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Strigolactones (SLs) are a class of important plant hormones mainly regulating plant
architecture such as branching, which is crucial for crop yield. It is valuable to study
SL signaling pathway and its physiological function in sugarcane, the most important
sugar crop, for further molecular breeding. Here, two putative SL receptors SsD14a/b
and the interacting F-box protein SsMAX2 were identified in Saccharum spontaneum.
SL induced both SsD14a and SsD14b to interact with SsMAX2 in yeast. SsD14a,
but not SsD14b, could bind with AtMAX2 and AtSMXL7/SsSMXL7. Overexpression
of SsD14a or SsMAX2 rescued the increased branching phenotypes of Arabidopsis
thaliana d14-1 or max2-3 mutants, respectively. Moreover, the crystal structure of
N-terminal truncated SsD14a was solved, with an overall structure identical to AtD14
and OsD14 in the open state, consistent with its conserved branching suppression
capacity in Arabidopsis. In line with the biochemical observations, SsD14b could not
completely complement in d14-1 although these two SsD14 proteins have almost
identical primary sequences except for very few residues. Complement with the
combination of SsD14b and SsMAX2 still failed to rescue the d14-1 max2-3 double
mutant multi-branching phenotype, indicating SsD14b–AtSMXL7 complex formation is
required for regulating branching. Mutagenesis analyses revealed that residue R310
at α10 helix of SsD14a was crucial for the binding with SsSMXL7/AtSMXL7 but not
SsMAX2. The site-equivalent single-residue P304R substitution enabled SsD14b to bind
with AtMAX2 and AtSMXL7/SsSMXL7 and to rescue the phenotype of d14-1 max2-3
together with SsMAX2. Moreover, this conserved Arg residue across species including
rice and Arabidopsis determined the activity of SL receptors through maintaining their
interaction with SMXL repressors. Taken together, our work identified conserved and
divergent strigolactone receptors in sugarcane core SL signaling pathway and revealed
a key residue crucial for plant branching control.
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INTRODUCTION

Strigolactones (SLs), which function as novel phytohormones in
plant branching control (Gomez-Roldan et al., 2008; Umehara
et al., 2008), promote the germination of root parasitic weeds
(Cook et al., 1966) and regulate the symbiosis of arbuscular
mycorrhizal fungi (Akiyama et al., 2005). SL biosynthesis and
signaling pathway have become one of the most important
and interesting research areas in recent years (Burger and
Chory, 2020). Nowadays, enormous efforts have been made
in studying SL signaling pathway. Several key components
have been characterized, including receptor DWARF14 (D14),
F-box protein MORE AXILLARY GROWTH2 (MAX2) and
SUPPRESSOR OF MORE AXILLARY GROWTH2-LIKE-6
(SMXL6), SMXL7, and SMXL8 (Stirnberg et al., 2007; Umehara
et al., 2008; Arite et al., 2009; Jiang et al., 2013; Stanga et al.,
2013; Zhou et al., 2013). Different from other receptors, which
could only sense hormone molecules, the receptor D14 have
dual roles to sense and hydrolyze SL, demonstrating a brand-
new function mode (Nakamura et al., 2013; Jia et al., 2014; de
Saint Germain et al., 2016; Yao et al., 2016; Hu et al., 2017;
Shabek et al., 2018; Marzec and Brewer, 2019; Seto et al., 2019;
Lee et al., 2020). As a bifunctional receptor for SL, D14 is an
α/β hydrolase with a complete catalytic triad, S97-H247-D218
(in Arabidopsis). The catalytic triad undergoes conformational
change and hydrolyzes the four-ring complete SL molecules into
two final products containing ABC-ring and D-ring, respectively
(Kagiyama et al., 2013; Zhao et al., 2013; Yao et al., 2016;
Hamiaux et al., 2018). During the hydrolysis of SL, D14 covalently
binds to the D-ring at the catalytic center, then it associates
with downstream protein MAX2/D3 to form D14–MAX2/D3
SCF E3 complex. This ubiquitin ligase complex will recruit the
downstream transcription repressors SMXL6/7/8/D53, leading
to the degradation of SMXLs/D53 through the 26S proteasome
pathway (Hamiaux et al., 2012; Jiang et al., 2013; Yao et al., 2016;
Wang et al., 2020). Thus, the downstream target genes, such
as Ideal Plant Architecture 1 (IPA1) (Song et al., 2017) which
inhibited by D53, would be released to regulate plant branching.
Undoubtedly, the interaction with MAX2 and SMXLs by D14 is
the core to turn the transduction system on (Jiang et al., 2013;
Zhou et al., 2013; Soundappan et al., 2015; Wang et al., 2015; Yao
et al., 2016; Khosla et al., 2020).

As the main sugar crop, sugarcane (Saccharum hybrid) has
great economic value (Tuma, 1987; Zhang et al., 2012). Modern
commercial sugarcane varieties are derived from hybrids between
Saccharum officinarum L. and Saccharum spontaneum L. The
yield of Saccharum is usually determined by the total number
of effective stems and the average single stem weight. Thus,
promoting tillering and improving effective tillers are key to
increase production (Aitken et al., 2008; Tena et al., 2016;
Glassop et al., 2021). As an important parent, S. spontaneum
is a representative material for sugarcane research, providing
the toughness, disease resistance, and regeneration of modern
sugarcane, making S. spontaneum an important material for SL
signaling study.

Here, we studied the function of core SL signaling components
from S. spontaneum, identified two putative SL receptors with
conserved and divergent capabilities to regulate plant branching,

respectively, and revealed a key residue crucial for recruiting
downstream signaling component and SL responses.

MATERIALS AND METHODS

Generation of Transgenic Plants
The modified vector pCAMBIA1300-cFlag (Yao et al., 2016)
carrying the full coding sequence of Arabidopsis thaliana D14
(AtD14), S. spontaneum D14b (SsD14b), N-terminal (amino acids
1–49) truncated S. spontaneum D14a (SsD14a1N), N-terminal
(amino acids 1–44) truncated S. spontaneum D14b (SsD14b1N)
and S. spontaneum MAX2 (SsMAX2) under the control of
the CaMV 35S promoter was introduced into the Atd14-1
(Salk_057876) (Waters et al., 2012) or Atmax2-3 (Salk_092836)
(Jia et al., 2014) mutant by using the Agrobacterium-mediated
floral dip method.

Similarly, we used GoldenBraid 2.0 system (Addgene1)
(Sarrion-Perdigones et al., 2013) to construct binary
plant expression vectors: 35S:SsD14b–35S:SsMAX2
(P35s:SsD14b:Tnos–P35s:SsMAX2:Tnos–Pnos:NptII:Tnos),
35S:SsD14bP304R–SsMAX2 (P35s:SsD14bP304R:Tnos–
P35s:SsMAX2:Tnos–Pnos:NptII:Tnos), and 35S:AtD14–
35S:AtMAX2 (P35s:AtD14:Tnos–P35s:AtMAX2:Tnos–
Pnos:NptII:Tnos), which were introduced into the Atd14-1
Atmax2-1 double mutant, respectively, to generate transgenic
plants. The primary rosette branching numbers were counted for
5-week-old plants, which were germinated on plates and grown
in soil under a light/dark photoperiod of 16 h/8 h at 22◦C.

Yeast Two-Hybrid Assays
To construct plasmids for yeast two-hybrid (Y2H) assays, the
CDS of SsD14a/b and SsD14a/b truncations (SsD14a1N49
and SsD14b1N44) were cloned into yeast expression vector
pGBKT7 to generate BD-SsD14a/b and BD-SsD14a/b-1N, and
we also constructed the mutations BD-SsD14aR310P and BD-
SsD14bP304R. Similarly, we obtained BD-OsD14 and BD-
OsD141N53. The CDS of SsMAX2, AtMAX2, and AtSMXL7
were cloned into pGADT7 to make Gal4 DNA activation domain
(AD) constructs, respectively. Y2H assays were performed using
the Yeastmaker Yeast Transformation System 2 (Clontech,
United States). In brief, yeast strain AH109 cells were co-
transformed with specific bait and prey constructs and coating
on selective growth medium SD/-Leu/-Trp for 3 days at 30◦C,
pick the positive constructs into liquid-selective growth medium
SD/-Leu/-Trp for 36 h at 30◦C, 200 rpm. Washed yeast cells
three times and diluted, make sure OD600 reached 2.5, then serial
10-fold dilutions of yeast cultures were spotted onto selective
growth medium that was supplemented with 5 µM rac-GR24 or
dimethyl sulfoxide (DMSO). All yeast transformants were grown
on selective growth medium at 30◦C, 4 days.

Expression and Purification of
SsD14a1N
The positive clones of SsD14a1N (residues 1–49) proved by
DNA sequencing were transformed into Escherichia coli strain

1http://www.addgene.org/browse/article/10316/
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BL21 (DE3) for protein expression. Kanamycin-resistant colonies
were picked to grow in the Luria–Bertani (LB) medium (10 g/L
tryptone, 10 g/L NaCl, and 5 g/L yeast extract) at 37◦C
until OD600 reached 0.6–1.0. Then 0.5 mM isopropyl-beta-
D-thiogalactopyranoside (IPTG) was added to induce protein
expression at 16◦C for 18 h. The cell pellet was resuspended
in phosphate-buffered saline (PBS) buffer containing 30 mM
imidazole, and homogenized by using an ultrahigh pressure
cell disrupter (JNBIO, Guangzhou, China). The lysate was
centrifuged at 15,000 rpm for 1 h, and soluble proteins
were loaded onto the Ni-NTA column. Target proteins were
eluted by the PBS buffer containing 300 mM imidazole. The
eluted SsD14a1N (residues 1–49) was further purified by
SuperdexTM75 (GE Healthcare, United States) at 16◦C with the
buffer containing 150 mM NaCl, 2 mM MgCl2, 20 mM Tris pH
8.0, and 10% glycerol.

Crystallization, Data Collection, and
Structure Determination
Purified SsD14a1N (residues 1–49) (roughly 10 mg/ml) were
dissolved in the buffer containing 150 mM NaCl, 2 mM MgCl2,
20 mM Tris pH 8.0, and 10% glycerol. The crystals of SsD14a1N
(residues 1–49) were obtained using the hanging-drop method
by mixing 1 µl protein with equal volume of reservoir solution
containing 0.01 M magnesium chloride hexahydrate, 0.05 M
Tris hydrochloride pH 7.5, 5% v/v 2-Propanol at 16◦C for
1 week. The data of the SsD14a1N (residues 1–49) crystal
were collected on beamline BL17U1 at Shanghai Synchrotron
Radiation Facility (SSRF) and processed by XDS (20124692).
The structure of SsD14a1N (residues 1–49) was determined
by molecular replacement, using the structure of OsD141N
(residues 1–51) (PDB ID: 3VXK) as the initial searching template.
Model building and structural refinement were performed by
using COOT (20383002) and PHENIX (22505256), respectively.
In the final model, more than 97% residues fall in the favored
region in the Ramachandran plot, and the final Rwork/Rfree
is 0.1914/0.2275. Data collection and refinement statistics are
summarized in Table 1. The atomic coordinates and structure
factors have been deposited in the Protein Data Bank.

RESULTS

Identification of D14 Orthologs in
Saccharum spontaneum
The SL biosynthesis and core signaling pathways have been
thoroughly studied in many plant species including Arabidopsis
thaliana and Oryza sativa (Figure 1A), but remain to be
investigated in sugarcane. To identify and investigate the
SL receptor(s) D14 in S. spontaneum (SsD14), we searched
Saccharum Genome Database (SGD)2 (Zhang et al., 2018) using
BLAST with Arabidopsis thaliana D14 (AtD14) and Oryza sativa
D14 (OsD14) as queries to obtain the predicted sequences of
D14 orthologs from S. spontaneum. Accordingly, we found two
putative D14 orthologous genes SsD14a (Sspon.001B0005800)
and SsD14b (Sspon.001B0005830) in S. spontaneum.

2http://sugarcane.zhangjisenlab.cn

TABLE 1 | Data collection and structure refinement statistics.

Parameters SsD14a1N

Data collection statistics

Cell parameters

a (Å) 48.81

b (Å) 88.29

c (Å) 118.52

α, β, and γ (◦) 90, 90, and 90

Space group P212121

Wavelength used (Å) 0.9792

Resolution (Å) 70.81–1.65 (1.74–1.65)

No. of all reflections 356,698

No. of unique reflections 580,49

Completeness (%) 93.6 (99.5)

Average I/σ(I) 12.1 (2.6)

Rmerge
a (%) 11.5 (74.4)

Refinement statistics

No. of reflections used [σ(F) > 0] 110,054

Rwork
b (%) 19.14

Rfree
b (%) 22.75

RMSD bond distance (Å) 0.008

RMSD bond angle (◦) 0.909

Average B-value

Average B-value for protein atoms 28.69

Average B-value for solvent atoms 28.61

No. of atoms

No. of protein atoms 415,0

No. of solvent atoms 357

Ramachandran plot

Res. in favored regions (%) 97.94

Res. in outlier regions (%) 0.0

RMSD, root-mean-square deviations.
aRmerge = 6h6 i | Ih,i–Ih | /6h6 i Ih,i , where, Ih is the mean intensity of the i
observations of symmetry-related reflections of h.
bRwork = 6(| | Fp(obs)| –| Fp(calc)| |)/6| Fp(obs)|; Rfree is an R factor for a preselected
subset (5%) of reflections that was not included in refinement. Fp, structure
factor of protein.
cNumbers in parentheses are corresponding values for the highest resolution shell.

The phylogenetic analysis showed that SsD14s exhibit
closer relationships with OsD14 from rice, which belongs
to Gramineae too (Figure 1B). The similarity between
SsD14a and OsD14 is 84.91% at the amino sequence,
and the similarity between SsD14b and OsD14 is 85.94%.
Sequence alignment and structural annotation showed that
SsD14a/b, AtD14, and OsD14 exhibit both considerable
identities at the primary amino acid sequence level and
have the same catalytic triad Ser-His-Asp (Figure 1C).
These information implies conserved physiological functions
of SsD14 proteins.

SsD14a and SsD14b Have Different
Binding Properties With MAX2 and
SMXLs
Similarly, we searched SGD to obtain the predicted sequences
of MAX2 and SMXL7 orthologs from S. spontaneum.
Then, we found the putative orthologous genes SsMAX2
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FIGURE 1 | Phylogenetic analysis and sequence alignment of D14 orthologs. (A) A simplified model for SL biosynthesis and core signaling pathway. (B)
Phylogenetic analysis of D14 orthologs. The phylogenetic tree was generated with 18 full-length amino acid sequences of D14 orthologs using MEGA. The
evolutionary history was inferred using the Neighbor-Joining method. The percentage of replicate trees in which the associated taxa clustered together in the
bootstrap test (1,000 replicates) were shown next to the branches. The evolutionary distances were computed using the p-distance method. Sequence information
in this work can be found in GenBank or the Saccharum Genome Database (http://sugarcane.zhangjisenlab.cn/) under the following accession numbers: Medicago
truncatula D14 (XP_003589086), Pisum sativum RMS3 (AMB61024), Glycine max D14 (XP_003557012), Nicotiana attenuata D14 (XP_019258478), Petunia hybrida
DAD2 (AFR68698), Hevea brasiliensis D14 (XP_021646820), Populus trichocarpa D14 (XP_002302409), Nelumbo nucifera D14 (XP_010248100), Gossypium
raimondii D14 (XP_012451974), Arabidopsis thaliana D14 (NP_566220), Punica granatum D14 (OWM70752), Hordeum vulgare D14 (AJP07999), Triticum aestivum
D14 (AK332360), Oryza sativa D14 (XP_015631400), Zea mays D14 (NP_001150635), Sorghum bicolor D14 (XP_002468316), Ss5800 (Sspon.001B0005800), and
Ss5830 (Sspon.001B0005830). (C) Sequence alignment and structural annotation of D14 orthologs. ESPript was used to analyze the multiple sequence alignments
generated by Clustal Omega (Sievers et al., 2011; Robert and Gouet, 2014) with the several D14 orthologs listed in Figure 1A. Secondary structure elements of
Saccharum spontaneum D14 (GO:0005800) crystal structure (PDB code: 7F5W) are displayed on top of the alignments. Identical and conserved residues are
highlighted by red and yellow grounds, respectively. The three catalytic residues, Ser, Asp, and His, are indicated by green stars. The amino acids marked with blue
triangles are putative key amino acids for identifying downstream inhibitors.

(Sspon.008D0018870) and SsSMXL7 (Sspon.007A0023280). To
determine the biochemical function of SsD14a and SsD14b, we
used Y2H assays to examine the interaction of SsD14s proteins
with SsMAX2, AtMAX2, SsSMXL7, and AtSMXL7. Surprisingly,
there were significant binding ability differences between
SsD14a and SsD14b. The results showed that SsD14a interacted
with SsSMXL7 and AtSMXL7 and interacted with AtMAX2
slightly. However, SsD14b interacted with neither AtMAX2 nor
AtSMXL7. Meanwhile, Y2H results showed a strong interaction
of SsMAX2 with both SsD14a and SsD14b (Figure 2). In other
words, although SsD14a and SsD14b share 97.47% similarity in
amino acid sequence, they have different preferences in binding
downstream signaling partners, which leading us to speculate

that the differences in interactions are attributed to some of these
different residues.

SsD14a1N, but Not SsD14b and
SsD14b1N, Can Well Rescue the
Branching Phenotype of Arabidopsis
d14-1 Mutant
Previous reports showed that many D14 of Gramineae species
contain an extra N-terminal peptides when compared to AtD14
(Yao et al., 2018). Related studies have proved that both the full-
length OsD14 and the N-terminally truncated OsD14 were able
to complement the multi-branching mutant Arabidopsis d14-5,
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FIGURE 2 | Binding capacity of SsD14s with downstream signaling partners. Yeast two-hybrid (Y2H) assays for SsD14s and AtD14 interactions with
SsMAX2/AtMAX2 and SsSMXL7/AtSMXL7. SsD14a, SsD14b, and AtD14 were fused to GAL4-BD. SsMAX2, AtMAX2, SsSMXL7, and AtSMXL7 were fused to
GAL4-AD. Serial 10-fold dilutions of yeast cultures were spotted onto the control medium (SD/-Leu/-Trp) and selective medium (SD/-Leu/-Trp/-His/-Ala) in the
absence or presence of 5 µM rac-GR24 or DMSO control. Images show growth after 4 days at 30◦C.

FIGURE 3 | SsD14a1N can rescue the branching phenotype of Arabidopsis d14-1 mutant. (A) Quantitative analysis on primary branch numbers of Col-0, d14-1,
AtD14 14-1, and three lines for overexpression of 35S:SsD14a1N. Values are represented as mean ± SD (n ≥ 16); p < 0.05 [one-way ANOVA and Tukey’s honestly
significant difference (HSD)]. The different letters indicated the different significance. (B) The representative branching phenotypes of 5-week-old Col-0 and the
indicated mutants. Scale bar = 5 cm.

even the N-truncated D14 have more stronger interaction with
AtMAX2 and complement d14 mutant better than the full-length
version (Yao et al., 2018). According to our results of Y2H assays,
SsD14a1N can interact with AtMAX2 and AtSMXL7 as the full-
length SsD14a did (Supplementary Figure 1). SsD14a1N was
introduced to complement Arabidopsis d14-1 mutants. We also
generated the 35S:AtD14 d14-1 plants as positive control. The
results showed no significant difference between the number of
primary branches between 35S:SsD14a1N d14-1 and 35S:AtD14
d14-1 (Figures 3A,B), which means that SsD14a1N was able
to rescue the multi-branching phenotypes. In addition, the

leaf morphology (length/width ratio) was also recovered by
SsD14a1N (Supplementary Figure 2A). Therefore, SsD14a is
functionally conserved when compared with AtD14.

However, the complementation results were quite different
for SsD14b. According to the Y2H results, neither N-terminal
truncated SsD14b nor full-length SsD14b could interact with
AtMAX2 and AtSMXL7 (Figure 2 and Supplementary Figure 1).
We transferred the full-length SsD14b to the Arabidopsis d14-
1 mutant and obtained 35S:SsD14b d14-1 plants. We found
that SsD14b cannot rescue the d14-1 multi-branching phenotype
(Figure 4A). But interestingly, we found that the height of
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FIGURE 4 | SsD14b and SsD14b1N failed to well rescue the branching phenotype of Arabidopsis d14-1 mutant. (A) Quantitative analysis on primary branch
numbers of Col-0, d14-1, and two lines for overexpression of 35S:SsD14b. Values are represented as mean ± SD (n ≥ 16); p < 0.05 [ANOVA and Tukey’s honestly
significant difference (HSD)]. The different letters indicated the different significance. (B) The representative branching phenotypes of 5-week-old Col-0 and the
indicated mutants. Scale bar = 5 cm. (C) Quantitative analysis on primary branch numbers of Col-0, d14-1, AtD14 14-1, and two lines for overexpression of
35S:SsD14b1N49. Values are represented as mean ± SD (n ≥ 16); p < 0.05 [ANOVA and Tukey’s honestly significant difference (HSD)]. The different letters
indicated the different significance. (D) The representative branching phenotypes of 5-week-old Col-0 and the indicated mutants. Scale bar = 5 cm.

transgenic 35S:SsD14b d14-1 seemed to have a partial restoration
(Figure 4B), which will be further investigated in the future
project. We found that the multi-branched phenotype of one
complemented line was only partially restored in 35S:SsD14b1N
d14-1 transgenic lines and still differed from WT, indicating
that 35S:SsD14b1N cannot fully complement Atd14-1. The
difference between 35S:SsD14b d14-1 and 35S:SsD14b1N d14-
1 was that multi-branching and the leaf morphology of
35S:SsD14b1N d14-1 were rescued in different degrees but
both not thoroughly (Figure 4 and Supplementary Figure 2B).
No obvious interactions of SsD14b/SsD14b1N with AtSMXLs
were detected in our work, which is probably because that
the interactions were too weak to be detected in our current
Y2H system. Consistent with this, the complementation effect

of SsD14b1N is significantly lower compared to SsD14a. Taken
together, SsD14a and SsD14b may function as conserved and
divergent SL receptors in sugarcane, respectively.

Crystal Structure of SsD14a1N
Possesses an Overall Architecture
Identical to Other D14 Orthologs in the
Open State
The crystal structure of SsD14a1N was determined at a
resolution of 1.65 Å (Table 1). SsD14a belongs to the α/β
hydrolase superfamily, of which the structure consists of an α/β
hydrolase core domain and a four-helix lid domain (αT1, αT2,
αT3, and αT4) (Figure 5). The catalytic triad residues of S145,
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FIGURE 5 | Crystal structure of SsD14a1N and structural comparisons with other D14 orthologs. (A) Crystal structure of SsD14a. Left panel is a side view of
SsD14a. The overall structure is represented in cartoon, with the core domain colored in light wheat and the lid domain colored in pink. The three catalytic triad
residues are indicated and shown in sticks. Right panel is a top view of SsD14a. (B) Structural comparisons reveal that SsD14a is in an open state. Left and right
panels show structural comparison of SsD14a with the orthologous proteins of other species in the open and closed state, respectively. AtD14 and OsD14
structures are indicated by their respective PDB IDs, whereas, the structure of SsD14 is indicated by SsD14a. The bound ligands are highlighted and represented as
sticks. MPD (in PDB ID 3W04), MNAB (in PDB ID 6AP8), TMB (in PDB ID 4IHA), and CLIM (in PDB ID 5HZG) are abbreviated for 2-methyl-pentanediol,
2-(2′-methyl-3′-nitroanilino) benzoic acid, (2R,3R)-2,4,4-trihydroxy-3-methylbutanal, and (2Z)-2-methylbut-2-ene-1,4-diol, respectively. (C) A model for GR24 binding
in SsD14a. The SsD14a–GR24 complex is generated by the UCSF DOCK 6.0. Details of GR24 binding are illustrated in the catalytic pocket of SsD14a, which is
shown in the light blue cartoon representation. The SL analog GR24, together with its key contacting residues from the binding pocket, are labeled as colored sticks.
(D) The LigPlot of possible SsD14a–GR24 interactions, related to (C). The red, blue and black atoms denote oxygen, nitrogen and carbon, respectively. Hydrogen
bonds between SsD14a and GR24 are shown as green dashed lines. The van der Waals contacts are indicated as continuous red lines.

D266, and H295, distributed on the loops following the β4, β6,
and β7 strands, are located at the bottom of the hydrophobic
substrate-binding pocket. The rest of the core domain is made
up of seven β strands (β1–β7) and six α helices (α1, α2, α3, α8,
α9, and α10). R310 is located at the α10 helix of SsD14a.

To gain insights into the conformational state of SsD14a, we
performed structural comparisons between SsD14a and other

D14 orthologs from other plants. Structure comparisons revealed
that the overall structure of SsD14a was identical to those
from other plants in the open state (Figure 5B), with root-
mean-square deviations (RMSD) ranging from 0.250 to 0.301 Å
(Figure 5B). Notably, the overall structure of SsD14a in the
open state was apparently larger than the closed state of AtD14-
CLIM (covalently linked intermediate molecule, a hydrolysis
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FIGURE 6 | SsMAX2 can rescue the phenotypes of max2-3 mutant. (A) Quantitative analysis on primary branch numbers of Col-0, max2-3, AtD14 d14-1 and two
lines for overexpression of 35S:SsMAX2. Values are represented as mean ± SD (n ≥ 16); p < 0.05 [ANOVA and Tukey’s honestly significant difference (HSD)]. The
different letters indicated the different significance. (B) The representative branching phenotypes of 5-week-old Col-0 and the indicated mutants. Scale bar = 5 cm.

intermediate of SL molecule), thus these two structures cannot
be well aligned, with an RMSD of 0.662 Å. Furthermore, results
of docking approaches demonstrated extensive binding of GR24
by residues in the catalytic pocket of SsD14a (Figures 5C,D).
In general, the structural characteristics of SsD14a are highly
conserved and guarantee its branching inhibition function.

SsMAX2 Rescued the Branching
Phenotype of Arabidopsis max2-3
Mutant
To clarify the differences on SL transduction between the two
SsD14 proteins, SsMAX2, another key SL signaling transduction
component, was obtained and verified its function. SsMAX2
interacted with AtD14 in an SL-dependent manner with
the intensity similar to AtMAX2 (Figure 2). We further
investigated the physiological function of SsMAX2 proteins in
Arabidopsis. We introduced full-length S. spontaneum MAX2
into the Arabidopsis max2-3 mutant under the control of a 35S
promoter. As shown in Figure 6 and Supplementary Figure 2C,
35S:SsMAX2 max2-3 rescued the branching and leaf phenotype
of max2-3 to a level comparable with the wild-type Col-0.
These genetic data indicated that SsMAX2 could inhibit axillary
branching of Arabidopsis. Our results demonstrated that SsMAX2
can resemble AtMAX2 to play a physiological role in Arabidopsis.

Single Residue Substitution of SsD14b
Rescues the Binding Affinity With MAX2
and SMXLs
Further sequence comparison with AtD14 and OsD14 found that
only SsD14b had a proline (P304) at the α10 helix, whereas,
other D14 proteins contained an arginine (R) (Figure 1B).
To further explore the mechanism underlying the differences

in protein interactions, we made point mutations to SsD14a
and SsD14b to obtain BD-SsD14aR310P and BD-SsD14bP304R,
respectively. We were surprised to find that the point mutation
SsD14aR310P no longer interacted with SsSMXL7 and AtSMXL7
(Figure 7A), but still interacted with SsMAX2. The point
mutation SsD14bP304R turn out to obviously interact with
AtSMXL7. Inferring from these results, for D14, residue R (like
R310 of SsD14a) at the α10 helix might be the key residue
contributing to the association with repressor factors SMXLs.

The R262P/R312P Point Mutation
Disrupts the Function of AtD14/OsD14 to
Bind With Downstream Signaling
Partners
To further investigate the importance and the widespread
of the amino acid site of R310 (in SsD14a), we performed
point mutation validation in AtD14 and OsD14. We obtained
BD-AtD14R262P and BD-OsD141NR261P by site-directed
mutagenesis PCR. Y2H results showed that AtD14R262P
substitution largely affected the interaction with AtSMXL7
and also greatly weakened the interaction with AtMAX2
(Figure 7B). Similar observation was also found in BD-
OsD141NR261P (Figure 7C). Unlike AtD14, OsD14 showed
hormone-dependent interaction with SsSMXL7. We speculate
that this is a result of the higher sequence similarity between rice
and sugarcane, which both belong to Gramineae. Interestingly,
AtD14R262P and OsD141NR261P, like wild-type proteins, still
have strong hormone-dependent interactions with SsMAX2.
The SsMAX2 protein can bind strongly with mutant proteins,
which may have application in resolving the crystal structures
of certain important D14 mutant proteins in complex with
SsMAX2. In general, for AtD14 and OsD14, we further
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FIGURE 7 | Single residue substitution rescues the biochemical and physiological function of SsD14b. (A) Y2H analyses of the interaction between
BD-SsD14aR310P and BD-SsD14bP304R for AD-SsMAX2, AD-AtMAX2, AD-SsSMXL7, and AD-AtSMXL7. Serial 10-fold dilutions of yeast cultures were spotted
onto the control medium (SD/-Leu/-Trp) and selective medium (SD/-Leu/-Trp/-His/-Ala) in the absence or presence of 5 µM rac-GR24) or DMSO control. Images
show growth after 4 days at 30◦C. (B) Y2H analyses of the AtD14 and AtD14R262P binding with SsMAX2, AtMAX2, SsSMXL7, and AtSMXL7. (C) Y2H analyses of
the OsD141N and OsD141NR261P binding with SsMAX2, OsD3, SsSMXL7, and OsD53. (D) Quantitative analysis on primary branch numbers of Col-0, d14-1,
max2-3, d14-1 max2-1, and T1 lines for overexpression of 35S:D14 35S:MAX2 d14-1 max2-1, 35S:SsD14b 35S:SsMAX2 d14-1 max2-1, 35S:SsD14b-P304R
35S:SsMAX2 d14-1 max2-1, and the indicated mutants. Values are represented as mean ± SD (n ≥ 16); p < 0.05 [ANOVA and Tukey’s honestly significant
difference (HSD)]. The different letters indicated the different significance. (E) The representative branching phenotypes of five-week-old Col-0 and the indicated
mutants. Bars = 5 cm.
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verified the importance of this site for binding downstream
signal components.

Single Residue Substitution Rescues the
Physiological Function of SsD14b
In the SL signaling pathway, the D14 receptor senses SL
before binding the F-box protein MAX2 to form the
D14–MAX2 complex. Later, the complex would recruit
and degrade the downstream repressor protein AtSMXLs
through ubiquitination–proteasome pathway to regulate
plant branching (Jiang et al., 2013; Zhou et al., 2013). To
investigate whether SsD14bP304R has gained the capability
in plant branching control, we generated and compared
the transgenic Arabidopsis 35S:SsD14b 35S:SsMAX2 d14-
1 max2-1 and 35S:SsD14b-P304R 35S:SsMAX2 d14-1
max2-1 by introducing full-length SsMAX2 together with
SsD14b or SsD14b-P304R into the d14-1 max2-1 double
mutant. We also generated the 35:AtD14 35S:AtMAX2
d14-1 max2-1 plants as positive control. We found that
35S:SsD14b-P304R 35S:SsMAX2 d14-1 max2-1 showed
similar primary branching and leaf morphology as 35S:AtD14
35S:AtMAX2 d14-1 max2-1 (Figures 7D,E and Supplementary
Figure 2D). However, the complex of SsD14b–SsMAX2
was unable to inhibit the branching of d14-1 max2-1
double mutant, consistent with the capability of SsD14b or
SsD14b-P304R to bind AtSMXL7 (Figures 2, 7A). These
results demonstrated that P304R single-residue substitution
endows SsD14b with the branching inhibition function,
indicating the close correlation between SL responses and
receptor–repressor interaction.

DISCUSSION

Sugarcane is a raw material for sucrose and can also be
used as an energy substitute for refined ethanol, which
has high economic value. The effective yield of sugarcane
is closely related to the effective branching and robust
plant architecture. As the ancestor of modern sugarcane and
possessing a complete genome database, S. spontaneum is an
important research material. To lay a foundation for further
sugarcane SL pathway studies and related molecular breeding,
we turned to identify and study core SL components in
S. spontaneum.

The SL perception by the receptor D14 initiates the SL
signaling transduction pathway. At present, the function of
D14 has been studied in many species, such as Oryza sativa
(D14), Petunia hybrida (DAD2), and Pisum sativum (RMS3),
certificating that D14 is highly conserved in different species
(Arite et al., 2009; Hamiaux et al., 2012; de Saint Germain
et al., 2016; Yao et al., 2018). Here, two D14 orthologous
genes in S. spontaneum, SsD14a and SsD14b, were identified
according to ortholog searching in S. spontaneum genome.
SsD14a and SsD14b were extremely similar with only few residue
exceptions. Additionally, evolutionary analysis showed that both
SsD14s were closer to SbD14, ZmD14, and OsD14, all of which
are Gramineae. However, Y2H experiments revealed that only

SsD14a could interact with AtMAX2 and AtSMXL7/SsSMXL7,
whereas, SsD14b could not. Interestingly, there was no difference
in the binding affinity with SsMAX2 between SsD14b and
SsD14a. Transgenic Arabidopsis plants showed that only SsD14a
could well rescue the d14-1 mutant. Furthermore, the structure of
SsD14a is identical to AtD14 and OsD14 in the open state, with
RMSD ranging from 0.250 to 0.301 Å. These results indicated
SsD14a functioned the same as known D14 proteins, such as
AtD14, suggesting that a similar SL transduction system exists in
S. spontaneum.

In the current model, upon perception of SL, the receptor
D14 recruits MAX2 and SMXLs to initiate SL signal transduction
to regulate branching. However, SsD14b has problems in
binding with AtSMXL7/SsSMXL7 and AtMAX2 and is unable
to transduce SL signals to inhibit branching by forming such
D14–MAX2–SMXL complex. It is interesting that SsD14b, with
only very few residue differences from SsD14a, cannot rescue
d14-1 mutant. Meanwhile, through further sequence comparison
with AtD14, OsD14, and other reported D14 orthologs, it was
found that only SsD14b contains a Proline (P) at position
304, and the rest of the D14 proteins were all Arginine (R)
(Figure 1). To verify the effects of this residue site, we obtained
point mutations at equivalent sites to obtain SsD14aR310P and
SsD14bP304R. After Y2H verification, the point mutation of
the two proteins did not affect the interaction with SsMAX2.
By contrast, SsD14aR310P no longer interacted with SsSMXL7
or AtSMXL7, but SsD14bP304R interacted with SsSMXL7 and
AtSMXL7, suggesting that the R310/P304 site in SsD14s did affect
the interaction with the downstream repressor protein SMXLs to
form functional D14–MAX2–SMXL complex.

To further verify whether the failure of SsD14b to rescue
Arabidopsis d14-1 is attributed to the loss of SMXL binding
ability, we introduced SsMAX2 together with SsD14b or
SsD14b-P304R into the d14-1 max2-1 double mutant to
express c D14–MAX2 complex. Our results confirmed
the importance of SMXL binding by SL receptor and
indicated that the assembly of complete D14–MAX2–SMXLs
complex is essential for SL responses, although SsD14b–
SsMAX2 complex might associate with other proteins
but not SMXLs to exert certain function. Additionally,
we found that SsMAX2 could bind with D14 proteins
from various species much stronger than AtMAX2 and
OsD3, suggesting that MAX2 proteins from different plant
species may have diverse capabilities to transduce SL signal
and would serve as valuable sources for structural studies
on SL signaling.

Taken together, our findings shed new light on the study of
strigolactone receptors and their interaction with downstream
signaling partners, and may have potential application value in
the molecular breeding of plant architecture.

ACCESSION NUMBER

The crystal structure of SsD14a has been deposited in the Protein
Data Bank under the accession code 7F5W. S. spontaneum genes
involved in this article can be found at the Saccharum Genome
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Database (SGD: http://sugarcane.zhangjisenlab.cn) under the
following accession numbers: SsD14a (Sspon.001B0005800),
SsD14b (Sspon.001B0005830), SsMAX2 (Sspon.008D0018870),
and SsSMXL7 (Sspon.007A0023280).
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