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Salt-resistant plants have different mechanisms to limit the deleterious effects of high
salt in soil; for example, recretohalophytes secrete salt from unique structures called salt
glands. Salt glands are the first differentiated epidermal structure of the recretohalophyte
sea lavender (Limonium bicolor), followed by stomata and pavement cells. While salt
glands and stomata develop prior to leaf expansion, it is not clear whether these steps
are connected. Here, we explored the effects of the five phytohormones salicylic acid,
brassinolide, methyl jasmonate, gibberellic acid, and abscisic acid on the development
of the first expanded leaf of L. bicolor and its potential connection to salt gland,
stomata, and pavement cell differentiation. We calculated the total number of salt
glands, stomata, and pavement cells, as well as leaf area and pavement cell area, and
assessed the correlations between these parameters. We detected strong and positive
correlations between salt gland number and pavement cell area, between stomatal
number and pavement cell area, and between salt gland number and stomatal number.
We observed evidence of coupling between the development of salt glands, stomata,
and pavement cells in L. bicolor, which lays the foundation for further investigation of
the mechanism behind salt gland development.

Keywords: leaf area, Limonium bicolor, pavement cell, phytohormone, salt gland, stomata

INTRODUCTION

About 10% of arable land is affected by salinization worldwide, of which 2.5× 109 hm2 is irrigated
(Ruan et al., 2010). This salinity severely affects plant growth and development and crop yields,
especially for countries located in arid and semiarid climate zones (Rozema and Flowers, 2008).
Saline land accounts for 4.9% (or 3.6× 107 hm2) of China’s arable land (Li J. et al., 2014). In recent
years, the growth of the world population has placed great pressure on global food supply chains,
including agricultural productivity. However, unreasonable irrigation and improper application of
chemical fertilizers has resulted in secondary salinization of the soil, which is becoming increasingly
problematic and in need of a long-term solution (Rengasamy, 2006). Approaches to fundamentally
solve the problem of soil salinization have attracted much attention recently.

Most crops cannot survive or complete their life cycle when growing in saline soil (Fan, 2020),
while halophytes, representing about 1% of the plant kingdom, can resistant high salt conditions
and produce much biomass under appropriate NaCl concentrations (Flowers and Colmer,
2008). Halophytes are defined as plants that can survive and complete their life cycle at NaCl
concentrations of 200 mM or above (Flowers and Colmer, 2008). Halophytes provide excellent
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FIGURE 1 | Representative phenotypes of Limonium bicolor seedlings exposed to various concentrations of salicylic acid (SA) for 15 days. (A) Phenotype of
L. bicolor treated with different concentrations of SA for 15 days. Red arrows indicate the first expanded true leaf. (B) Representative leaf surface images using an
upright microscope. Bar = 25 µm. White arrows, salt glands; yellow arrows, stomata; green arrows, pavement cells. (C) Visualization of salt glands and stomata by
autofluorescence under ultraviolet light. Bar = 25 µm. White arrows, salt glands; yellow arrows, stomata. (D) Mean numbers of salt glands, stomata, and pavement
cells, and total area of expanded leaf and pavement cells as a function of SA concentration. Green line, leaf area; red circles, pavement cell area. Data are shown as
means ± SD (n = 15). Different letters indicate significant differences at P < 0.05 using Duncan’s multiple test. SG, salt gland; ST, stoma; PC, pavement cell.

models to study salt resistance, which could lead to new methods
of mitigating soil salinization and increasing crop yield using
transgenic techniques (Shabala, 2013; Yuan et al., 2016a).

Under salt stress conditions, halophytes adjust their
physiology and biochemistry to reduce or alleviate the damage
caused by high salinity (Hasanuzzaman et al., 2014). Halophytes
can be classified into three categories based on their mechanism
of resistance to high salinity: euhalophytes, pseudo-halophytes
and recretohalophytes (Breckle, 1995). Recretohalophytes have
unique salt secretory structures called salt glands, their most
significant morphological and structural characteristics (Yuan
et al., 2015). These salt glands can eliminate excessive salt ions
from plant tissues, as seen in the recretohalophyte sea lavender
(Limonium bicolor). Similarly, salt cedar (Tamarix chinensis)
homogenizes salt concentrations between the surface and deeper
layers of saline soil through salt glands (Feng et al., 2018).
Sea milkwort (Lysimachia maritima, previously called Glaux
maritima L.) also avoids high concentrations of Na+ and Cl−
ions in its tissues via salt glands (Rozema and Riphagen, 1977).

Given their importance in conferring salt resistance, the
evolutionary origin and gene expression profile of salt glands have
garnered substantial interest (Dassanayake and Larkin, 2017).
Salt gland development has been studied in Limonium vulgare
(Thomson, 1975). Salt glands arise from five consecutive cell

divisions of a single epidermal cell to form a gland complex
composed of 20 cells (Wiehe and Breckle, 1990). About 67
species distributed among 13 families possess salt glands (Yuan
and Wang, 2020), but few have been investigated in details.
L. bicolor is a typical recretohalophyte with salt glands on its
leaf epidermis. It is considered a model halophyte to study
salt gland development (Yuan et al., 2016a) due to the ease
with which structures can be observed by autofluorescence and
to a high-efficiency transformation system (Yuan et al., 2014).
Each L. bicolor salt gland consists of 16 cells: four secretory
cells, four accessory cells, four inner cup cells, and four outer
cup cells (Yuan et al., 2016a). The continuous observation of
leaf development revealed five typical developmental stages,
starting with an undifferentiated stage, followed by the salt gland
differentiation stage, stomatal differentiation stage, and pavement
cell differentiation stage, and ending with the mature stage
(Yuan et al., 2015).

Salt glands are therefore considered to be the first
differentiated structure of the epidermis, and their numbers
increase with leaf expansion (Leng et al., 2018), suggesting
a possible relationship between salt glands and pavement
cells along the expanding leaf. There is evidence that various
treatments affect the number of salt glands and leaf area
in a similar direction. For instance, calcium ions (Ca2+)
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FIGURE 2 | Representative phenotypes of L. bicolor seedlings exposed to various concentrations of brassinolide (BL) for 15 days. (A) Phenotype of L. bicolor
treated with different concentrations of BL for 15 days. Red arrows indicate the first expanded true leaf. (B) Representative leaf surface images using an upright
microscope. Bar = 25 µm. White arrows, salt glands; yellow arrows, stomata; green arrows, pavement cells. (C) Visualization of salt glands and stomata by
autofluorescence under ultraviolet light. Bar = 25 µm. White arrows, salt glands; yellow arrows, stomata. (D) Mean numbers of salt glands, stomata, and pavement
cells, and total area of expanded leaf and pavement cells as a function of BL concentration. Green line, leaf area; red circles, pavement cell area. Data are shown as
means ± SD (n = 15). Different letters indicate significant differences at P < 0.05 using Duncan’s multiple test. SG, salt gland; ST, stoma; PC, pavement cell.

(Ding et al., 2010), NaCl (Yuan et al., 2018) and exogenous
nitric oxide (NO) (Ding, 2013) can promote the development
of salt glands and increase total leaf area in L. bicolor. However,
a systematic exploration of the possible relationship between
salt glands, stomata, and pavement cells is lacking. Here,
we applied five phytohormones known to influence salt
gland development to investigate the potential links between
epidermal cell types.

Phytohormones are small organic molecules that play a
key role in plant metabolism, growth, and development at
very low concentrations (Shi et al., 2017). When plants are
subjected to various environmental stresses (such as salt
stress), plant hormones also sustain continuous growth and
development by balancing endogenous signals and exogenous
stress (Yu et al., 2020). Methyl jasmonate (MeJA) can improve
the resistance of L. bicolor to high salt conditions (Yuan
et al., 2018). Melatonin has a similar effect by repressing
the biosynthesis of abscisic acid (ABA) under high salinity,
thus promoting seed germination and increasing the number
of salt glands (Li et al., 2019, 2020). However, previous reports
mainly employed exogenous treatment of large seedlings by
spraying phytohormone solutions grown in soil or Hoagland’s

nutrient solution, and none involved the direct addition of
phytohormones to the growth medium to follow changes in leaf
area or the number of salt glands, epidermal cells, or stomata.
Here, five phytohormones [salicylic acid (SA), brassinolide (BL),
MeJA, gibberellic acid (GA3) and ABA] were separately added
in the media to investigate their effect on the differentiation and
number of salt glands, stomata, and pavement cells from the first
true expanded leaf to explore the possible relationships between
salt glands, stomata, pavement cells, and leaf development.

MATERIALS AND METHODS

Plant Materials
Seeds of L. bicolor were collected in October 2019 from the
inland saline soil of the Yellow River Delta (N37◦20′; E118◦36′)
in Dongying, Shandong, China. Uniform seeds were selected for
sowing after storage at 4◦C for 6 months.

Phytohormone Treatments
The seeds of L. bicolor were initially surface-sterilized in 75%
ethanol for 5 min, followed by soaking in 6% sodium hypochlorite
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FIGURE 3 | Representative phenotypes of L. bicolor seedlings exposed to
various concentrations of methyl jasmonate (MeJA) for 15 days.
(A) Phenotype of L. bicolor treated with different concentrations of MeJA for
15 days. Red arrows indicate the first expanded true leaf. (B) Representative
leaf surface images using an upright microscope. Bar = 25 µm. White arrows,
salt glands; yellow arrows, stomata; green arrows, pavement cells.
(C) Visualization of salt glands and stomata by autofluorescence under
ultraviolet light. Bar = 25 µm. White arrows, salt glands; yellow arrows,
stomata. (D) Mean numbers of salt glands, stomata, and pavement cells, and
total area of expanded leaf and pavement cells as a function of MeJA
concentration. Green line, leaf area; red circles, pavement cell area. Data are
shown as means ± SD (n = 15). Different letters indicate significant differences
at P < 0.05 using Duncan’s multiple test. SG, salt gland; ST, stoma; PC,
pavement cell.

solution with shaking for 15–20 min. Seeds were then washed
using sterile water three to five times. The seeds were sown on
growth medium containing various phytohormones and grown
at 26/22◦C (day/night) with a photoperiod of 16/8 h (day/night)
and a light intensity of 600 µmol/m2/s.

All seeds were sown on Murashige and Skoog (MS) basal
growth medium adjusted to pH 5.8–6.0 (Murashige and Skoog,
1962). The stock solutions of phytohormones were 50 mg/mL SA,
0.5 mg/mL BL, 10 µM MeJA, 0.1 mg/mL GA3, and 0.1 mg/mL
ABA. MeJA was dissolved in absolute ethanol, while all other
phytohormones were first dissolved in a small volume of absolute
ethanol until full dissolution before the volume was adjusted with
water. All stock solutions were filtered using a 0.2-µm filter.

Salicylic acid was added to MS medium to final concentrations
of 25, 50, 75, 100, or 125 mg/L (Rajjou et al., 2006;
Rivas-San Vicente and Plasencia, 2011). BL was added to MS

medium at concentrations of 1.25, 2.5, 5, or 7.5 mg/L (Vogler
et al., 2014). MeJA was added to a final concentration of 0.01
or 0.1 µM (Bazabakana et al., 1999; Chen et al., 2012). GA3
was added to a final concentration of 0.02, 0.04, 0.06, 0.08,
or 0.1 mg/L (Li G. et al., 2014). ABA was added to a final
concentration of 0.02, 0.04, 0.06, or 0.08 mg/L (Pan et al., 2020).
Three replicates were sown for each concentration, and each
replicate consisted of 20 seeds.

Scoring the Numbers of Salt Glands,
Stomata, and Pavement Cells, Leaf Area,
and Pavement Cell Area
After growth for 15 days, the first true leaves were collected
and fixed in a mixture of ethanol and acetic acid (3:1, v/v),
then cleared in 70% ethanol, before being mounted in Hoyer’s
solution (Meinke, and David, 1994). The leaves were observed
by differential interference contrast (DIC) microscopy (ECLIPSE
80i, Nikon, Tokyo, Japan) with 330–380 nm ultraviolet (UV)
excitation Images from five different fields were taken for each
leaf, with 15 leaves per treatment. The average numbers of salt
glands, pavement cells and stomata were calculated across the five
fields using images acquired with a CCD camera (Nikon, Japan).
Leaf area and pavement cell area were measured using ImageJ.

Salt gland density was calculated using the number of salt
glands in a field, divided by the field area. The total number
of salt glands was calculated as leaf area × salt gland density.
Pavement cell density was calculated as the number of pavement
cells in a field, divided by the field area, while the total number of
epidermal cells was defined as leaf area × epidermal cell density.
Stomatal density was calculated as the number of stomata in a
field, divided by the field area, with the total number of stomata
being leaf area× stomatal density.

In parallel, leaves were observed on an upright microscope
(DM6B, Leica, Germany) to visualize pavement cells with
a 19-mm field of view sCMOS camera with the LAS X
Navigator Software.

Data Analysis
SPSS (IBM, SPSS Statistics 25) was used for statistical analysis.
Duncan’s multiple comparisons were performed to determine
significant differences between samples, with a significance cutoff
of P < 0.05. Analysis of variance (ANOVA) was used to
determine statistical significance. All data collected from the five
phytohormone treatments were normalized in SPSS to remove
the influence of dimensions. These normalized values were saved
as variables and used for correlation analysis according to the
phytohormone. Statistical significance was determined by two-
tailed Student’s t-test for P < 0.05 and P < 0.01.

RESULTS

The Development of Salt Glands Is
Promoted Below 25 mg/L Salicylic Acid
We first germinated L. bicolor seeds on MS medium containing
a range of SA concentrations (0–125 mg/L) to investigate the
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FIGURE 4 | Representative phenotypes of L. bicolor seedlings exposed to various concentrations of gibberellic acid (GA3) for 15 days. (A) Phenotype of L. bicolor
treated with different concentrations of GA3 for 15 days. Red arrows indicate the first expanded true leaf. (B) Representative leaf surface images using an upright
microscope. Bar = 25 µm. White arrows, salt glands; yellow arrows, stomata; green arrows, pavement cells. (C) Visualization of salt glands and stomata by
autofluorescence under ultraviolet light. Bar = 25 µm. White arrows, salt glands; yellow arrows, stomata. (D) Mean numbers of salt glands, stomata, and pavement
cells, and total area of expanded leaf and pavement cells as a function of GA3 concentration. Green line, leaf area; red circles, pavement cell area. Data are shown
as means ± SD (n = 15). Different letters indicate significant differences at P < 0.05 using Duncan’s multiple test. SG, salt gland; ST, stoma; PC, pavement cell.

development of salt glands, stomata, and pavement cells from
the fully expanded first true leaf (Figure 1A). We measured
the area of the epidermis occupied by pavement cells with an
upright microscope (Figure 1B) and scored the number of salt
glands and stomata using autofluorescence resulting from UV
excitation between 330 and 380 nm (Figure 1C). Given that salt
gland density varied under different treatments (Supplementary
Figure 1) due to the different leaf area, the total salt gland number
on the first true leaf are further used to be compared with stomata
and pavement cells.

The area of the first true leaf increased slightly when treated
with 25 mg/L SA relative to control leaves but then decreased with
higher SA concentrations (>25 mg/L) (Figure 1D). We observed
the same trend for the leaf area covered by pavement cells, which
was highest at 25 mg/L SA. Likewise, the number of salt glands,
stomata, and pavement cells followed the same pattern, with the
greatest cell numbers obtained with 25 mg/L SA, and fewer cells
at higher SA concentrations (>25 mg/L) (Figure 1D).

Leaf Development of Limonium bicolor Is
Promoted at 1.25 mg/L Brassinolide
We next germinated L. bicolor seeds and followed seedling
growth on MS medium containing 0–7.5 mg/L BL (Figure 2A).

As with SA, we observed pavement cells (Figure 2B), salt glands,
and stomata (Figure 2C). Again, leaf area and pavement cell
area reached their highest values at the lowest phytohormone
concentration (here 1.25 mg/L BL) (Figure 2D), both exhibiting
a gradual decrease at higher concentrations (>1.25 mg/L) of
BL. The total numbers of salt glands, stomata, and pavement
cells followed similar trends with BL concentration (Figure 2D),
peaking at 1.25 mg/L BL, before dropping with higher BL
concentrations (>1.25 mg/L).

Methyl Jasmonate Inhibits Leaf
Development in Limonium bicolor
Minute amounts of MeJA can substantially affect leaf
development, as evidenced by the inhibition of seedling growth
we observed with 0.1 µM MeJA (Figure 3A). Accordingly, we
determined the developmental status of salt glands, stomata,
and pavement cells at low MeJA concentrations of 0.01 and
0.1 µM (Figures 3B,C). Leaf area was markedly smaller upon
treatment with 0.1 µM MeJA but not with 0.01 µM MeJA, while
pavement cell area already diminished at MeJA concentrations
as low as 0.01 µM compared to control seedlings (Figure 3D).
Similarly, increasing MeJA concentrations were accompanied
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FIGURE 5 | Representative phenotypes of L. bicolor seedlings exposed to various concentrations of abscisic acid (ABA) for 15 days. (A) Phenotype of L. bicolor
treated with different concentrations of ABA for 15 days. Red arrows indicate the first expanded true leaf. (B) Representative leaf surface images using an upright
microscope. Bar = 25 µm. White arrows, salt glands; yellow arrows, stomata; green arrows, pavement cells. (C) Visualization of salt glands and stomata by
autofluorescence under ultraviolet light. Bar = 25 µm. White arrows, salt glands; yellow arrows, stomata. (D) Mean number of salt glands, stomata, and pavement
cells, and total area of expanded leaf and pavement cells as a function of ABA concentration. Green line, leaf area; red circles, pavement cell area. Data are shown
as means ± SD (n = 15). Different letters indicate significant differences at P < 0.05 using Duncan’s multiple test. SG, salt gland; ST, stoma; PC, pavement cell.

by a reduction in the total numbers of salt glands, stomata, and
pavement cells relative to control conditions.

Gibberellic Acid Treatment Inhibits Leaf
Development in Limonium bicolor
We exposed seeds to five different GA3 concentrations ranging
from 0.02 to 0.1 mg/L (along with a control not treated with
GA3) and characterized leaf development (Figure 4A), pavement
cell expansion (Figure 4B), and the numbers of salt glands and
stomata (Figure 4C). Even the lowest GA3 concentration of
0.02 mg/L limited leaf expansion; raising GA3 concentrations to
0.1 mg/L did not substantially further reduce leaf area. Pavement
cell area showed a similar trend (Figure 4D). Likewise, the
numbers of salt glands, stomata, and pavement cells dropped with
0.02 mg/L GA3, but then remained constant with higher GA3
concentrations (>0.02 mg/L) (Figure 4D).

Leaf Development of Limonium bicolor Is
Suppressed by Abscisic Acid
Finally, we tested the effects of ABA treatment on leaf growth
(Figure 5A) and epidermis development (Figures 5B,C). Low

and intermediate ABA concentrations (0.02–0.06 mg/L) reduced
leaf and pavement cell areas to roughly the same extent
(Figure 5D). However, the highest ABA concentration applied
(0.08 mg/L) further reduced both leaf and pavement cell areas.
The total numbers of salt glands, stomata, and pavement cells
displayed the same trends as leaf area (Figure 5D).

Correlation Between Total Numbers of
Salt Glands, Stomata, and Pavement
Cells; Leaf Area; and Pavement Cell Area
Under Different Treatments
We then explored the correlations between the total numbers of
salt glands, stomata, and pavement cells; leaf area; and pavement
cell area for each phytohormone using SPSS. For SA treatments,
the total salt gland number showed a significant (P = 0.01)
and positive correlation with leaf area, pavement cell area, total
stomatal number, and pavement cell number (Supplementary
Table 1). We also obtained strong, positive correlations between
stomatal number and leaf area, as well as stomatal number
and pavement cell number, indicating that the development of
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TABLE 1 | Correlation analysis between total salt glands (Total_SG) and the other four parameters: total stomata (Total_ST), total pavement cells (Total_PC), leaf area
(Leaf_area), and pavement cell area (PC_Area) upon treatment with the five phytohormones salicylic acid (SA), brassinolide (BL), methyl jasmonate (MeJA), gibberellic
acid (GA), and abscisic acid (ABA) using Pearson’s correlation analysis.

Mean Std. D Total_SG Total_ST Total_PC Leaf_Area PC_Area

Correlations

Total_SG 2.317E + 02 6.780E + 01 1.000

Total_ST 1.348E + 03 4.930E + 02 0.515** 1.000

Total_PC 9.001E + 03 2.670E + 03 0.609** 0.634** 1.000

Leaf_Area 1.508E + 01 4.934E + 00 0.682** 0.503** 0.655** 1.000

PC_Area 1.483E-03 4.321E-04 0.264** 0.419** 0.285** 0.189** 1.000

**Correlation is significant at the 0.01 level (2-tailed).

salt glands, stomata, and pavement cells might be coupled or
coordinated during leaf expansion.

We then applied the same analysis to the other four
phytohormones (Supplementary Tables 2–5). We observed
similar results, supporting the notion that the number of salt
glands is highly correlated with all other parameters tested. We
therefore conclude that larger leaves will present more salt glands,
stomata, and pavement cells.

Finally, we integrated the data from all five phytohormones
after normalization to remove any scaling effects and repeated
the correlation analysis between the total numbers of salt glands,
stomata, and pavement cells; leaf area; and pavement cell area
(Table 1). Again, we obtained highly significant and positive
correlations between salt glands and other parameters.

DISCUSSION

Leaf development is controlled by a complex regulatory network.
Salt glands are a specific derived epidermal structure of
recretohalophytes, but how the salt gland differentiate from
single epidermal cell is still unclear. Here, we conducted visual
assessments and quantifications of the numbers of salt glands,
stomata, and pavement cells as well as leaf and pavement cell areas
in seedlings exposed to five phytohormones to explore possible
relationships during leaf development. All parameters were
strongly and positively correlated for all phytohormones tested.

Salicylic acid is an endogenous defense phytohormone that
regulates many aspects of plant growth and development,
especially during stress responses (Klessig et al., 2018) by
reducing the accumulation of reactive oxygen species (ROS; Ma
et al., 2017). Exogenous SA treatment can promote germination
of Arabidopsis (Arabidopsis thaliana) seeds exposed to high
salinity (Lee et al., 2010). Here, in L. bicolor, we added SA to the
growth medium to observe its effects on the development of salt
glands, stomata, and pavement cells.

When plants are exposed to salt stress, brassinosteroids
can result in hormonal stress dose–dependent biphasic effects.
Increasing BL levels or enhancing BL signals can increase plant
resistance to salt (Liu et al., 2020). Treatment with exogenous BL
improves the salt tolerance of perennial ryegrass (Lolium perenne
L.) by increasing the activity of antioxidant enzymes and proline
content (Wu et al., 2017). Similar to previous studies (Asami
et al., 2005), low concentrations of BL (1.25 mg/L) promoted leaf

development in L. bicolor in this study, as well as development
of salt glands, stomata, and pavement cells. With higher BL
concentrations (>2.5 mg/L), we observed a typical inhibition
response for leaf development, which is also consistent with a
previous report that high BL concentrations inhibit the seedling
development in Arabidopsis (Bao et al., 2004).

The phytohormones MeJA, GA3, and ABA limited leaf
development and salt gland differentiation (Yuan et al., 2016b,
2018). As a key phytohormone in plant defenses against
pathogenic microorganisms and pests (Yuan et al., 2018),
JA increases the transcription of genes encoding antioxidant
enzymes in wheat (Triticum aestivum) seedlings, thereby
improving their tolerance to salt stress (Qiu et al., 2014).
However, in the current results, MeJA added to the growth
medium inhibited leaf development of L. bicolor. We obtained
similar inhibitory effects with GA3 treatments. GA3 is a growth-
promoting plant hormone (Verma et al., 2016) that relieves
seed dormancy, promotes stem elongation (Daviere and Achard,
2013), and reduces ROS contents during abiotic stress conditions
(Colebrook et al., 2014). A rare role was also reported for
GA3 in the development of epidermal structures. Low GA3
concentrations (0.02 mg/L) inhibited leaf development and the
expansion of all leaf structures. Similar results were seen in
seedlings treated with the stress phytohormone ABA, which
responds to salt stress by regulating stomatal movements,
increasing intracellular Ca2+ concentrations, and increasing ROS
levels (Yu et al., 2020). In Arabidopsis, ABA sensitivity is typically
reduced to improve tolerance to abiotic stress (Xu et al., 2020).
We noted the repression of salt gland and stomatal development
upon exposure to ABA. While ABA can induce stomatal closure
(Postiglione and Muday, 2020), our present results reveal for
the first time a relationship between stomatal development
and ABA treatment.

Total Salt Gland Number Versus
Pavement Cell Number
As different phytohormones have different effects on leaf
development, we combined all normalized data to determine
the overall correlation between leaf development parameters.
We detected strong correlations between salt gland number
and pavement cell area, and between salt gland number and
leaf area when considering each phytohormone separately
(Supplementary Tables 1–5) or in combination (Table 1). In
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FIGURE 6 | The schematic model of coupled leaf development in L. bicolor.
Four distinct stages are divided including stage I (MESCs undifferentiation
stage), stage II (from MESCs to salt gland), stage III (from MESCs to stomata)
and stage IV (from MESCs to pavement cell). In stage I, SA and BL promote
the further differentiation of MESCs, while GA3, MeJA and ABA inhibit this
process. In stage II, salt glands are formed through two-cell, four-cell,
eight-cell, twelve-cell and sixteen-cell. Stomata emerged in stage III and
pavement cells formed in stage IV.

previous studies of L. bicolor, salt gland number always showed
a positive correlation with leaf area (Yuan et al., 2018); for
example, Ca2+ treatment enhanced salt gland development and
leaf expansion (Ding et al., 2010). Here, we observed strong
and positive correlations between salt gland number and leaf
area, indicating that salt gland development is coupled with
leaf development.

Total Salt Gland Number Versus Stomata
Number
Salt glands are not the only epidermal structure of L. bicolor.
Stomata also responded to the different phytohormone
treatments. The development of salt glands and stomata is
thought to take place at distinct leaf developmental stages (Yuan
et al., 2015). We obtained very strong, positive correlations
between the numbers of salt glands and stomata, indicative
of an indirect connection between salt gland and stomatal
development. Moreover, we noted a positive correlation between
stomatal number and pavement cell area, which was consistent
with a previous study reporting that stomatal development is
correlated with leaf area (Gay and Hurd, 2010).

Besides of the relationship between salt gland and pavement
cell or stomata, there is an interesting phenomenon that no
trichome distributed on the surface of L. bicolor. Given that
trichomes also have the similar distribution pattern to salt gland,
and trichomes from some species are reported to have secretory
function (Wagner et al., 2004; Olsson et al., 2009), it is believed

that there may be some homologous relationship between salt
gland and trichome (Yuan et al., 2015). More will be verified
by transformation the homologous genes involved in trichome
development and salt gland development, such as a WD40-repeat
protein (Yuan et al., 2019) and MYB transcription factor LbTRY
(Leng et al., 2021).

Based on the former proposed salt gland development pattern
(Yuan et al., 2015; Xu et al., 2020), we further improve the leaf
development model (Figure 6) including MESCs (multipotent
epidermal stem cells) stage, salt gland differentiation stage,
stomata stage and pavement cell formation stage. The plant
regulators proposed in the current report may directly act on
the regulation of MESCs with promotion of SA and BL, and
inhibition of GA3, MeJA and ABA to further differentiate into
different cell types. In conclusion, the leaf area of expanded
leaves is a good direct indicator of the number of salt
glands, stomata, and pavement cells. Salt glands on L. bicolor
leaves can excrete excess Na+ out of the plant to avoid salt
overaccumulation, but their development is not disconnected
from that of the rest of the leaf. Our present results revealed
connections between the development of salt glands, stomata,
and pavement cells, which will be benefit to the further study of
salt glands development.
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