiance displayed a rapid increase 
in AOX protein but no change in cyt c oxidase (Yoshida et  al., 
2011b). To our knowledge, no comparable study has examined 
the response of both CET pathways to both long-term and 
short-term changes in irradiance, so this would be an interesting 
subject to investigate. In pea, AOX capacity and protein amount 
increased within 10 min of a high irradiance treatment (Dinakar 
et  al., 2010).

The pathways of electron transport that may be preferentially 
responding to acute environmental changes (PGR5/PGRL1 and 
AOX) are also those with the lower ATP yield. This would 
inherently increase the flexibility of the metabolic network 
under changing conditions by loosening the coupling between 
electron transport and ATP generation. The AOX increase 
would rapidly enhance the capacity of the mitochondrion to 
act as an electron sink, while the PGR5/PGRL1 increase would 
rapidly enhance the capacity of CET to build up the thylakoid 
ΔpH. These changes would also act to minimize ROS generation 
in both organelles.

CONCLUSION

We hypothesize that chloroplast PGR5/PGRL1 and 
mitochondrial AOX represent stress-inducible electron 
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transport pathways that, owing to their lower ATP yield 
(compared to the chloroplast NDH and mitochondrial cyt 
pathway, respectively), rapidly increase the flexibility of 
metabolism within their respective organelles. Stress conditions 
(e.g., water stress and temperature extremes) typically reduce 
energy demands for carbon fixation and sucrose synthesis/
export. A shift toward AOX would maintain the electron 
sink capacity of the mitochondrion, despite lower cytosolic 
ATP demand. Meanwhile, a shift toward PGR5/PGRL1 would 
enhance chloroplast photo-protection, in the face of overall 
lower energy demands for carbon fixation. This would protect 
both organelles from excessive ROS production and oxidative 
damage during stress. It may be  relevant to identify 
physiological or biochemical constraints that normally limit 
the function of one or the other pathway under particular 
environmental conditions, hence necessitating an increased 
contribution from the alternate organelle to maintain energy 
and carbon balance during photosynthesis. There may also 

be  more specific means to coordinate the activity of the 
two pathways. Photorespiratory H2O2 has been hypothesized 
to coordinate CET and AOX activities, but the details of 
this remain uncertain (Sunil et  al., 2019).
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